Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

The Potential Anticancer Potency of Kolaviron on Colorectal Adenocarcinoma (Caco-2) Cells

Author(s): Hussam A. Althagafi*

Volume 24, Issue 15, 2024

Published on: 03 June, 2024

Page: [1097 - 1108] Pages: 12

DOI: 10.2174/0118715206288807240527165444

Price: $65

Abstract

Background: Globally, colorectal cancer (CRC) is categorized as the third type of cancer associated with mortalities. Chemotherapeutic drugs such as cisplatin can be used to treat cancer-affected patients. However, several adverse effects are associated with its application. This motivated the researchers to search for alternatives that are more efficient and have fewer undesirable effects. Kolaviron is a bioflavonoid that has been reported to have antioxidant and anti-inflammatory properties.

Aim: This study aimed to compare the anticancer effects of kolaviron and cisplatin on Caco-2 cells. The IC50 of kolaviron and cisplatin were calculated, and redox status, apoptotic-related proteins and the cell cycle were also examined.

Methods: Caco-2 cells were treated with kolaviron ( ⅓, and ½ of IC50 dose) and cisplatin (IC50 dose) for 24 h and 48 h. Cell viability was assessed using the MTT protocol. Redox status and apoptotic-related proteins, in addition to the cell cycle, were examined.

Results: The MTT assay showed the IC50 of kolaviron is 9.49 μg/mL, and that of cisplatin is 2.71 μg/ml against Caco-2 cells. Further, both doses of kolaviron significantly increased the leakage of lactate dehydrogenase (LDH), the production of reactive oxygen species (ROS), and lipoperoxidation (LPO), besides decreasing the antioxidant potency of tumor cells as revealed by the diminished reduced glutathione (GSH). At the molecular level, a significant increase in the levels of p53, cytochrome c, Bax, and caspase 3 was recorded, coupled with a decrease in the level of Bcl2, after treating the Caco-2 cells with kolaviron and cisplatin. Furthermore, kolaviron demonstrated asserted more effects on apoptosis and increased cell percentage in the subG1 phase. In addition, a notable decrease in the expression of proliferating cell nuclear antigen (PCNA) and cyclin D1 is associated with an increase in the expression of tumor protein P53 (TP53) in kolaviron-treated Caco-2 cells cancerous cells.

Conclusion: Conclusively, these data suggest that kolaviron has a potential antitumor capacity against colorectal cancer via multiple pathways, including enhancement of ROS production, redox status, p53 pathway, and apoptosis. Therefore, this study authenticated the capability of kolaviron as a valuable chemotherapeutic agent.

Next »
[1]
Othman, M.S.; Al-Bagawi, A.H.; Obeidat, S.T.; Fareid, M.A.; Habotta, O.A.; Moneim, A.E.A. Antitumor activity of zinc nanoparticles synthesized with berberine on human epithelial colorectal adenocarcinoma (Caco-2) cells through acting on Cox-2/NF-κB and p53 pathways. Anticancer. Agents Med. Chem., 2022, 22(10), 2002-2010.
[http://dx.doi.org/10.2174/1871520621666211004115839] [PMID: 34607550]
[2]
Jaferian, S.; Negahdari, B.; Eatemadi, A. Colon cancer targeting using conjugates biomaterial 5-flurouracil. Biomed. Pharmacother., 2016, 84, 780-788.
[http://dx.doi.org/10.1016/j.biopha.2016.10.004] [PMID: 27721176]
[3]
Messersmith, W.A. NCCN guidelines updates: Management of metastatic colorectal cancer. J. Natl. Compr. Canc. Netw., 2019, 17(5), 599-601.
[4]
El-Garawani, I.M.; El-Nabi, S.H.; Dawoud, G.T.; Esmail, S.M.; Abdel Moneim, A.E. Triggering of apoptosis and cell cycle arrest by fennel and clove oils in Caco-2 cells: The role of combination. Toxicol. Mech. Methods, 2019, 29(9), 710-722.
[http://dx.doi.org/10.1080/15376516.2019.1650149] [PMID: 31364915]
[5]
Galluzzi, L.; Vitale, I.; Michels, J.; Brenner, C.; Szabadkai, G.; Harel-Bellan, A.; Castedo, M.; Kroemer, G. Systems biology of cisplatin resistance: Past, present and future. Cell Death Dis., 2014, 5(5), e1257-e1257.
[http://dx.doi.org/10.1038/cddis.2013.428] [PMID: 24874729]
[6]
Farombi, E.O.; Adedara, I.A.; Ajayi, B.O.; Ayepola, O.R.; Egbeme, E.E. Kolaviron, a natural antioxidant and anti-inflammatory phytochemical prevents dextran sulphate sodium-induced colitis in rats. Basic Clin. Pharmacol. Toxicol., 2013, 113(1), 49-55.
[http://dx.doi.org/10.1111/bcpt.12050] [PMID: 23336970]
[7]
Farombi, E.O.; Abarikwu, S.O.; Adedara, I.A.; Oyeyemi, M.O. Curcumin and kolaviron ameliorate di-n-butylphthalate-induced testicular damage in rats. Basic Clin. Pharmacol. Toxicol., 2007, 100(1), 43-48.
[http://dx.doi.org/10.1111/j.1742-7843.2007.00005.x] [PMID: 17214610]
[8]
Adaramoye, O.A.; Adeyemi, E.O. Hypoglycaemic and hypolipidaemic effects of fractions from kolaviron, a biflavonoid complex from Garcinia Kola in streptozotocin-induced diabetes mellitus rats. J. Pharm. Pharmacol., 2010, 58(1), 121-128.
[http://dx.doi.org/10.1211/jpp.58.1.0015] [PMID: 16393472]
[9]
Adaramoye, O.A.; Nwaneri, V.O.; Anyanwu, K.C.; Farombi, E.O.; Emerole, G.O. Possible anti‐atherogenic effect of kolaviron (a Garcinia kola seed extract) in hypercholesterolaemic rats. Clin. Exp. Pharmacol. Physiol., 2005, 32(1-2), 40-46.
[http://dx.doi.org/10.1111/j.1440-1681.2005.04146.x] [PMID: 15730433]
[10]
Ajayi, B.O.; Adedara, I.A.; Emeka, O.C.; Awoyinka, P.B.; Beckley, O.O.; Adeleye, A.A.; Farombi, E.O. Kolaviron ameliorates chronic colitis induced by prolonged oral administration of Dextran Sulphate Sodium in Balb/c mice. Eur. J. Med. Chem. Reprts, 2022, 6, 100071.
[http://dx.doi.org/10.1016/j.ejmcr.2022.100071]
[11]
Farombi, E.O.; Shrotriya, S.; Surh, Y.J. Kolaviron inhibits dimethyl nitrosamine-induced liver injury by suppressing COX-2 and iNOS expression via NF-κB and AP-1. Life Sci., 2009, 84(5-6), 149-155.
[http://dx.doi.org/10.1016/j.lfs.2008.11.012] [PMID: 19081081]
[12]
Blake, C.; Adetokunbo, O.; Adedapo, A.; Omobowale, T.; Yakubu, M. Kolaviron‐induced inhibition of h1299 lung cancer cells growth and survival via PKA/P13K pathways. FASEB J., 2015, 29(S1), LB539.
[http://dx.doi.org/10.1096/fasebj.29.1_supplement.lb539]
[13]
Iwu, M.M. Antihepatoxic constituents of Garcinia kola seeds. Experientia, 1985, 41(5), 699-700.
[http://dx.doi.org/10.1007/BF02007729] [PMID: 3838940]
[14]
Cotterill, P.J.; Scheinmann, F.; Stenhouse, I.A. Extractives from guttiferae. Part 34. Kolaflavanone, a new biflavanone from the nuts of Garcinia kola Heckel. Applications of 13C nuclear magnetic resonance in elucidation of the structures of flavonoids. J. Chem. Soc., Perkin Trans. 1, 1978, (6), 532-539.
[http://dx.doi.org/10.1039/p19780000532]
[15]
Tolosa, L.; Donato, M.T.; Gómez-Lechón, M.J. General cytotoxicity assessment by means of the MTT assay. Methods Mol. Biol., 2015, 1250, 333-348.
[http://dx.doi.org/10.1007/978-1-4939-2074-7_26] [PMID: 26272156]
[16]
Hafner, A.; Lovrić, J.; Voinovich, D.; Filipović-Grčić, J. Melatonin-loaded lecithin/chitosan nanoparticles: Physicochemical characterisation and permeability through Caco-2 cell monolayers. Int. J. Pharm., 2009, 381(2), 205-213.
[http://dx.doi.org/10.1016/j.ijpharm.2009.07.001] [PMID: 19596430]
[17]
Wang, X.; Roper, M.G. Measurement of DCF fluorescence as a measure of reactive oxygen species in murine islets of Langerhans. Anal. Methods, 2014, 6(9), 3019-3024.
[http://dx.doi.org/10.1039/C4AY00288A] [PMID: 24955137]
[18]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[19]
Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82(1), 70-77.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[20]
Fang, B.; Fu, G.; Agniswamy, J.; Harrison, R.W.; Weber, I.T. Caspase-3 binds diverse P4 residues in peptides as revealed by crystallography and structural modeling. Apoptosis, 2009, 14(5), 741-752.
[http://dx.doi.org/10.1007/s10495-009-0333-y] [PMID: 19283487]
[21]
Petros, A.M.; Medek, A.; Nettesheim, D.G.; Kim, D.H.; Yoon, H.S.; Swift, K.; Matayoshi, E.D.; Oltersdorf, T.; Fesik, S.W. Solution structure of the antiapoptotic protein bcl-2. Proc. Natl. Acad. Sci. USA, 2001, 98(6), 3012-3017.
[http://dx.doi.org/10.1073/pnas.041619798] [PMID: 11248023]
[22]
Frisch, M. Spectroscopic evaluation of the molecular structures of di-μ-Chlorobis(1,5-Cyclooctadiene) Iridium (I) and Rhodium (I) Complexes. J Appl. Math. Phy., 2015, 3(2), 1399207.
[23]
Wikipedia. Discovery studio. 2008. Available From: https://en.wikipedia.org/wiki/Discovery_Studio
[24]
Othman, M.S.; Aboelnaga, S.M.; Habotta, O.A.; Moneim, A.E.A.; Hussein, M.M. The potential therapeutic role of green-synthesized selenium nanoparticles using carvacrol in human breast cancer MCF-7 cells. Appl. Sci. (Basel), 2023, 13(12), 7039.
[http://dx.doi.org/10.3390/app13127039]
[25]
Lin, S.R.; Fu, Y.S.; Tsai, M.J.; Cheng, H.; Weng, C.F. Natural compounds from herbs that can potentially execute as autophagy inducers for cancer therapy. Int. J. Mol. Sci., 2017, 18(7), 1412.
[http://dx.doi.org/10.3390/ijms18071412] [PMID: 28671583]
[26]
Oyagbemi, A. Antiproliferative effect of kolaviron, a biflavonoid complex from the seed of Garcinia kola on vascular smooth muscle cells (VSMs) and A549 cancer cell line. The FASEB J, 2015, 29, 945-17.
[27]
Farombi, E.O.; Tahnteng, J.G.; Agboola, A.O.; Nwankwo, J.O.; Emerole, G.O. Chemoprevention of 2-acetylaminofluorene-induced hepatotoxicity and lipid peroxidation in rats by kolaviron-A Garcinia kola seed extract. Food Chem. Toxicol., 2000, 38(6), 535-541.
[http://dx.doi.org/10.1016/S0278-6915(00)00039-9] [PMID: 10828505]
[28]
Olatunde, F.E.; Møller, P.; Dragsted, L.O. Ex-vivo and in vitro protective effects of kolaviron against oxygen-derived radical-induced DNA damage and oxidative stress in human lymphocytes and rat liver cells. Cell Biol. Toxicol., 2004, 20(2), 71-82.
[http://dx.doi.org/10.1023/B:CBTO.0000027916.61347.bc] [PMID: 15242183]
[29]
Farombi, E.O.; Adepoju, B.F.; Ola-Davies, O.E.; Emerole, G.O. Chemoprevention of aflatoxin B1-induced genotoxicity and hepatic oxidative damage in rats by kolaviron, a natural biflavonoid of Garcinia kola seeds. Eur. J. Cancer Prev., 2005, 14(3), 207-214.
[http://dx.doi.org/10.1097/00008469-200506000-00003] [PMID: 15901988]
[30]
Brown, D.I.; Griendling, K.K. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ. Res., 2015, 116(3), 531-549.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303584] [PMID: 25634975]
[31]
Agullo, G.; Gamet, L.; Besson, C.; Demigné, C.; Rémésy, C. Quercetin exerts a preferential cytotoxic effect on active dividing colon carcinoma HT29 and Caco-2 cells. Cancer Lett., 1994, 87(1), 55-63.
[http://dx.doi.org/10.1016/0304-3835(94)90409-X] [PMID: 7954370]
[32]
Yücel, Ç.; Değim, Z.; Yılmaz, Ş. Development of Cisplatin-loaded liposome and evaluation of transport properties through Caco-2 cell line. Turkish J. Pharm. Sci., 2016, 13(1), 95-108.
[http://dx.doi.org/10.5505/tjps.2016.32032]
[33]
Chen, H.M.; Lai, Z.Q.; Liao, H.J.; Xie, J.H.; Xian, Y.F.; Chen, Y.L.; Ip, S.P.; Lin, Z.X.; Su, Z.R. Synergistic antitumor effect of brusatol combined with cisplatin on colorectal cancer cells. Int. J. Mol. Med., 2018, 41(3), 1447-1454.
[http://dx.doi.org/10.3892/ijmm.2018.3372] [PMID: 29328398]
[34]
Fernández de Mattos, S.; Villalonga, P.; Clardy, J.; Lam, E.W.F. FOXO3a mediates the cytotoxic effects of cisplatin in colon cancer cells. Mol. Cancer Ther., 2008, 7(10), 3237-3246.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0398] [PMID: 18852127]
[35]
Felth, J.; Rickardson, L.; Rosén, J.; Wickström, M.; Fryknäs, M.; Lindskog, M.; Bohlin, L.; Gullbo, J. Cytotoxic effects of cardiac glycosides in colon cancer cells, alone and in combination with standard chemotherapeutic drugs. J. Nat. Prod., 2009, 72(11), 1969-1974.
[http://dx.doi.org/10.1021/np900210m] [PMID: 19894733]
[36]
Lin, X.; Ramamurthi, K.; Mishima, M.; Kondo, A.; Christen, R.D.; Howell, S.B. P53 modulates the effect of loss of DNA mismatch repair on the sensitivity of human colon cancer cells to the cytotoxic and mutagenic effects of cisplatin. Cancer Res., 2001, 61(4), 1508-1516.
[PMID: 11245458]
[37]
Saber, M.M.; Al-mahallawi, A.M.; Nassar, N.N.; Stork, B.; Shouman, S.A. Targeting colorectal cancer cell metabolism through development of cisplatin and metformin nano-cubosomes. BMC Cancer, 2018, 18(1), 822.
[http://dx.doi.org/10.1186/s12885-018-4727-5] [PMID: 30111296]
[38]
Yokoo, S.; Masuda, S.; Yonezawa, A.; Terada, T.; Katsura, T.; Inui, K. Significance of organic cation transporter 3 (SLC22A3) expression for the cytotoxic effect of oxaliplatin in colorectal cancer. Drug Metab. Dispos., 2008, 36(11), 2299-2306.
[http://dx.doi.org/10.1124/dmd.108.023168] [PMID: 18710896]
[39]
Turktekin, M.; Konac, E.; Onen, H.I.; Alp, E.; Yilmaz, A.; Menevse, S. Evaluation of the effects of the flavonoid apigenin on apoptotic pathway gene expression on the colon cancer cell line (HT29). J. Med. Food, 2011, 14(10), 1107-1117.
[http://dx.doi.org/10.1089/jmf.2010.0208] [PMID: 21548803]
[40]
Gurunathan, S.; Qasim, M.; Park, C.; Yoo, H.; Kim, J.H.; Hong, K. Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT116. Int. J. Mol. Sci., 2018, 19(8), 2269.
[http://dx.doi.org/10.3390/ijms19082269] [PMID: 30072642]
[41]
Bhardwaj, M.; Cho, H.J.; Paul, S.; Jakhar, R.; Khan, I.; Lee, S.J.; Kim, B.Y.; Krishnan, M.; Khaket, T.P.; Lee, H.G.; Kang, S.C. Vitexin induces apoptosis by suppressing autophagy in multi-drug resistant colorectal cancer cells. Oncotarget, 2018, 9(3), 3278-3291.
[http://dx.doi.org/10.18632/oncotarget.22890] [PMID: 29423046]
[42]
Kwon, M.; Oh, T.; Jang, M.; Kim, G.H.; Kim, J.H.; Ryu, H.W.; Oh, S.R.; Jang, J.H.; Ahn, J.S.; Ko, S.K. Kurarinone induced p53-independent G0/G1 cell cycle arrest by degradation of K-RAS via WDR76 in human colorectal cancer cells. Eur. J. Pharmacol., 2022, 923, 174938.
[http://dx.doi.org/10.1016/j.ejphar.2022.174938] [PMID: 35381263]
[43]
Natarajan, N.; Thamaraiselvan, R.; Lingaiah, H.; Srinivasan, P.; Maruthaiveeran, P.B. Effect of flavonone hesperidin on the apoptosis of human mammary carcinoma cell line MCF-7. Biomed. Preventive Nutrition, 2011, 1(3), 207-215.
[http://dx.doi.org/10.1016/j.bionut.2011.07.001]
[44]
Zhou, J.; Li, P.; Xue, X.; He, S.; Kuang, Y.; Zhao, H.; Chen, S.; Zhi, Q.; Guo, X. Salinomycin induces apoptosis in cisplatin-resistant colorectal cancer cells by accumulation of reactive oxygen species. Toxicol. Lett., 2013, 222(2), 139-145.
[http://dx.doi.org/10.1016/j.toxlet.2013.07.022] [PMID: 23916687]
[45]
Circu, M.L.; Aw, T.Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med., 2010, 48(6), 749-762.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.12.022] [PMID: 20045723]
[46]
Abarikwu, S.O.; Farombi, E.O.; Pant, A.B. Biflavanone-kolaviron protects human dopaminergic SH-SY5Y cells against atrazine induced toxic insult. Toxicol. In Vitro, 2011, 25(4), 848-858.
[http://dx.doi.org/10.1016/j.tiv.2011.02.005] [PMID: 21333729]
[47]
Juan, M.E.; Wenzel, U.; Daniel, H.; Planas, J.M. Resveratrol induces apoptosis through ROS-dependent mitochondria pathway in HT-29 human colorectal carcinoma cells. J. Agric. Food Chem., 2008, 56(12), 4813-4818.
[http://dx.doi.org/10.1021/jf800175a] [PMID: 18522405]
[48]
Das, A.; Banik, N.L.; Ray, S.K. Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes. Cancer, 2010, 116(1), 164-176.
[http://dx.doi.org/10.1002/cncr.24699] [PMID: 19894226]
[49]
Lin, Y.; Shi, R.; Wang, X.; Shen, H.M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets, 2008, 8(7), 634-646.
[http://dx.doi.org/10.2174/156800908786241050] [PMID: 18991571]
[50]
Galati, G.; O’Brien, P.J. Potential toxicity of flavonoids and other dietary phenolics: Significance for their chemopreventive and anticancer properties. Free Radic. Biol. Med., 2004, 37(3), 287-303.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.04.034] [PMID: 15223063]
[51]
Othman, M.S.; Obeidat, S.T.; Al-Bagawi, A.H.; Fareid, M.A.; Fehaid, A.; Abdel Moneim, A.E. Green-synthetized selenium nanoparticles using berberine as a promising anticancer agent. J. Integr. Med., 2022, 20(1), 65-72.
[http://dx.doi.org/10.1016/j.joim.2021.11.002] [PMID: 34802980]
[52]
Park, B.H.; Lim, J.E.; Jeon, H.G.; Il Seo, S.; Lee, H.M.; Choi, H.Y.; Jeon, S.S.; Jeong, B.C. Curcumin potentiates antitumor activity of cisplatin in bladder cancer cell lines via ROS-mediated activation of ERK1/2. Oncotarget, 2016, 7(39), 63870-63886.
[http://dx.doi.org/10.18632/oncotarget.11563] [PMID: 27564099]
[53]
Kleih, M.; Böpple, K.; Dong, M.; Gaißler, A.; Heine, S.; Olayioye, M.A.; Aulitzky, W.E.; Essmann, F. Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells. Cell Death Dis., 2019, 10(11), 851.
[http://dx.doi.org/10.1038/s41419-019-2081-4] [PMID: 31699970]
[54]
Yang, Z.; Guo, F.; Albers, A.E.; Sehouli, J.; Kaufmann, A.M. Disulfiram modulates ROS accumulation and overcomes synergistically cisplatin resistance in breast cancer cell lines. Biomed. Pharmacother., 2019, 113, 108727.
[http://dx.doi.org/10.1016/j.biopha.2019.108727] [PMID: 30870721]
[55]
Fleury, C.; Mignotte, B.; Vayssière, J.L. Mitochondrial reactive oxygen species in cell death signaling. Biochimie, 2002, 84(2-3), 131-141.
[http://dx.doi.org/10.1016/S0300-9084(02)01369-X] [PMID: 12022944]
[56]
Martins, N.M.; Santos, N.A.G.; Curti, C.; Bianchi, M.L.P.; Santos, A.C. Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver. J. Appl. Toxicol., 2008, 28(3), 337-344.
[http://dx.doi.org/10.1002/jat.1284] [PMID: 17604343]
[57]
Durgo, K. Effects of flavonoids on glutathione level, lipid peroxidation and cytochrome P450 CYP1A1 expression in human laryngeal carcinoma cell lines. Food Technol. Biotechnol., 2007, 45(1), 69.
[58]
Martín, M.A.; Ramos, S.; Mateos, R.; Izquierdo-Pulido, M.; Bravo, L.; Goya, L. Protection of human HepG2 cells against oxidative stress by the flavonoid epicatechin. Phytother. Res., 2010, 24(4), 503-509.
[http://dx.doi.org/10.1002/ptr.2961] [PMID: 20041424]
[59]
Park, H.J.; Choi, Y.J.; Lee, J.H.; Nam, M.J. Naringenin causes ASK1-induced apoptosis via reactive oxygen species in human pancreatic cancer cells. Food Chem. Toxicol., 2017, 99, 1-8.
[http://dx.doi.org/10.1016/j.fct.2016.11.008] [PMID: 27838343]
[60]
Yu, W.; Chen, Y.; Dubrulle, J.; Stossi, F.; Putluri, V.; Sreekumar, A.; Putluri, N.; Baluya, D.; Lai, S.Y.; Sandulache, V.C. Cisplatin generates oxidative stress which is accompanied by rapid shifts in central carbon metabolism. Sci. Rep., 2018, 8(1), 4306.
[http://dx.doi.org/10.1038/s41598-018-22640-y] [PMID: 29523854]
[61]
El-Demiry, S.M.; El-Yamany, M.; El-Gendy, S.M.; Salem, H.A.; Saber, M.M. Necroptosis modulation by cisplatin and sunitinib in hepatocellular carcinoma cell line. Life Sci., 2022, 301, 120594.
[http://dx.doi.org/10.1016/j.lfs.2022.120594] [PMID: 35500680]
[62]
Wang, H.Y.; Yu, H.Z.; Huang, S.M.; Zheng, Y.L. p53, Bcl-2 and cox-2 are involved in berberine hydrochloride-induced apoptosis of HeLa229 cells. Mol. Med. Rep., 2016, 14(4), 3855-3861.
[http://dx.doi.org/10.3892/mmr.2016.5696] [PMID: 27601129]
[63]
Huang, H.; Chen, A.Y.; Ye, X.; Guan, R.; Rankin, G.O.; Chen, Y.C. Galangin, a flavonoid from lesser galangal, induced apoptosis via p53-dependent pathway in ovarian cancer cells. Molecules, 2020, 25(7), 1579.
[http://dx.doi.org/10.3390/molecules25071579] [PMID: 32235536]
[64]
El-Shorbagy, H.M.; Eissa, S.M.; Sabet, S.; El-Ghor, A.A. Apoptosis and oxidative stress as relevant mechanisms of antitumor activity and genotoxicity of ZnO-NPs alone and in combination with N-acetyl cysteine in tumor-bearing mice. Int. J. Nanomed., 2019, 14, 3911-3928.
[http://dx.doi.org/10.2147/IJN.S204757] [PMID: 31213808]
[65]
Shih-Wei, W. ZnO nanoparticles induced caspase-dependent apoptosis in gingival squamous cell carcinoma through mitochondrial dysfunction and p70S6K signaling pathway. Int. J. Mol. Sci., 2020, 21(5), 1612.
[66]
Kuwana, T.; Newmeyer, D.D. Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr. Opin. Cell Biol., 2003, 15(6), 691-699.
[http://dx.doi.org/10.1016/j.ceb.2003.10.004] [PMID: 14644193]
[67]
Chen, W.-S. Bcl-2-family proteins and the role of mitochondria in apoptosis.Enhancement of p53-mutant human colorectal cancer cells radiosensitivity by flavonoid fisetin. Int. J. Radiat. Oncol. Biol. Phys., 2010, 77(5), 1527-1535.
[http://dx.doi.org/10.1016/j.ijrobp.2010.02.043]
[68]
Xavier, C.P.R.; Lima, C.F.; Rohde, M.; Pereira-Wilson, C. Quercetin enhances 5-fluorouracil-induced apoptosis in MSI colorectal cancer cells through p53 modulation. Cancer Chemother. Pharmacol., 2011, 68(6), 1449-1457.
[http://dx.doi.org/10.1007/s00280-011-1641-9] [PMID: 21479885]
[69]
Li, J.; Cheng, Y.; Qu, W.; Sun, Y.; Wang, Z.; Wang, H.; Tian, B. Fisetin, a dietary flavonoid, induces cell cycle arrest and apoptosis through activation of p53 and inhibition of NF-kappa B pathways in bladder cancer cells. Basic Clin. Pharmacol. Toxicol., 2011, 108(2), 84-93.
[http://dx.doi.org/10.1111/j.1742-7843.2010.00613.x] [PMID: 21054790]
[70]
Katiyar, S.K.; Roy, A.M.; Baliga, M.S. Silymarin induces apoptosis primarily through a p53-dependent pathway involving Bcl-2/Bax, cytochrome c release, and caspase activation. Mol. Cancer Ther., 2005, 4(2), 207-216.
[http://dx.doi.org/10.1158/1535-7163.207.4.2] [PMID: 15713892]
[71]
An, S.H.; Kang, J.H.; Kim, D.H.; Lee, M.S. Vitamin C increases the apoptosis via up-regulation p53 during cisplatin treatment in human colon cancer cells. BMB Rep., 2011, 44(3), 211-216.
[http://dx.doi.org/10.5483/BMBRep.2011.44.3.211] [PMID: 21429301]
[72]
Wu, X.; Lu, Y.; Qin, X. Combination of Compound Kushen Injection and cisplatin shows synergistic antitumor activity in p53-R273H/P309S mutant colorectal cancer cells through inducing apoptosis. J. Ethnopharmacol., 2022, 283, 114690.
[http://dx.doi.org/10.1016/j.jep.2021.114690] [PMID: 34597653]
[73]
Yuan, J. USP39 attenuates the antitumor activity of cisplatin on colon cancer cells dependent on p53. Cell Biol. Toxicol., 2021, 1-16.
[PMID: 34822033]
[74]
Siddik, Z.H. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene, 2003, 22(47), 7265-7279.
[http://dx.doi.org/10.1038/sj.onc.1206933] [PMID: 14576837]
[75]
Aloufi, A.S.; Habotta, O.A.; Abdelfattah, M.S.; Habib, M.N.; Omran, M.M.; Ali, S.A.; Abdel Moneim, A.E.; Korany, S.M.; Alrajhi, A.M. Resistomycin suppresses prostate cancer cell growth by instigating oxidative stress, mitochondrial apoptosis, and cell cycle arrest. Molecules, 2023, 28(23), 7871.
[http://dx.doi.org/10.3390/molecules28237871] [PMID: 38067602]
[76]
Fernandez-Gil, B.I.; Guerra-Librero, A.; Shen, Y.Q.; Florido, J.; Martínez-Ruiz, L.; García-López, S.; Adan, C.; Rodríguez-Santana, C.; Acuña-Castroviejo, D.; Quiñones-Hinojosa, A.; Fernández-Martínez, J.; Abdel Moneim, A.E.; López, L.C.; Rodríguez Ferrer, J.M.; Escames, G. Melatonin enhances cisplatin and radiation cytotoxicity in head and neck squamous cell carcinoma by stimulating mitochondrial ros generation, apoptosis, and autophagy. Oxid. Med. Cell. Longev., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/7187128] [PMID: 30944696]
[77]
Kim, S.Y.; Kim, J.E.; Lee, K.W.; Lee, H.J. Lactococcus lactis ssp. lactis inhibits the proliferation of SNU-1 human stomach cancer cells through induction of G0/G1 cell cycle arrest and apoptosis via p53 and p21 expression. Ann. N. Y. Acad. Sci., 2009, 1171(1), 270-275.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04721.x] [PMID: 19723065]
[78]
Al-Mohanna, M.A.; Al-Khodairy, F.M.; Krezolek, Z.; Bertilsson, P.A.; Al-Houssein, K.A.; Aboussekhra, A. p53 is dispensable for UV-induced cell cycle arrest at late G1 in mammalian cells. Carcinogenesis, 2001, 22(4), 573-578.
[http://dx.doi.org/10.1093/carcin/22.4.573] [PMID: 11285191]
[79]
Lim, D.Y.; Jeong, Y.; Tyner, A.L.; Park, J.H.Y. Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292(1), G66-G75.
[http://dx.doi.org/10.1152/ajpgi.00248.2006] [PMID: 16901994]
[80]
Wang, Z.; Lin, W.; Shi, M.; Hou, Y.; Liu, J.; Huang, Z.; Zhang, X.; Yang, Y.; Liu, B.; Yang, Z.; Ma, W. Involucrasin B inhibits the proliferation of Caco-2 cells by regulating the TGFβ/SMAD2-3-4 pathway. Molecules, 2024, 29(3), 686.
[http://dx.doi.org/10.3390/molecules29030686] [PMID: 38338430]
[81]
Aubrey, B.J.; Kelly, G.L.; Janic, A.; Herold, M.J.; Strasser, A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ., 2018, 25(1), 104-113.
[http://dx.doi.org/10.1038/cdd.2017.169] [PMID: 29149101]
[82]
Williams, A.B.; Schumacher, B. p53 in the DNA-damage-repair process. Cold Spring Harb. Perspect. Med., 2016, 6(5), a026070.
[http://dx.doi.org/10.1101/cshperspect.a026070] [PMID: 27048304]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy