Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Synthesis and Molecular Dynamic Simulation of Novel Cationic and Non-cationic Pyrimidine Derivatives as Potential G-quadruplex-ligands

Author(s): Hoda Atapour-Mashhad, Mohammad Soukhtanloo, Shiva Golmohammadzadeh, Jamshidkhan Chamani, Mojgan Nejabat* and Farzin Hadizadeh*

Volume 24, Issue 15, 2024

Published on: 04 June, 2024

Page: [1126 - 1141] Pages: 16

DOI: 10.2174/0118715206291797240523112439

Price: $65

Abstract

Background: Drug resistance has been a problem in cancer chemotherapy, which often causes shortterm effectiveness. Further, the literature indicates that telomere G-quadruplex could be a promising anti-cancer target.

Objective: We synthesized and characterized two new pyrimidine derivatives as ligands for G-quadruplex DNA.

Methods: The interaction of novel non-cationic and cationic pyrimidine derivatives (3a, b) with G-quadruplex DNA (1k8p and 3qsc) was explored by circular dichroism (CD) and ultraviolet-visible spectroscopy and polyacrylamide gel electrophoresis (PAGE) methods. The antiproliferative activity of desired compounds was evaluated by the MTT assay. Apoptosis induction was assessed by Propidium iodide (P.I.) staining and flow cytometry. Computational molecular modeling (CMM) and molecular dynamics simulation (MD) were studied on the complexes of 1k8p and 3qsc with the compounds. The van der Waals, electrostatic, polar solvation, solventaccessible surface area (SASA), and binding energies were calculated and analyzed.

Results: The experimental results confirmed that both compounds 3a and 3b interacted with 1k8p and 3qsc and exerted cytotoxic and proapoptotic effects on cancer cells. The number of hydrogen bonds and the RMSD values increased in the presence of the ligands, indicating stronger binding and suggesting increased structural dynamics. The electrostatic contribution to binding energy was higher for the cationic pyrimidine 3b, indicating more negative binding energies.

Conclusion: Both experimental and MD results confirmed that 3b was more prone to form a complex with DNA G-quadruplex (1k8p and 3qsc), inhibit cell growth, and induce apoptosis, compared to the non-cationic pyrimidine 3a.

[1]
Hurley, L.H.; Wheelhouse, R.T.; Sun, D.; Kerwin, S.M.; Salazar, M.; Fedoroff, O.Y.; Han, F.X.; Han, H.; Izbicka, E.; Von Hoff, D.D. G-quadruplexes as targets for drug design. Pharmacol. Ther., 2000, 85(3), 141-158.
[http://dx.doi.org/10.1016/S0163-7258(99)00068-6] [PMID: 10739869]
[2]
Shay, J.W.; Keith, W.N. Targeting telomerase for cancer therapeutics. Br. J. Cancer, 2008, 98(4), 677-683.
[http://dx.doi.org/10.1038/sj.bjc.6604209] [PMID: 18231105]
[3]
Guterres, A.N.; Villanueva, J. Targeting telomerase for cancer therapy. Oncogene, 2020, 39(36), 5811-5824.
[http://dx.doi.org/10.1038/s41388-020-01405-w] [PMID: 32733068]
[4]
Neidle, S.; Parkinson, G. Telomere maintenance as a target for anticancer drug discovery. Nat. Rev. Drug Discov., 2002, 1(5), 383-393.
[http://dx.doi.org/10.1038/nrd793] [PMID: 12120414]
[5]
Kerwin, S. G-Quadruplex DNA as a target for drug design. Curr. Pharm. Des., 2000, 6(4), 441-471.
[http://dx.doi.org/10.2174/1381612003400849] [PMID: 10788591]
[6]
Zeng, X.; Hernandez-Sanchez, W.; Xu, M.; Whited, T.L.; Baus, D.; Zhang, J.; Berdis, A.J.; Taylor, D.J. Administration of a nucleoside analog promotes cancer cell death in a telomerase-dependent manner. Cell Rep., 2018, 23(10), 3031-3041.
[http://dx.doi.org/10.1016/j.celrep.2018.05.020] [PMID: 29874588]
[7]
Chilton, W.; O’Brien, B.; Charchar, F. Telomeres, aging and exercise: Guilty by association? Int. J. Mol. Sci., 2017, 18(12), 2573.
[http://dx.doi.org/10.3390/ijms18122573] [PMID: 29186077]
[8]
Kim, N.W.; Piatyszek, M.A.; Prowse, K.R.; Harley, C.B.; West, M.D.; Ho, P.L.C.; Coviello, G.M.; Wright, W.E.; Weinrich, S.L.; Shay, J.W. Specific association of human telomerase activity with immortal cells and cancer. Science, 1994, 266(5193), 2011-2015.
[http://dx.doi.org/10.1126/science.7605428] [PMID: 7605428]
[9]
Zahler, A.M.; Williamson, J.R.; Cech, T.R.; Prescott, D.M. Inhibition of telomerase by G-quartet DMA structures. Nature, 1991, 350(6320), 718-720.
[http://dx.doi.org/10.1038/350718a0] [PMID: 2023635]
[10]
Hirt, B.V.; Wattis, J.A.D.; Preston, S.P. Modelling the regulation of telomere length: The effects of telomerase and G-quadruplex stabilising drugs. J. Math. Biol., 2014, 68(6), 1521-1552.
[http://dx.doi.org/10.1007/s00285-013-0678-2] [PMID: 23620229]
[11]
Paeschke, K.; Simonsson, T.; Postberg, J.; Rhodes, D.; Lipps, H.J. Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat. Struct. Mol. Biol., 2005, 12(10), 847-854.
[http://dx.doi.org/10.1038/nsmb982] [PMID: 16142245]
[12]
Moye, A.L.; Porter, K.C.; Cohen, S.B.; Phan, T.; Zyner, K.G.; Sasaki, N.; Lovrecz, G.O.; Beck, J.L.; Bryan, T.M. Telomeric G-quadruplexes are a substrate and site of localization for human telomerase. Nat. Commun., 2015, 6(1), 7643.
[http://dx.doi.org/10.1038/ncomms8643] [PMID: 26158869]
[13]
Paudel, B.P.; Moye, A.L.; Abou Assi, H.; El-Khoury, R.; Cohen, S.B.; Holien, J.K.; Birrento, M.L.; Samosorn, S.; Intharapichai, K.; Tomlinson, C.G.; Teulade-Fichou, M.P.; González, C.; Beck, J.L.; Damha, M.J.; van Oijen, A.M.; Bryan, T.M. A mechanism for the extension and unfolding of parallel telomeric G-quadruplexes by human telomerase at single-molecule resolution. eLife, 2020, 9, e56428.
[http://dx.doi.org/10.7554/eLife.56428] [PMID: 32723475]
[14]
Bryan, T.M. G-quadruplexes at telomeres: Friend or foe? Molecules, 2020, 25(16), 3686.
[http://dx.doi.org/10.3390/molecules25163686] [PMID: 32823549]
[15]
Maiti, S.; Saha, P.; Das, T.; Bessi, I.; Schwalbe, H.; Dash, J. Human telomeric G-quadruplex selective fluoro-isoquinolines induce apoptosis in cancer cells. Bioconjug. Chem., 2018, 29(4), 1141-1154.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00781] [PMID: 29433312]
[16]
Pennarun, G.; Granotier, C.; Gauthier, L.R.; Gomez, D.; Hoffschir, F.; Mandine, E.; Riou, J.F.; Mergny, J.L.; Mailliet, P.; Boussin, F.D. Apoptosis related to telomere instability and cell cycle alterations in human glioma cells treated by new highly selective G-quadruplex ligands. Oncogene, 2005, 24(18), 2917-2928.
[http://dx.doi.org/10.1038/sj.onc.1208468] [PMID: 15735722]
[17]
Burge, S.; Parkinson, G.N.; Hazel, P.; Todd, A.K.; Neidle, S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res., 2006, 34(19), 5402-5415.
[http://dx.doi.org/10.1093/nar/gkl655] [PMID: 17012276]
[18]
Phatak, P.; Cookson, J.C.; Dai, F.; Smith, V.; Gartenhaus, R.B.; Stevens, M F G.; Burger, A.M. Telomere uncapping by the G-quadruplex ligand RHPS4 inhibits clonogenic tumour cell growth in vitro and in vivo consistent with a cancer stem cell targeting mechanism. Br. J. Cancer, 2007, 96(8), 1223-1233.
[http://dx.doi.org/10.1038/sj.bjc.6603691] [PMID: 17406367]
[19]
Jenkins, T. Targeting multi-stranded DNA structures. Curr. Med. Chem., 2000, 7(1), 99-115.
[http://dx.doi.org/10.2174/0929867003375551] [PMID: 10637359]
[20]
Sun, D.; Hurley, L.H. Targeting telomeres and telomerase. Methods Enzymol., 2001, 340, 573-592.
[http://dx.doi.org/10.1016/S0076-6879(01)40443-5] [PMID: 11494871]
[21]
Raymond, E.; Sun, D.; Chen, S.F.; Windle, B.; Von Hoff, D.D. Agents that target telomerase and telomeres. Curr. Opin. Biotechnol., 1996, 7(6), 583-591.
[http://dx.doi.org/10.1016/S0958-1669(96)80068-1] [PMID: 8939642]
[22]
Kelland, L.R. Telomerase: Biology and phase I trials. Lancet Oncol., 2001, 2(2), 95-102.
[http://dx.doi.org/10.1016/S1470-2045(00)00226-6] [PMID: 11905801]
[23]
Bearss, D.J.; Hurley, L.H.; Von Hoff, D.D. Telomere maintenance mechanisms as a target for drug development. Oncogene, 2000, 19(56), 6632-6641.
[http://dx.doi.org/10.1038/sj.onc.1204092] [PMID: 11426649]
[24]
Campbell, N.H.; Parkinson, G.N.; Reszka, A.P.; Neidle, S. Structural basis of DNA quadruplex recognition by an acridine drug. J. Am. Chem. Soc., 2008, 130(21), 6722-6724.
[http://dx.doi.org/10.1021/ja8016973] [PMID: 18457389]
[25]
Sun, D.; Thompson, B.; Cathers, B.E.; Salazar, M.; Kerwin, S.M.; Trent, J.O.; Jenkins, T.C.; Neidle, S.; Hurley, L.H. Inhibition of human telomerase by a G-quadruplex-interactive compound. J. Med. Chem., 1997, 40(14), 2113-2116.
[http://dx.doi.org/10.1021/jm970199z] [PMID: 9216827]
[26]
Riou, J.F.; Guittat, L.; Mailliet, P.; Laoui, A.; Renou, E.; Petitgenet, O.; Mégnin-Chanet, F.; Hélène, C.; Mergny, J.L. Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 2672-2677.
[http://dx.doi.org/10.1073/pnas.052698099] [PMID: 11854467]
[27]
Fletcher, T.M. Telomerase: A potential therapeutic target for cancer. Expert Opin. Ther. Targets, 2005, 9(3), 457-469.
[http://dx.doi.org/10.1517/14728222.9.3.457] [PMID: 15948667]
[28]
Allsopp, R.C.; Harley, C.B. Evidence for a critical telomere length in senescent human fibroblasts. Exp. Cell Res., 1995, 219(1), 130-136.
[http://dx.doi.org/10.1006/excr.1995.1213] [PMID: 7628529]
[29]
Neidle, S. Human telomeric G‐quadruplex: The current status of telomeric G‐quadruplexes as therapeutic targets in human cancer. FEBS J., 2010, 277(5), 1118-1125.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07463.x] [PMID: 19951354]
[30]
Mergny, J.L.; Hélène, C. G-quadruplex DNA: A target for drug design. Nat. Med., 1998, 4(12), 1366-1367.
[http://dx.doi.org/10.1038/3949] [PMID: 9846570]
[31]
Han, H.; Hurley, L.H. G-quadruplex DNA: A potential target for anti-cancer drug design. Trends Pharmacol. Sci., 2000, 21(4), 136-142.
[http://dx.doi.org/10.1016/S0165-6147(00)01457-7] [PMID: 10740289]
[32]
Kosiol, N.; Juranek, S.; Brossart, P.; Heine, A.; Paeschke, K. G-quadruplexes: A promising target for cancer therapy. Mol. Cancer, 2021, 20(1), 40.
[http://dx.doi.org/10.1186/s12943-021-01328-4] [PMID: 33632214]
[33]
Ruggiero, E.; Richter, S.N. G-quadruplexes and G-quadruplex ligands: Targets and tools in antiviral therapy. Nucleic Acids Res., 2018, 46(7), 3270-3283.
[http://dx.doi.org/10.1093/nar/gky187] [PMID: 29554280]
[34]
Tian, T.; Chen, Y.Q.; Wang, S.R.; Zhou, X. G-Quadruplex: A regulator of gene expression and its chemical targeting. Chem, 2018, 4(6), 1314-1344.
[http://dx.doi.org/10.1016/j.chempr.2018.02.014]
[35]
Santos, T.; Salgado, G.F.; Cabrita, E.J.; Cruz, C. G-quadruplexes and their ligands: Biophysical methods to unravel G-quadruplex/ligand interactions. Pharmaceuticals, 2021, 14(8), 769.
[http://dx.doi.org/10.3390/ph14080769] [PMID: 34451866]
[36]
Andreeva, D.V.; Tikhomirov, A.S.; Shchekotikhin, A.E. Ligands of G-quadruplex nucleic acids. Russ. Chem. Rev., 2021, 90(1), 1-38.
[http://dx.doi.org/10.1070/RCR4968]
[37]
Tauchi, T.; Shin-ya, K.; Sashida, G.; Sumi, M.; Nakajima, A.; Shimamoto, T.; Ohyashiki, J.H.; Ohyashiki, K. Activity of a novel G-quadruplex-interactive telomerase inhibitor, telomestatin (SOT-095), against human leukemia cells: Involvement of ATM-dependent DNA damage response pathways. Oncogene, 2003, 22(34), 5338-5347.
[http://dx.doi.org/10.1038/sj.onc.1206833] [PMID: 12917635]
[38]
Sanchez-Martin, V.; Soriano, M.; Garcia-Salcedo, J.A. Quadruplex ligands in cancer therapy. Cancers (Basel), 2021, 13(13), 3156.
[http://dx.doi.org/10.3390/cancers13133156] [PMID: 34202648]
[39]
Wheelhouse, R.T.; Sun, D.; Han, H.; Han, F.X.; Hurley, L.H. Cationic porphyrins as telomerase inhibitors: The interaction of tetra-(N-methyl-4-pyridyl) porphine with quadruplex DNA. J. Am. Chem. Soc., 1998, 120(13), 3261-3262.
[http://dx.doi.org/10.1021/ja973792e]
[40]
Guo, Q.L.; Su, H.F.; Wang, N.; Liao, S.R.; Lu, Y.T.; Ou, T.M.; Tan, J.H.; Li, D.; Huang, Z.S. Synthesis and evaluation of 7-substituted-5,6-dihydrobenzo[c]acridine derivatives as new c-KIT promoter G-quadruplex binding ligands. Eur. J. Med. Chem., 2017, 130, 458-471.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.051] [PMID: 28284084]
[41]
Seenisamy, J.; Bashyam, S.; Gokhale, V.; Vankayalapati, H.; Sun, D.; Siddiqui-Jain, A.; Streiner, N.; Shin-ya, K.; White, E.; Wilson, W.D.; Hurley, L.H. Design and synthesis of an expanded porphyrin that has selectivity for the c-MYC G-quadruplex structure. J. Am. Chem. Soc., 2005, 127(9), 2944-2959.
[http://dx.doi.org/10.1021/ja0444482] [PMID: 15740131]
[42]
Eidinoff, M.L.; Knoll, J.E.; Marano, B.J.; Klein, D. Pyrimidine studies. III. Effect of several compounds with antitumor activity on utilization of precursors for synthesis of nucleic acid pyrimidines. Cancer Res., 1961, 21(10), 1377-1385.
[PMID: 13889598]
[43]
Donnini, S.; Monti, M.; Castagnini, C.; Solito, R.; Botta, M.; Schenone, S.; Giachetti, A.; Ziche, M. Pyrazolo–pyrimidine‐derived c‐Src inhibitor reduces angiogenesis and survival of squamous carcinoma cells by suppressing vascular endothelial growth factor production and signaling. Int. J. Cancer, 2007, 120(5), 995-1004.
[http://dx.doi.org/10.1002/ijc.22410] [PMID: 17131343]
[44]
Murashima, T.; Sakiyama, D.; Miyoshi, D.; Kuriyama, M.; Yamada, T.; Miyazawa, T. Cationic porphyrin induced a telomeric DNA to G-quadruplex form in water. Bioinorg. Chem. Appl., 2008, 2008, 294756.
[45]
Che, T.; Wang, Y.Q.; Huang, Z.L.; Tan, J.H.; Huang, Z.S.; Chen, S.B. Natural alkaloids and heterocycles as G-quadruplex ligands and potential anticancer agents. Molecules, 2018, 23(2), 493.
[http://dx.doi.org/10.3390/molecules23020493] [PMID: 29473874]
[46]
Reznichenko, O.; Leclercq, D.; Franco Pinto, J.; Mouawad, L.; Gabelica, V.; Granzhan, A. Optimization of G‐quadruplex ligands through a SAR study combining parallel synthesis and screening of cationic bis(acylhydrazones). Chemistry, 2023, 29(4), e202202427.
[http://dx.doi.org/10.1002/chem.202202427] [PMID: 36286608]
[47]
Guianvarc, H.D.; Lavergne, T.; Yatsunyk, L.; Blondel, M. The composition of the jury. Avilable From: https://www.universite-paris-saclay.fr/recherche/doctorat-et-hdr/la-composition-du-jury-0
[48]
Cadoni, E.; Magalhães, P.R.; Emídio, R.M.; Mendes, E.; Vítor, J.; Carvalho, J.; Cruz, C.; Victor, B.L.; Paulo, A. New (Iso)quinolinyl-pyridine-2,6-dicarboxamide G-Quadruplex Stabilizers. A Structure-Activity Relationship Study. Pharmaceuticals (Basel), 2021, 14(7), 669.
[http://dx.doi.org/10.3390/ph14070669] [PMID: 34358095]
[49]
Shaban, N.Z.; Masoud, M.S.; Mawlawi, M.A.; Awad, D.; Sadek, O.M. Effect of some pyrimidine compounds on rat brain monoamine oxidase-B in vitro. J. Physiol. Biochem., 2012, 68(4), 475-484.
[http://dx.doi.org/10.1007/s13105-012-0160-4] [PMID: 22467201]
[50]
Mahapatra, A.; Prasad, T.; Sharma, T. Pyrimidine: A review on anticancer activity with key emphasis on SAR. Future J. Pharm. Sci., 2021, 7(1), 123.
[http://dx.doi.org/10.1186/s43094-021-00274-8]
[51]
Prachayasittikul, S.; Worachartcheewan, A.; Nantasenamat, C.; Chinworrungsee, M.; Sornsongkhram, N.; Ruchirawat, S.; Prachayasittikul, V. Synthesis and structure–activity relationship of 2-thiopyrimidine-4-one analogs as antimicrobial and anticancer agents. Eur. J. Med. Chem., 2011, 46(2), 738-742.
[http://dx.doi.org/10.1016/j.ejmech.2010.12.009] [PMID: 21216051]
[52]
Sharma, S.K.; Kumar, P.; Narasimhan, B.; Ramasamy, K.; Mani, V.; Mishra, R.K.; Majeed, A.B.A. Synthesis, antimicrobial, anticancer evaluation and QSAR studies of 6-methyl-4-[1-(2-substituted-phenylamino-acetyl)-1H-indol-3-yl]-2-oxo/thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid ethyl esters. Eur. J. Med. Chem., 2012, 48, 16-25.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.028] [PMID: 22154835]
[53]
Taher, A.T.; Helwa, A.A. Novel pyrimidinone derivatives: Synthesis, antitumor and antimicrobial evaluation. Chem. Pharm. Bull. (Tokyo), 2012, 60(4), 521-530.
[http://dx.doi.org/10.1248/cpb.60.521] [PMID: 22466736]
[54]
Taher, A.T.; Abou-Seri, S.M. Synthesis and bioactivity evaluation of new 6-aryl-5-cyano thiouracils as potential antimicrobial and anticancer agents. Molecules, 2012, 17(8), 9868-9886.
[http://dx.doi.org/10.3390/molecules17089868] [PMID: 22902882]
[55]
Mirmortazavi, S.S.; Farvandi, M.; Ghafouri, H.; Mohammadi, A.; Shourian, M. Evaluation of novel pyrimidine derivatives as a new class of mushroom tyrosinase inhibitor. Drug Des. Devel. Ther., 2019, 13, 2169-2178.
[http://dx.doi.org/10.2147/DDDT.S209324] [PMID: 31371919]
[56]
Ghodasara, H.B.; Trivedi, A.R.; Kataria, V.B.; Patel, B.G.; Shah, V.H. Synthesis and antimicrobial evaluation of novel substituted pyrimidine scaffold. Med. Chem. Res., 2013, 22(12), 6121-6128.
[http://dx.doi.org/10.1007/s00044-013-0596-2]
[57]
Bakavoli, M.; Rahimizadeh, M.; Shiri, A.; Akbarzadeh, M.; Mousavi, S.H.; Atapour-Mashhad, H.; Tayarani-Najaran, Z. Synthesis and Anticancer Evaluation of New Derivatives of 3-Phenyl-1,5-Dimethyl-1H-[1,2,4]Triazolo[4′,3′:1,2]Pyrimido[4,5-e] [1,3,4]Oxadiazine. J. Chem. Res., 2010, 34(7), 403-406.
[http://dx.doi.org/10.3184/030823410X520778]
[58]
Bakavoli, M.; Rahimizadeh, M.; Shiri, A.; Akbarzadeh, M.; Mousavi, S.H.; Tayarani-Najaran, Z.; Atapour-Mashhad, H.; Nikpour, M. Synthesis of new derivatives of 3‐aryl‐1,5‐dimethyl‐1H‐[1,2,4]triazolo[4′,3′:1,2]pyrimido[4,5‐e][1,3,4]oxadiazines as potential antiproliferative agents. J. Heterocycl. Chem., 2011, 48(1), 183-187.
[http://dx.doi.org/10.1002/jhet.509]
[59]
Mousavi, S.H.; Atapour-Mashhad, H.; Bakavoli, M.; Shiri, A.; Akbarzadeh, M.; Tayarani-Najaran, Z. Pyrimidooxadiazine and triazolopyrimidooxadiazine derivatives: Synthesis and cytotoxic evaluation in human cancer cell lines. Bioorg. Khim., 2015, 41(2), 227-234.
[http://dx.doi.org/10.7868/S0132342315020074] [PMID: 26165130]
[60]
Atapour-Mashhad, H.; Soukhtanloo, M.; Massoudi, A.; Shiri, A.; Parizadeh, S.M.; Bakavoli, M. Synthesis and antiproliferative evaluation of new pyrimido[1,6‐a]thieno[2,3‐d]pyrimidine derivatives. J. Heterocycl. Chem., 2017, 54(1), 366-374.
[http://dx.doi.org/10.1002/jhet.2592]
[61]
Diveshkumar, K.V.; Sakrikar, S.; Harikrishna, S.; Dhamodharan, V.; Pradeepkumar, P.I. Targeting promoter G-quadruplex DNAs by indenopyrimidine-based ligands. ChemMedChem, 2014, 9(12), 2754-2765.
[http://dx.doi.org/10.1002/cmdc.201402394] [PMID: 25359695]
[62]
Bhuma, N.; Chand, K.; Andréasson, M.; Mason, J.; Das, R.N.; Patel, A.K.; Öhlund, D.; Chorell, E. The effect of side chain variations on quinazoline-pyrimidine G-quadruplex DNA ligands. Eur. J. Med. Chem., 2023, 248, 115103.
[http://dx.doi.org/10.1016/j.ejmech.2023.115103] [PMID: 36645982]
[63]
Ferreira, R; Aviñó, A; Pérez-Tomás, R; Gargallo, R; Eritja, R Synthesis and g-quadruplex-binding properties of defined acridine oligomers. J. Nucleic Acids, 2010, 2010
[http://dx.doi.org/10.4061/2010/489060]
[64]
Sochacka-Ćwikła, A.; Regiec, A.; Zimecki, M.; Artym, J.; Zaczyńska, E.; Kocięba, M.; Kochanowska, I.; Bryndal, I.; Pyra, A.; Mączyński, M. Synthesis and biological activity of new 7-amino-oxazolo [5, 4-d] pyrimidine derivatives. Molecules, 2020, 25(15), 3558.
[http://dx.doi.org/10.3390/molecules25153558] [PMID: 32759841]
[65]
Barril, P.; Nates, S. Introduction to agarose and polyacrylamide gel electrophoresis matrices with respect to their detection sensitivities. In: Gel Electrophoresis - Principles and Basics; , 2012; pp. 3-14.
[http://dx.doi.org/10.5772/38573]
[66]
Wang, Y.; Patel, D.J. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure, 1993, 1(4), 263-282.
[http://dx.doi.org/10.1016/0969-2126(93)90015-9] [PMID: 8081740]
[67]
Lu, Q.; Liu, W.; Ding, J.; Cai, J.; Duan, W. Shikonin derivatives: Synthesis and inhibition of human telomerase. Bioorg. Med. Chem. Lett., 2002, 12(10), 1375-1378.
[http://dx.doi.org/10.1016/S0960-894X(02)00158-0] [PMID: 11992780]
[68]
Rosu, F.; Gabelica, V.; De Pauw, E.; Antoine, R.; Broyer, M.; Dugourd, P. UV spectroscopy of DNA duplex and quadruplex structures in the gas phase. J. Phys. Chem. A, 2012, 116(22), 5383-5391.
[http://dx.doi.org/10.1021/jp302468x] [PMID: 22568521]
[69]
Magdeldin, S. Gel Electrophoresis: Principles and Basics; BoD–Books on Demand, 2012, p. 378.
[70]
Di Somma, S.; Amato, J.; Iaccarino, N.; Pagano, B.; Randazzo, A.; Portella, G.; Malfitano, A.M. G-quadruplex binders induce immunogenic cell death markers in aggressive breast cancer cells. Cancers (Basel), 2019, 11(11), 1797.
[http://dx.doi.org/10.3390/cancers11111797] [PMID: 31731707]
[71]
Haldar, S.; Zhang, Y.; Xia, Y.; Islam, B.; Liu, S.; Gervasio, F.L.; Mulholland, A.J.; Waller, Z.A.E.; Wei, D.; Haider, S. Mechanistic Insights into the Ligand-Induced Unfolding of an RNA G-Quadruplex. J. Am. Chem. Soc., 2022, 144(2), 935-950.
[http://dx.doi.org/10.1021/jacs.1c11248] [PMID: 34989224]
[72]
O’Hagan, M.P.; Haldar, S.; Morales, J.C.; Mulholland, A.J.; Galan, M.C. Enhanced sampling molecular dynamics simulations correctly predict the diverse activities of a series of stiff-stilbene G-quadruplex DNA ligands. Chem. Sci. (Camb.), 2021, 12(4), 1415-1426.
[http://dx.doi.org/10.1039/D0SC05223J] [PMID: 34163904]
[73]
Ortiz de Luzuriaga, I.; Lopez, X.; Gil, A. Learning to model G-quadruplexes: Current methods and perspectives. Annu. Rev. Biophys., 2021, 50(1), 209-243.
[http://dx.doi.org/10.1146/annurev-biophys-060320-091827] [PMID: 33561349]
[74]
Bakavoli, M.; Rahimizadeh, M. New access to thiazolo [4, 5-d] pyrimidine derivatives. J. Heterocycl. Chem., 2006, 43.
[75]
Mousavi, S.H.; Tavakkol-Afshari, J.; Brook, A.; Jafari-Anarkooli, I. Role of caspases and Bax protein in saffron-induced apoptosis in MCF-7 cells. Food Chem. Toxicol., 2009, 47(8), 1909-1913.
[http://dx.doi.org/10.1016/j.fct.2009.05.017] [PMID: 19457443]
[76]
Mousavi, S.H.; Tavakkol-Afshari, J.; Brook, A.; Jafari-Anarkooli, I. Direct toxicity of Rose Bengal in MCF-7 cell line: Role of apoptosis. Food Chem. Toxicol., 2009, 47(4), 855-859.
[http://dx.doi.org/10.1016/j.fct.2009.01.018] [PMID: 19271285]
[77]
Forouzanfar, F.; Mousavi, S.H. Targeting autophagic pathways by plant natural compounds in cancer treatment. Curr. Drug Targets, 2020, 21(12), 1237-1249.
[http://dx.doi.org/10.2174/1389450121666200504072635] [PMID: 32364070]
[78]
de Bruijn, H.S.; Brooks, S.; van der Ploeg-van den Heuvel, A.; ten Hagen, T.L.M.; de Haas, E.R.M.; Robinson, D.J. Light fractionation significantly increases the efficacy of photodynamic therapy using BF-200 ALA in normal mouse skin. PLoS One, 2016, 11(2), e0148850.
[http://dx.doi.org/10.1371/journal.pone.0148850] [PMID: 26872051]
[79]
Sitzmann, M.; Weidlich, I.E.; Filippov, I.V.; Liao, C.; Peach, M.L.; Ihlenfeldt, W.D.; Karki, R.G.; Borodina, Y.V.; Cachau, R.E.; Nicklaus, M.C. PDB ligand conformational energies calculated quantum-mechanically. J. Chem. Inf. Model., 2012, 52(3), 739-756.
[http://dx.doi.org/10.1021/ci200595n] [PMID: 22303903]
[80]
Liao, Q.H.; Gao, Q.Z.; Wei, J.; Chou, K.C. Docking and molecular dynamics study on the inhibitory activity of novel inhibitors on epidermal growth factor receptor (EGFR). Med. Chem., 2011, 7(1), 24-31.
[81]
Lewis, E.A.; Munde, M.; Wang, S.; Rettig, M.; Le, V.; Machha, V.; Wilson, W.D. Complexity in the binding of minor groove agents: netropsin has two thermodynamically different DNA binding modes at a single site. Nucleic Acids Res., 2011, 39(22), 9649-9658.
[http://dx.doi.org/10.1093/nar/gkr699] [PMID: 21890907]
[82]
Atapour-Mashhad, H.; Soukhtanloo, M.; Massoudi, A.; Shiri, A.; Bakavoli, M. Synthesis and evaluation of cytotoxicity of 6-amino-4-aryl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitriles. Russ. J. Bioorganic Chem., 2016, 42(3), 316-322.
[http://dx.doi.org/10.1134/S1068162016020047]
[83]
Parkinson, G.N.; Lee, M.P.H.; Neidle, S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature, 2002, 417(6891), 876-880.
[http://dx.doi.org/10.1038/nature755] [PMID: 12050675]
[84]
Spiegel, J.; Adhikari, S.; Balasubramanian, S. The structure and function of DNA G-quadruplexes. Trends Chem., 2020, 2(2), 123-136.
[http://dx.doi.org/10.1016/j.trechm.2019.07.002] [PMID: 32923997]
[85]
Huppert, J.L. Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. Chem. Soc. Rev., 2008, 37(7), 1375-1384.
[http://dx.doi.org/10.1039/b702491f] [PMID: 18568163]
[86]
Tauchi, T.; Shin-ya, K.; Sashida, G.; Sumi, M.; Okabe, S.; Ohyashiki, J.H.; Ohyashiki, K. Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: in vitro and in vivo studies in acute leukemia. Oncogene, 2006, 25(42), 5719-5725.
[http://dx.doi.org/10.1038/sj.onc.1209577] [PMID: 16652154]
[87]
Hampel, S.M.; Sidibe, A.; Gunaratnam, M.; Riou, J.F.; Neidle, S. Tetrasubstituted naphthalene diimide ligands with selectivity for telomeric G-quadruplexes and cancer cells. Bioorg. Med. Chem. Lett., 2010, 20(22), 6459-6463.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.066] [PMID: 20932753]
[88]
Kelland, L.R. Overcoming the immortality of tumour cells by telomere and telomerase based cancer therapeutics – current status and future prospects. Eur. J. Cancer, 2005, 41(7), 971-979.
[http://dx.doi.org/10.1016/j.ejca.2004.11.024] [PMID: 15862745]
[89]
Xiong, Y.X.; Huang, Z.S.; Tan, J.H. Targeting G-quadruplex nucleic acids with heterocyclic alkaloids and their derivatives. Eur. J. Med. Chem., 2015, 97, 538-551.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.021] [PMID: 25466923]
[90]
Mitteaux, J.; Lejault, P.; Wojciechowski, F.; Joubert, A.; Boudon, J. Identifying G-quadruplex-DNA-disrupting small molecules. J. Antican. Chem. Soc., 2021, 143(32), 12567-12577.
[91]
Olejko, L.; Dutta, A.; Shahsavar, K.; Bald, I. Influence of different salts on the G-quadruplex structure formed from the reversed human telomeric DNA sequence. Int. J. Mol. Sci., 2022, 23(20), 12206.
[http://dx.doi.org/10.3390/ijms232012206] [PMID: 36293060]
[92]
Kaneta, T.; Ogura, T.; Yamato, S.; Imasaka, T. Band broadening of DNA fragments isolated by polyacrylamide gel electrophoresis in capillary electrophoresis. J. Sep. Sci., 2012, 35(3), 431-435.
[http://dx.doi.org/10.1002/jssc.201100909] [PMID: 22258810]
[93]
Rao, Y.; Xiong, W.; Liu, H.; Jia, C.; Zhang, H.; Cui, Z.; Zhang, Y.; Cui, J. Inhibition of telomerase activity by dominant-negative hTERT retards the growth of breast cancer cells. Breast Cancer, 2016, 23(2), 216-223.
[http://dx.doi.org/10.1007/s12282-014-0553-z] [PMID: 25098685]
[94]
Baykal, A.; Rosen, D.; Zhou, C.; Liu, J.; Sahin, A.A. Telomerase in breast cancer: A critical evaluation. Adv. Anat. Pathol., 2004, 11(5), 262-268.
[http://dx.doi.org/10.1097/01.pap.0000138145.19258.64] [PMID: 15322492]
[95]
Dalle Carbonare, L.; Valenti, M.T.; Azzarello, G.; Balducci, E.; Crepaldi, G.; Realdi, G.; Vinante, O.; Giannini, S. Bisphosphonates decrease telomerase activity and hTERT expression in MCF-7 breast cancer cells. Mol. Cell. Endocrinol., 2005, 240(1-2), 23-31.
[http://dx.doi.org/10.1016/j.mce.2005.03.018] [PMID: 15978718]
[96]
Woo, H.J.; Lee, S.J.; Choi, B.T.; Park, Y.M.; Choi, Y.H. Induction of apoptosis and inhibition of telomerase activity by trichostatin A, a histone deacetylase inhibitor, in human leukemic U937 cells. Exp. Mol. Pathol., 2007, 82(1), 77-84.
[http://dx.doi.org/10.1016/j.yexmp.2006.02.004] [PMID: 16574101]
[97]
Salimi-Jeda, A.; Badrzadeh, F.; Esghaei, M.; Abdoli, A. The role of telomerase and viruses interaction in cancer development, and telomerase-dependent therapeutic approaches. Cancer Treat. Res. Commun., 2021, 27, 100323.
[http://dx.doi.org/10.1016/j.ctarc.2021.100323] [PMID: 33530025]
[98]
Sun, Y.; Yang, Y.; Shen, H.; Huang, M.; Wang, Z.; Liu, Y.; Zhang, H.; Tang, T.S.; Guo, C. iTRAQ-based chromatin proteomic screen reveals CHD4-dependent recruitment of MBD2 to sites of DNA damage. Biochem. Biophys. Res. Commun., 2016, 471(1), 142-148.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.162] [PMID: 26827827]
[99]
Zhu, Z.; Tran, H.; Mathahs, M.M.; Fink, B.D.; Albert, J.A.; Moninger, T.O.; Meier, J.L.; Li, M.; Schmidt, W.N. Zinc protoporphyrin binding to telomerase complexes and inhibition of telomerase activity. Pharmacol. Res. Perspect., 2021, 9(6), e00882.
[http://dx.doi.org/10.1002/prp2.882] [PMID: 34747573]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy