Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

New Insights on Mechanisms and Therapeutic Targets of Cerebral Edema

Author(s): Pei Shang, Ruoyi Zheng, Kou Wu, Chao Yuan* and Suyue Pan*

Volume 22, Issue 14, 2024

Published on: 29 May, 2024

Page: [2330 - 2352] Pages: 23

DOI: 10.2174/1570159X22666240528160237

Price: $65

Abstract

Cerebral Edema (CE) is the final common pathway of brain death. In severe neurological disease, neuronal cell damage first contributes to tissue edema, and then Increased Intracranial Pressure (ICP) occurs, which results in diminishing cerebral perfusion pressure. In turn, anoxic brain injury brought on by decreased cerebral perfusion pressure eventually results in neuronal cell impairment, creating a vicious cycle. Traditionally, CE is understood to be tightly linked to elevated ICP, which ultimately generates cerebral hernia and is therefore regarded as a risk factor for mortality. Intracranial hypertension and brain edema are two serious neurological disorders that are commonly treated with mannitol. However, mannitol usage should be monitored since inappropriate utilization of the substance could conversely have negative effects on CE patients. CE is thought to be related to bloodbrain barrier dysfunction. Nonetheless, a fluid clearance mechanism called the glial-lymphatic or glymphatic system was updated. This pathway facilitates the transport of cerebrospinal fluid (CSF) into the brain along arterial perivascular spaces and later into the brain interstitium. After removing solutes from the neuropil into meningeal and cervical lymphatic drainage arteries, the route then directs flows into the venous perivascular and perineuronal regions. Remarkably, the dual function of the glymphatic system was observed to protect the brain from further exacerbated damage. From our point of view, future studies ought to concentrate on the management of CE based on numerous targets of the updated glymphatic system. Further clinical trials are encouraged to apply these agents to the clinic as soon as possible.

[1]
Steiner, L.A.; Andrews, P.J.D. Monitoring the injured brain: ICP and CBF. Br. J. Anaesth., 2006, 97(1), 26-38.
[http://dx.doi.org/10.1093/bja/ael110] [PMID: 16698860]
[2]
Canac, N.; Jalaleddini, K.; Thorpe, S.G.; Thibeault, C.M.; Hamilton, R.B. Review: pathophysiology of intracranial hypertension and noninvasive intracranial pressure monitoring. Fluids Barriers CNS, 2020, 17(1), 40.
[http://dx.doi.org/10.1186/s12987-020-00201-8] [PMID: 32576216]
[3]
Markey, K.A.; Mollan, S.P.; Jensen, R.H.; Sinclair, A.J. Understanding idiopathic intracranial hypertension: mechanisms, management, and future directions. Lancet Neurol., 2016, 15(1), 78-91.
[http://dx.doi.org/10.1016/S1474-4422(15)00298-7] [PMID: 26700907]
[4]
Papadopoulos, M.C.; Saadoun, S.; Binder, D.K.; Manley, G.T.; Krishna, S.; Verkman, A.S. Molecular mechanisms of brain tumor edema. Neuroscience, 2004, 129(4), 1009-1018.
[http://dx.doi.org/10.1016/j.neuroscience.2004.05.044] [PMID: 15561416]
[5]
Koenig, M.A. Cerebral Edema and Elevated Intracranial Pressure. Continuum (Minneap. Minn.), 2018, 24(6), 1588-1602.
[http://dx.doi.org/10.1212/CON.0000000000000665] [PMID: 30516597]
[6]
Chen, S.; Shao, L.; Ma, L. Cerebral edema formation after stroke: emphasis on blood-brain barrier and the lymphatic drainage system of the brain. Front. Cell. Neurosci., 2021, 15, 716825.
[http://dx.doi.org/10.3389/fncel.2021.716825] [PMID: 34483842]
[7]
Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; Nagelhus, E.A.; Nedergaard, M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med., 2012, 4(147), 147ra111.
[http://dx.doi.org/10.1126/scitranslmed.3003748] [PMID: 22896675]
[8]
Mestre, H.; Du, T.; Sweeney, A.M.; Liu, G.; Samson, A.J.; Peng, W.; Mortensen, K.N.; Stæger, F.F.; Bork, P.A.R.; Bashford, L.; Toro, E.R.; Tithof, J.; Kelley, D.H.; Thomas, J.H.; Hjorth, P.G.; Martens, E.A.; Mehta, R.I.; Solis, O.; Blinder, P.; Kleinfeld, D.; Hirase, H.; Mori, Y.; Nedergaard, M. Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science, 2020, 367(6483), eaax7171.
[http://dx.doi.org/10.1126/science.aax7171] [PMID: 32001524]
[9]
Starling, E.H. On the absorption of fluids from the connective tissue spaces. J. Physiol., 1896, 19(4), 312-326.
[http://dx.doi.org/10.1113/jphysiol.1896.sp000596] [PMID: 16992325]
[10]
Stokum, J.A.; Gerzanich, V.; Simard, J.M. Molecular pathophysiology of cerebral edema. J. Cereb. Blood Flow Metab., 2016, 36(3), 513-538.
[http://dx.doi.org/10.1177/0271678X15617172] [PMID: 26661240]
[11]
Zhang, C.; Jiang, M.; Wang, W.; Zhao, S.; Yin, Y.; Mi, Q.; Yang, M.; Song, Y.; Sun, B.; Zhang, Z. Selective mGluR1 negative allosteric modulator reduces blood-brain barrier permeability and cerebral edema after experimental subarachnoid hemorrhage. Transl. Stroke Res., 2020, 11(4), 799-811.
[http://dx.doi.org/10.1007/s12975-019-00758-z] [PMID: 31833035]
[12]
Aspelund, A.; Antila, S.; Proulx, S.T.; Karlsen, T.V.; Karaman, S.; Detmar, M.; Wiig, H.; Alitalo, K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med., 2015, 212(7), 991-999.
[http://dx.doi.org/10.1084/jem.20142290] [PMID: 26077718]
[13]
Daneman, R. The blood-brain barrier in health and disease. Ann. Neurol., 2012, 72(5), 648-672.
[http://dx.doi.org/10.1002/ana.23648] [PMID: 23280789]
[14]
Westergaard, E. The blood-brain barrier to horseradish peroxidase under normal and experimental conditions. Acta Neuropathol., 1977, 39(3), 181-187.
[http://dx.doi.org/10.1007/BF00691695] [PMID: 333857]
[15]
Yamamizu, K.; Iwasaki, M.; Takakubo, H.; Sakamoto, T.; Ikuno, T.; Miyoshi, M.; Kondo, T.; Nakao, Y.; Nakagawa, M.; Inoue, H.; Yamashita, J.K. RETRACTED: In vitro modeling of blood-brain barrier with human iPSC-derived endothelial cells, pericytes, neurons, and astrocytes via notch signaling. Stem Cell Reports, 2017, 8(3), 634-647.
[http://dx.doi.org/10.1016/j.stemcr.2017.01.023] [PMID: 28238797]
[16]
Mizee, M.R.; de Vries, H.E. Blood-brain barrier regulation. Tissue Barriers, 2013, 1(5), e26882.
[http://dx.doi.org/10.4161/tisb.26882] [PMID: 24868496]
[17]
Armulik, A.; Abramsson, A.; Betsholtz, C. Endothelial/pericyte interactions. Circ. Res., 2005, 97(6), 512-523.
[http://dx.doi.org/10.1161/01.RES.0000182903.16652.d7] [PMID: 16166562]
[18]
Winkler, E.A.; Bell, R.D.; Zlokovic, B.V. Central nervous system pericytes in health and disease. Nat. Neurosci., 2011, 14(11), 1398-1405.
[http://dx.doi.org/10.1038/nn.2946] [PMID: 22030551]
[19]
Armulik, A.; Genové, G.; Mäe, M.; Nisancioglu, M.H.; Wallgard, E.; Niaudet, C.; He, L.; Norlin, J.; Lindblom, P.; Strittmatter, K.; Johansson, B.R.; Betsholtz, C. Pericytes regulate the blood-brain barrier. Nature, 2010, 468(7323), 557-561.
[http://dx.doi.org/10.1038/nature09522] [PMID: 20944627]
[20]
Attwell, D.; Buchan, A.M.; Charpak, S.; Lauritzen, M.; MacVicar, B.A.; Newman, E.A. Glial and neuronal control of brain blood flow. Nature, 2010, 468(7321), 232-243.
[http://dx.doi.org/10.1038/nature09613] [PMID: 21068832]
[21]
Hayashi, Y.; Nomura, M.; Yamagishi, S.I.; Harada, S.I.; Yamashita, J.; Yamamoto, H. Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia, 1997, 19(1), 13-26.
[http://dx.doi.org/10.1002/(SICI)1098-1136(199701)19:1<13:AID-GLIA2>3.0.CO;2-B] [PMID: 8989564]
[22]
Dehouck, M.P.; Méresse, S.; Delorme, P.; Fruchart, J.C.; Cecchelli, R. An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J. Neurochem., 1990, 54(5), 1798-1801.
[http://dx.doi.org/10.1111/j.1471-4159.1990.tb01236.x] [PMID: 2182777]
[23]
Rubin, L.L.; Hall, D.E.; Porter, S.; Barbu, K.; Cannon, C.; Horner, H.C.; Janatpour, M.; Liaw, C.W.; Manning, K.; Morales, J. A cell culture model of the blood-brain barrier. J. Cell Biol., 1991, 115(6), 1725-1735.
[http://dx.doi.org/10.1083/jcb.115.6.1725] [PMID: 1661734]
[24]
Williams, K.; Alvarez, X.; Lackner, A.A. Central nervous system perivascular cells are immunoregulatory cells that connect the CNS with the peripheral immune system. Glia, 2001, 36(2), 156-164.
[http://dx.doi.org/10.1002/glia.1105] [PMID: 11596124]
[25]
Kutuzov, N.; Flyvbjerg, H.; Lauritzen, M. Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood-brain barrier. Proc. Natl. Acad. Sci. USA, 2018, 115(40), E9429-E9438.
[http://dx.doi.org/10.1073/pnas.1802155115] [PMID: 30217895]
[26]
Milford, E.M.; Reade, M.C. Resuscitation fluid choices to preserve the endothelial glycocalyx. Crit. Care, 2019, 23(1), 77.
[http://dx.doi.org/10.1186/s13054-019-2369-x] [PMID: 30850020]
[27]
Pinchi, E.; Frati, A.; Cipolloni, L.; Aromatario, M.; Gatto, V.; La Russa, R.; Pesce, A.; Santurro, A.; Fraschetti, F.; Frati, P.; Fineschi, V. Clinical-pathological study on β-APP, IL-1β, GFAP, NFL, Spectrin II, 8OHdG, TUNEL, miR-21, miR-16, miR-92 expressions to verify DAI-diagnosis, grade and prognosis. Sci. Rep., 2018, 8(1), 2387.
[http://dx.doi.org/10.1038/s41598-018-20699-1] [PMID: 29402984]
[28]
Ito, J.; Marmarou, A.; Barzó, P.; Fatouros, P.; Corwin, F. Characterization of edema by diffusion-weighted imaging in experimental traumatic brain injury. J. Neurosurg., 1996, 84(1), 97-103.
[http://dx.doi.org/10.3171/jns.1996.84.1.0097] [PMID: 8613843]
[29]
Maiese, A.; Spina, F.; Visi, G.; Del Duca, F.; De Matteis, A.; La Russa, R.; Di Paolo, M.; Frati, P.; Fineschi, V. The expression of FOXO3a as a forensic diagnostic tool in cases of traumatic brain injury: An immunohistochemical study. Int. J. Mol. Sci., 2023, 24(3), 2584.
[http://dx.doi.org/10.3390/ijms24032584] [PMID: 36768906]
[30]
Riezzo, I.; Cerretani, D.; Fiore, C.; Bello, S.; Centini, F.; D’Errico, S.; Fiaschi, A.I.; Giorgi, G.; Neri, M.; Pomara, C.; Turillazzi, E.; Fineschi, V. Enzymatic-nonenzymatic cellular antioxidant defense systems response and immunohistochemical detection of MDMA, VMAT2, HSP70, and apoptosis as biomarkers for MDMA (Ecstasy) neurotoxicity. J. Neurosci. Res., 2010, 88(4), 905-916.
[http://dx.doi.org/10.1002/jnr.22245] [PMID: 19798748]
[31]
Stokum, J.A.; Kwon, M.S.; Woo, S.K.; Tsymbalyuk, O.; Vennekens, R.; Gerzanich, V.; Simard, J.M. SUR1‐TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. Glia, 2018, 66(1), 108-125.
[http://dx.doi.org/10.1002/glia.23231] [PMID: 28906027]
[32]
Ren, Z.; Iliff, J.J.; Yang, L.; Yang, J.; Chen, X.; Chen, M.J.; Giese, R.N.; Wang, B.; Shi, X.; Nedergaard, M. ‘Hit & Run’ model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J. Cereb. Blood Flow Metab., 2013, 33(6), 834-845.
[http://dx.doi.org/10.1038/jcbfm.2013.30] [PMID: 23443171]
[33]
Verkman, A.S.; Binder, D.K.; Bloch, O.; Auguste, K.; Papadopoulos, M.C. Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim. Biophys. Acta Biomembr., 2006, 1758(8), 1085-1093.
[http://dx.doi.org/10.1016/j.bbamem.2006.02.018] [PMID: 16564496]
[34]
Kitaura, H.; Tsujita, M.; Huber, V.J.; Kakita, A.; Shibuki, K.; Sakimura, K.; Kwee, I.L.; Nakada, T. Activity-dependent glial swelling is impaired in aquaporin-4 knockout mice. Neurosci. Res., 2009, 64(2), 208-212.
[http://dx.doi.org/10.1016/j.neures.2009.03.002] [PMID: 19428702]
[35]
Haj-Yasein, N.N.; Bugge, C.E.; Jensen, V.; Østby, I.; Ottersen, O.P.; Hvalby, Ø.; Nagelhus, E.A. Deletion of aquaporin-4 increases extracellular K+ concentration during synaptic stimulation in mouse hippocampus. Brain Struct. Funct., 2015, 220(4), 2469-2474.
[http://dx.doi.org/10.1007/s00429-014-0767-z] [PMID: 24744149]
[36]
Steiner, E.; Enzmann, G.U.; Lin, S.; Ghavampour, S.; Hannocks, M.J.; Zuber, B.; Rüegg, M.A.; Sorokin, L.; Engelhardt, B. Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation. Glia, 2012, 60(11), 1646-1659.
[http://dx.doi.org/10.1002/glia.22383] [PMID: 22782669]
[37]
Fukuda, A.M.; Pop, V.; Spagnoli, D.; Ashwal, S.; Obenaus, A.; Badaut, J. Delayed increase of astrocytic aquaporin 4 after juvenile traumatic brain injury: Possible role in edema resolution? Neuroscience, 2012, 222, 366-378.
[http://dx.doi.org/10.1016/j.neuroscience.2012.06.033] [PMID: 22728101]
[38]
Mehta, R.I.; Tosun, C.; Ivanova, S.; Tsymbalyuk, N.; Famakin, B.M.; Kwon, M.S.; Castellani, R.J.; Gerzanich, V.; Simard, J.M. Sur1-Trpm4 cation channel expression in human cerebral infarcts. J. Neuropathol. Exp. Neurol., 2015, 74(8), 835-849.
[http://dx.doi.org/10.1097/NEN.0000000000000223] [PMID: 26172285]
[39]
Mehta, R.I.; Ivanova, S.; Tosun, C.; Castellani, R.J.; Gerzanich, V.; Simard, J.M. Sulfonylurea receptor 1 expression in human cerebral infarcts. J. Neuropathol. Exp. Neurol., 2013, 72(9), 871-883.
[http://dx.doi.org/10.1097/NEN.0b013e3182a32e40] [PMID: 23965746]
[40]
Jha, R.M.; Kochanek, P.M.; Simard, J.M. Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology, 2019, 145(Pt B), 230-246.
[http://dx.doi.org/10.1016/j.neuropharm.2018.08.004 ] [PMID: 30086289]
[41]
King, Z.A.; Sheth, K.N.; Kimberly, W.T.; Simard, J.M. Profile of intravenous glyburide for the prevention of cerebral edema following large hemispheric infarction: Evidence to date. Drug Des. Devel. Ther., 2018, 12, 2539-2552.
[http://dx.doi.org/10.2147/DDDT.S150043] [PMID: 30147301]
[42]
Stokum, J.A.; Gerzanich, V.; Sheth, K.N.; Kimberly, W.T.; Simard, J.M. Emerging pharmacological treatments for cerebral edema: evidence from clinical studies. Annu. Rev. Pharmacol. Toxicol., 2020, 60(1), 291-309.
[http://dx.doi.org/10.1146/annurev-pharmtox-010919-023429] [PMID: 31914899]
[43]
Simard, J.M.; Kent, T.A.; Chen, M.; Tarasov, K.V.; Gerzanich, V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol., 2007, 6(3), 258-268.
[http://dx.doi.org/10.1016/S1474-4422(07)70055-8] [PMID: 17303532]
[44]
Nilius, B.; Prenen, J.; Tang, J.; Wang, C.; Owsianik, G.; Janssens, A.; Voets, T.; Zhu, M.X. Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J. Biol. Chem., 2005, 280(8), 6423-6433.
[http://dx.doi.org/10.1074/jbc.M411089200] [PMID: 15590641]
[45]
Chen, M.; Simard, J.M. Cell swelling and a nonselective cation channel regulated by internal Ca2+ and ATP in native reactive astrocytes from adult rat brain. J. Neurosci., 2001, 21(17), 6512-6521.
[http://dx.doi.org/10.1523/JNEUROSCI.21-17-06512.2001] [PMID: 11517240]
[46]
Jha, R.M.; Bell, J.; Citerio, G.; Hemphill, J.C.; Kimberly, W.T.; Narayan, R.K.; Sahuquillo, J.; Sheth, K.N.; Simard, J.M. Role of sulfonylurea receptor 1 and glibenclamide in traumatic brain injury: A review of the evidence. Int. J. Mol. Sci., 2020, 21(2), 409.
[http://dx.doi.org/10.3390/ijms21020409] [PMID: 31936452]
[47]
Simard, J.M.; Woo, S.K.; Schwartzbauer, G.T.; Gerzanich, V. Sulfonylurea receptor 1 in central nervous system injury: a focused review. J. Cereb. Blood Flow Metab., 2012, 32(9), 1699-1717.
[http://dx.doi.org/10.1038/jcbfm.2012.91] [PMID: 22714048]
[48]
Chen, M.; Dong, Y.; Simard, J.M. Functional coupling between sulfonylurea receptor type 1 and a nonselective cation channel in reactive astrocytes from adult rat brain. J. Neurosci., 2003, 23(24), 8568-8577.
[http://dx.doi.org/10.1523/JNEUROSCI.23-24-08568.2003] [PMID: 13679426]
[49]
Gerzanich, V.; Kwon, M.S.; Woo, S.K.; Ivanov, A.; Simard, J.M. SUR1-TRPM4 channel activation and phasic secretion of MMP-9 induced by tPA in brain endothelial cells. PLoS One, 2018, 13(4), e0195526.
[http://dx.doi.org/10.1371/journal.pone.0195526] [PMID: 29617457]
[50]
Kurland, D.B.; Gerzanich, V.; Karimy, J.K.; Woo, S.K.; Vennekens, R.; Freichel, M.; Nilius, B.; Bryan, J.; Simard, J.M. The Sur1-Trpm4 channel regulates NOS2 transcription in TLR4-activated microglia. J. Neuroinflammation, 2016, 13(1), 130.
[http://dx.doi.org/10.1186/s12974-016-0599-2] [PMID: 27246103]
[51]
Sheth, K.N.; Elm, J.J.; Molyneaux, B.J.; Hinson, H.; Beslow, L.A.; Sze, G.K.; Ostwaldt, A.C.; del Zoppo, G.J.; Simard, J.M.; Jacobson, S.; Kimberly, W.T. Safety and efficacy of intravenous glyburide on brain swelling after large hemispheric infarction (GAMES-RP): A randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol., 2016, 15(11), 1160-1169.
[http://dx.doi.org/10.1016/S1474-4422(16)30196-X] [PMID: 27567243]
[52]
Wu, D.; Lai, N.; Deng, R.; Liang, T.; Pan, P.; Yuan, G.; Li, X.; Li, H.; Shen, H.; Wang, Z.; Chen, G. Activated WNK3 induced by intracerebral hemorrhage deteriorates brain injury maybe via WNK3/SPAK/NKCC1 pathway. Exp. Neurol., 2020, 332, 113386.
[http://dx.doi.org/10.1016/j.expneurol.2020.113386] [PMID: 32589890]
[53]
Gong, Y.; Wu, M.; Gao, F.; Shi, M.; Gu, H.; Gao, R.; Dang, B.Q.; Chen, G. Inhibition of the p SPAK/p NKCC1 signaling pathway protects the blood-brain barrier and reduces neuronal apoptosis in a rat model of surgical brain injury. Mol. Med. Rep., 2021, 24(4), 717.
[http://dx.doi.org/10.3892/mmr.2021.12356] [PMID: 34396440]
[54]
Hampel, P.; Romermann, K.; Gramer, M.; Loscher, W. The search for brain-permeant NKCC1 inhibitors for the treatment of seizures: Pharmacokinetic-pharmacodynamic modelling of NKCC1 inhibition by azosemide, torasemide, and bumetanide in mouse brain. Epilepsy Behav. 2021, 114(Pt A), 107616.
[http://dx.doi.org/10.1016/j.yebeh.2020.107616] [PMID: 33279441]
[55]
Papadopoulos, M.C.; Manley, G.T.; Krishna, S.; Verkman, A.S. Aquaporin‐4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J., 2004, 18(11), 1291-1293.
[http://dx.doi.org/10.1096/fj.04-1723fje] [PMID: 15208268]
[56]
Gasche, Y.; Copin, J.C.; Sugawara, T.; Fujimura, M.; Chan, P.H. Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia. J. Cereb. Blood Flow Metab., 2001, 21(12), 1393-1400.
[http://dx.doi.org/10.1097/00004647-200112000-00003] [PMID: 11740200]
[57]
Yang, C.; Hawkins, K.E.; Doré, S.; Candelario-Jalil, E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am. J. Physiol. Cell Physiol., 2019, 316(2), C135-C153.
[http://dx.doi.org/10.1152/ajpcell.00136.2018] [PMID: 30379577]
[58]
Copin, J.C.; Bengualid, D.J.; Da Silva, R.F.; Kargiotis, O.; Schaller, K.; Gasche, Y. Recombinant tissue plasminogen activator induces blood-brain barrier breakdown by a matrix metalloproteinase-9-independent pathway after transient focal cerebral ischemia in mouse. Eur. J. Neurosci., 2011, 34(7), 1085-1092.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07843.x] [PMID: 21895804]
[59]
Yan, W.; Zhao, X.; Chen, H.; Zhong, D.; Jin, J.; Qin, Q.; Zhang, H.; Ma, S.; Li, G. β-Dystroglycan cleavage by matrix metalloproteinase-2/-9 disturbs aquaporin-4 polarization and influences brain edema in acute cerebral ischemia. Neuroscience, 2016, 326, 141-157.
[http://dx.doi.org/10.1016/j.neuroscience.2016.03.055] [PMID: 27038751]
[60]
Liu, B.; Li, Y.; Han, Y.; Wang, S.; Yang, H.; Zhao, Y.; Li, P.; Wang, Y. Notoginsenoside R1 intervenes degradation and redistribution of tight junctions to ameliorate blood-brain barrier permeability by Caveolin-1/MMP2/9 pathway after acute ischemic stroke. Phytomedicine, 2021, 90, 153660.
[http://dx.doi.org/10.1016/j.phymed.2021.153660] [PMID: 34344565]
[61]
Bauer, A.T.; Bürgers, H.F.; Rabie, T.; Marti, H.H. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J. Cereb. Blood Flow Metab., 2010, 30(4), 837-848.
[http://dx.doi.org/10.1038/jcbfm.2009.248] [PMID: 19997118]
[62]
Aid, S.; Silva, A.C.; Candelario-Jalil, E.; Choi, S.H.; Rosenberg, G.A.; Bosetti, F. Cyclooxygenase-1 and -2 differentially modulate lipopolysaccharide-induced blood-brain barrier disruption through matrix metalloproteinase activity. J. Cereb. Blood Flow Metab., 2010, 30(2), 370-380.
[http://dx.doi.org/10.1038/jcbfm.2009.223] [PMID: 19844242]
[63]
Yang, C.; Yang, Y.; DeMars, K.M.; Rosenberg, G.A.; Candelario-Jalil, E. Genetic deletion or pharmacological inhibition of cyclooxygenase-2 reduces blood-brain barrier damage in experimental ischemic stroke. Front. Neurol., 2020, 11, 887.
[http://dx.doi.org/10.3389/fneur.2020.00887] [PMID: 32973660]
[64]
Candelario-Jalil, E.; Yang, Y.; Rosenberg, G.A. Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience, 2009, 158(3), 983-994.
[http://dx.doi.org/10.1016/j.neuroscience.2008.06.025] [PMID: 18621108]
[65]
Yang, Q.; Yu, J.; Qin, H.; Liu, L.; Di, C.; Zhuang, Q.; Yin, H. Irbesartan suppresses lipopolysaccharide (LPS)-induced blood-brain barrier (BBB) dysfunction by inhibiting the activation of MLCK/MLC. Int. Immunopharmacol., 2021, 98, 107834.
[http://dx.doi.org/10.1016/j.intimp.2021.107834] [PMID: 34174702]
[66]
Foote, C.A.; Soares, R.N.; Ramirez-Perez, F.I.; Ghiarone, T.; Aroor, A.; Manrique-Acevedo, C.; Padilla, J.; Martinez-Lemus, L. Endothelial Glycocalyx. Compr. Physiol., 2022, 12(4), 3781-3811.
[http://dx.doi.org/10.1002/cphy.c210029] [PMID: 35997082]
[67]
Zhu, J.; Li, X.; Yin, J.; Hu, Y.; Gu, Y.; Pan, S. Glycocalyx degradation leads to blood-brain barrier dysfunction and brain edema after asphyxia cardiac arrest in rats. J. Cereb. Blood Flow Metab., 2018, 38(11), 1979-1992.
[http://dx.doi.org/10.1177/0271678X17726062] [PMID: 28825336]
[68]
Zhu, J.; Li, Z.; Ji, Z.; Wu, Y.; He, Y.; Liu, K.; Chang, Y.; Peng, Y.; Lin, Z.; Wang, S.; Wang, D.; Huang, K.; Pan, S. Glycocalyx is critical for blood‐brain barrier integrity by suppressing caveolin1‐dependent endothelial transcytosis following ischemic stroke. Brain Pathol., 2022, 32(1), e13006.
[http://dx.doi.org/10.1111/bpa.13006] [PMID: 34286899]
[69]
Li, X.; Zhu, J.; Liu, K.; Hu, Y.; Huang, K.; Pan, S. Corrigendum to ‘Heparin ameliorates cerebral edema and improves outcomes following status epilepticus by protecting endothelial glycocalyx in mice’. [Exp Neurol. volume 330 (2020) 113320 Exp. Neurol., 2021, 338, 113595.
[http://dx.doi.org/10.1016/j.expneurol.2020.113595] [PMID: 33485107]
[70]
Zhang, Y-N.; Wu, Q.; Zhang, N-N.; Chen, H-S. Ischemic preconditioning alleviates cerebral ischemia-reperfusion injury by interfering with glycocalyx. Transl. Stroke Res., 2022, 14(6), 929-940.
[PMID: 36168082]
[71]
Koh, L.; Zakharov, A.; Johnston, M. Integration of the subarachnoid space and lymphatics: Is it time to embrace a new concept of cerebrospinal fluid absorption? Cerebrospinal Fluid Res., 2005, 2(1), 6.
[http://dx.doi.org/10.1186/1743-8454-2-6] [PMID: 16174293]
[72]
Proulx, S.T. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell. Mol. Life Sci., 2021, 78(6), 2429-2457.
[http://dx.doi.org/10.1007/s00018-020-03706-5] [PMID: 33427948]
[73]
Spera, I.; Cousin, N.; Ries, M.; Kedracka, A.; Castillo, A.; Aleandri, S.; Vladymyrov, M.; Mapunda, J.A.; Engelhardt, B.; Luciani, P.; Detmar, M.; Proulx, S.T. Open pathways for cerebrospinal fluid outflow at the cribriform plate along the olfactory nerves. EBioMedicine, 2023, 91, 104558.
[http://dx.doi.org/10.1016/j.ebiom.2023.104558] [PMID: 37043871]
[74]
Louveau, A.; Smirnov, I.; Keyes, T.J.; Eccles, J.D.; Rouhani, S.J.; Peske, J.D.; Derecki, N.C.; Castle, D.; Mandell, J.W.; Lee, K.S.; Harris, T.H.; Kipnis, J. Structural and functional features of central nervous system lymphatic vessels. Nature, 2015, 523(7560), 337-341.
[http://dx.doi.org/10.1038/nature14432] [PMID: 26030524]
[75]
Ahn, J.H.; Cho, H.; Kim, J.H.; Kim, S.H.; Ham, J.S.; Park, I.; Suh, S.H.; Hong, S.P.; Song, J.H.; Hong, Y.K.; Jeong, Y.; Park, S.H.; Koh, G.Y. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature, 2019, 572(7767), 62-66.
[http://dx.doi.org/10.1038/s41586-019-1419-5] [PMID: 31341278]
[76]
Hu, X.; Deng, Q.; Ma, L.; Li, Q.; Chen, Y.; Liao, Y.; Zhou, F.; Zhang, C.; Shao, L.; Feng, J.; He, T.; Ning, W.; Kong, Y.; Huo, Y.; He, A.; Liu, B.; Zhang, J.; Adams, R.; He, Y.; Tang, F.; Bian, X.; Luo, J. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res., 2020, 30(3), 229-243.
[http://dx.doi.org/10.1038/s41422-020-0287-8] [PMID: 32094452]
[77]
Izen, R.M.; Yamazaki, T.; Nishinaka-Arai, Y.; Hong, Y.K.; Mukouyama, Y.S. Postnatal development of lymphatic vasculature in the brain meninges. Dev. Dyn., 2018, 247(5), 741-753.
[http://dx.doi.org/10.1002/dvdy.24624] [PMID: 29493038]
[78]
Antila, S.; Karaman, S.; Nurmi, H.; Airavaara, M.; Voutilainen, M.H.; Mathivet, T.; Chilov, D.; Li, Z.; Koppinen, T.; Park, J.H.; Fang, S.; Aspelund, A.; Saarma, M.; Eichmann, A.; Thomas, J.L.; Alitalo, K. Development and plasticity of meningeal lymphatic vessels. J. Exp. Med., 2017, 214(12), 3645-3667.
[http://dx.doi.org/10.1084/jem.20170391] [PMID: 29141865]
[79]
Mestre, H.; Mori, Y.; Nedergaard, M. The Brain’s glymphatic System: Current controversies. Trends Neurosci., 2020, 43(7), 458-466.
[http://dx.doi.org/10.1016/j.tins.2020.04.003] [PMID: 32423764]
[80]
Simon, M.; Wang, M.X.; Ismail, O.; Braun, M.; Schindler, A.G.; Reemmer, J.; Wang, Z.; Haveliwala, M.A.; O’Boyle, R.P.; Han, W.Y.; Roese, N.; Grafe, M.; Woltjer, R.; Boison, D.; Iliff, J.J. Loss of perivascular aquaporin-4 localization impairs glymphatic exchange and promotes amyloid β plaque formation in mice. Alzheimers Res. Ther., 2022, 14(1), 59.
[http://dx.doi.org/10.1186/s13195-022-00999-5] [PMID: 35473943]
[81]
Harrison, I.F.; Ismail, O.; Machhada, A.; Colgan, N.; Ohene, Y.; Nahavandi, P.; Ahmed, Z.; Fisher, A.; Meftah, S.; Murray, T.K.; Ottersen, O.P.; Nagelhus, E.A.; O’Neill, M.J.; Wells, J.A.; Lythgoe, M.F. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain, 2020, 143(8), 2576-2593.
[http://dx.doi.org/10.1093/brain/awaa179] [PMID: 32705145]
[82]
Cui, H.; Wang, W.; Zheng, X.; Xia, D.; Liu, H.; Qin, C.; Tian, H.; Teng, J. Decreased AQP4 expression aggravates ɑ-synuclein pathology in Parkinson’s disease mice, possibly via impaired glymphatic clearance. J. Mol. Neurosci., 2021, 71(12), 2500-2513.
[http://dx.doi.org/10.1007/s12031-021-01836-4] [PMID: 33772424]
[83]
Goulay, R.; Flament, J.; Gauberti, M.; Naveau, M.; Pasquet, N.; Gakuba, C.; Emery, E.; Hantraye, P.; Vivien, D.; Aron-Badin, R.; Gaberel, T. Subarachnoid hemorrhage severely impairs brain parenchymal cerebrospinal fluid circulation in nonhuman primate. Stroke, 2017, 48(8), 2301-2305.
[http://dx.doi.org/10.1161/STROKEAHA.117.017014] [PMID: 28526764]
[84]
Bolte, A.C.; Dutta, A.B.; Hurt, M.E.; Smirnov, I.; Kovacs, M.A.; McKee, C.A.; Ennerfelt, H.E.; Shapiro, D.; Nguyen, B.H.; Frost, E.L.; Lammert, C.R.; Kipnis, J.; Lukens, J.R. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat. Commun., 2020, 11(1), 4524.
[http://dx.doi.org/10.1038/s41467-020-18113-4] [PMID: 32913280]
[85]
Li, X.; Qi, L.; Yang, D.; Hao, S.; Zhang, F.; Zhu, X.; Sun, Y.; Chen, C.; Ye, J.; Yang, J.; Zhao, L.; Altmann, D.M.; Cao, S.; Wang, H.; Wei, B. Meningeal lymphatic vessels mediate neurotropic viral drainage from the central nervous system. Nat. Neurosci., 2022, 25(5), 577-587.
[http://dx.doi.org/10.1038/s41593-022-01063-z] [PMID: 35524140]
[86]
Yanev, P.; Poinsatte, K.; Hominick, D.; Khurana, N.; Zuurbier, K.R.; Berndt, M.; Plautz, E.J.; Dellinger, M.T.; Stowe, A.M. Impaired meningeal lymphatic vessel development worsens stroke outcome. J. Cereb. Blood Flow Metab., 2020, 40(2), 263-275.
[http://dx.doi.org/10.1177/0271678X18822921] [PMID: 30621519]
[87]
Chen, J.; He, J.; Ni, R.; Yang, Q.; Zhang, Y.; Luo, L. Cerebrovascular injuries induce lymphatic invasion into brain parenchyma to guide vascular regeneration in Zebrafish. Dev. Cell, 2019, 49(5), 697-710.e5.
[http://dx.doi.org/10.1016/j.devcel.2019.03.022] [PMID: 31006646]
[88]
Vieira, J.M.; Norman, S.; Villa del Campo, C.; Cahill, T.J.; Barnette, D.N.; Gunadasa-Rohling, M.; Johnson, L.A.; Greaves, D.R.; Carr, C.A.; Jackson, D.G.; Riley, P.R. The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. J. Clin. Invest., 2018, 128(8), 3402-3412.
[http://dx.doi.org/10.1172/JCI97192] [PMID: 29985167]
[89]
Rosenberg, G.A.; Yang, Y. Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg. Focus, 2007, 22(5), 1-9.
[http://dx.doi.org/10.3171/foc.2007.22.5.5] [PMID: 17613235]
[90]
Khatri, R.; McKinney, A.M.; Swenson, B.; Janardhan, V. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology, 2012, 79(Suppl. 1), S52-S57.
[http://dx.doi.org/10.1212/WNL.0b013e3182697e70] [PMID: 23008413]
[91]
Semyachkina-Glushkovskaya, O.; Abdurashitov, A.; Dubrovsky, A.; Bragin, D.; Bragina, O.; Shushunova, N.; Maslyakova, G.; Navolokin, N.; Bucharskaya, A.; Tuchind, V.; Kurths, J.; Shirokov, A. Application of optical coherence tomography for in vivo monitoring of the meningeal lymphatic vessels during opening of blood-brain barrier: mechanisms of brain clearing. J. Biomed. Opt., 2017, 22(12), 1-9.
[http://dx.doi.org/10.1117/1.JBO.22.12.121719] [PMID: 29275545]
[92]
Semyachkina-Glushkovskaya, O.; Navolokin, N.; Shirokov, A.; Terskov, A.; Khorovodov, A.; Mamedova, A.; Klimova, M.; Rafailov, E.; Kurths, J. Meningeal lymphatic pathway of brain clearing from the blood after haemorrhagic injuries. Adv. Exp. Med. Biol., 2020, 1232, 63-68.
[http://dx.doi.org/10.1007/978-3-030-34461-0_9] [PMID: 31893395]
[93]
Plog, B.A.; Dashnaw, M.L.; Hitomi, E.; Peng, W.; Liao, Y.; Lou, N.; Deane, R.; Nedergaard, M. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J. Neurosci., 2015, 35(2), 518-526.
[http://dx.doi.org/10.1523/JNEUROSCI.3742-14.2015] [PMID: 25589747]
[94]
Laman, J.D.; Weller, R.O. Drainage of cells and soluble antigen from the CNS to regional lymph nodes. J. Neuroimmune Pharmacol., 2013, 8(4), 840-856.
[http://dx.doi.org/10.1007/s11481-013-9470-8] [PMID: 23695293]
[95]
Dave, R.S.; Jain, P.; Byrareddy, S.N. Functional meningeal lymphatics and cerebrospinal fluid outflow. J. Neuroimmune Pharmacol., 2018, 13(2), 123-125.
[http://dx.doi.org/10.1007/s11481-018-9778-5] [PMID: 29464588]
[96]
Iadecola, C.; Anrather, J. The immunology of stroke: from mechanisms to translation. Nat. Med., 2011, 17(7), 796-808.
[http://dx.doi.org/10.1038/nm.2399] [PMID: 21738161]
[97]
Hayakawa, K.; Miyamoto, N.; Seo, J.H.; Pham, L.D.D.; Kim, K.W.; Lo, E.H.; Arai, K. High‐mobility group box 1 from reactive astrocytes enhances the accumulation of endothelial progenitor cells in damaged white matter. J. Neurochem., 2013, 125(2), 273-280.
[http://dx.doi.org/10.1111/jnc.12120] [PMID: 23227954]
[98]
Ritzel, R.M.; Patel, A.R.; Grenier, J.M.; Crapser, J.; Verma, R.; Jellison, E.R.; McCullough, L.D. Functional differences between microglia and monocytes after ischemic stroke. J. Neuroinflammation, 2015, 12(1), 106.
[http://dx.doi.org/10.1186/s12974-015-0329-1] [PMID: 26022493]
[99]
Montaner, J.; Ramiro, L.; Simats, A.; Hernández-Guillamon, M.; Delgado, P.; Bustamante, A.; Rosell, A. Matrix metalloproteinases and ADAMs in stroke. Cell. Mol. Life Sci., 2019, 76(16), 3117-3140.
[http://dx.doi.org/10.1007/s00018-019-03175-5] [PMID: 31165904]
[100]
Seifert, H.A.; Pennypacker, K.R. Molecular and cellular immune responses to ischemic brain injury. Transl. Stroke Res., 2014, 5(5), 543-553.
[http://dx.doi.org/10.1007/s12975-014-0349-7] [PMID: 24895236]
[101]
Chamorro, Á.; Meisel, A.; Planas, A.M.; Urra, X.; van de Beek, D.; Veltkamp, R. The immunology of acute stroke. Nat. Rev. Neurol., 2012, 8(7), 401-410.
[http://dx.doi.org/10.1038/nrneurol.2012.98] [PMID: 22664787]
[102]
Russo, E.; Teijeira, A.; Vaahtomeri, K.; Willrodt, A.H.; Bloch, J.S.; Nitschké, M.; Santambrogio, L.; Kerjaschki, D.; Sixt, M.; Halin, C. Intralymphatic CCL21 promotes tissue egress of dendritic cells through afferent lymphatic vessels. Cell Rep., 2016, 14(7), 1723-1734.
[http://dx.doi.org/10.1016/j.celrep.2016.01.048] [PMID: 26876174]
[103]
Louveau, A.; Herz, J.; Alme, M.N.; Salvador, A.F.; Dong, M.Q.; Viar, K.E.; Herod, S.G.; Knopp, J.; Setliff, J.C.; Lupi, A.L.; Da Mesquita, S.; Frost, E.L.; Gaultier, A.; Harris, T.H.; Cao, R.; Hu, S.; Lukens, J.R.; Smirnov, I.; Overall, C.C.; Oliver, G.; Kipnis, J. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci., 2018, 21(10), 1380-1391.
[http://dx.doi.org/10.1038/s41593-018-0227-9] [PMID: 30224810]
[104]
Engelhardt, B.; Carare, R.O.; Bechmann, I.; Flügel, A.; Laman, J.D.; Weller, R.O. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol., 2016, 132(3), 317-338.
[http://dx.doi.org/10.1007/s00401-016-1606-5] [PMID: 27522506]
[105]
Esposito, E.; Ahn, B.J.; Shi, J.; Nakamura, Y.; Park, J.H.; Mandeville, E.T.; Yu, Z.; Chan, S.J.; Desai, R.; Hayakawa, A.; Ji, X.; Lo, E.H.; Hayakawa, K. Brain-to-cervical lymph node signaling after stroke. Nat. Commun., 2019, 10(1), 5306.
[http://dx.doi.org/10.1038/s41467-019-13324-w] [PMID: 31757960]
[106]
Xu, Y.; Yuan, L.; Mak, J.; Pardanaud, L.; Caunt, M.; Kasman, I.; Larrivée, B.; del Toro, R.; Suchting, S.; Medvinsky, A.; Silva, J.; Yang, J.; Thomas, J.L.; Koch, A.W.; Alitalo, K.; Eichmann, A.; Bagri, A. Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J. Cell Biol., 2010, 188(1), 115-130.
[http://dx.doi.org/10.1083/jcb.200903137] [PMID: 20065093]
[107]
Alitalo, K.; Tammela, T.; Petrova, T.V. Lymphangiogenesis in development and human disease. Nature, 2005, 438(7070), 946-953.
[http://dx.doi.org/10.1038/nature04480] [PMID: 16355212]
[108]
Yoshimatsu, Y.; Lee, Y.G.; Akatsu, Y.; Taguchi, L.; Suzuki, H.I.; Cunha, S.I.; Maruyama, K.; Suzuki, Y.; Yamazaki, T.; Katsura, A.; Oh, S.P.; Zimmers, T.A.; Lee, S.J.; Pietras, K.; Koh, G.Y.; Miyazono, K.; Watabe, T. Bone morphogenetic protein-9 inhibits lymphatic vessel formation via activin receptor-like kinase 1 during development and cancer progression. Proc. Natl. Acad. Sci. USA, 2013, 110(47), 18940-18945.
[http://dx.doi.org/10.1073/pnas.1310479110] [PMID: 24133138]
[109]
Shichita, T.; Ito, M.; Morita, R.; Komai, K.; Noguchi, Y.; Ooboshi, H.; Koshida, R.; Takahashi, S.; Kodama, T.; Yoshimura, A. MAFB prevents excess inflammation after ischemic stroke by accelerating clearance of damage signals through MSR1. Nat. Med., 2017, 23(6), 723-732.
[http://dx.doi.org/10.1038/nm.4312] [PMID: 28394332]
[110]
Liu, K.; Zhu, J.; Chang, Y.; Lin, Z.; Shi, Z.; Li, X.; Chen, X.; Lin, C.; Pan, S.; Huang, K. Attenuation of cerebral edema facilitates recovery of glymphatic system function after status epilepticus. JCI Insight, 2021, 6(17), e151835.
[http://dx.doi.org/10.1172/jci.insight.151835] [PMID: 34494549]
[111]
Da Mesquita, S.; Louveau, A.; Vaccari, A.; Smirnov, I.; Cornelison, R.C.; Kingsmore, K.M.; Contarino, C.; Onengut-Gumuscu, S.; Farber, E.; Raper, D.; Viar, K.E.; Powell, R.D.; Baker, W.; Dabhi, N.; Bai, R.; Cao, R.; Hu, S.; Rich, S.S.; Munson, J.M.; Lopes, M.B.; Overall, C.C.; Acton, S.T.; Kipnis, J. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature, 2018, 560(7717), 185-191.
[http://dx.doi.org/10.1038/s41586-018-0368-8] [PMID: 30046111]
[112]
Li, M.; Jia, Q.; Chen, T.; Zhao, Z.; Chen, J.; Zhang, J. The role of vascular endothelial growth factor and vascular endothelial growth inhibitor in clinical outcome of traumatic brain injury. Clin. Neurol. Neurosurg., 2016, 144, 7-13.
[http://dx.doi.org/10.1016/j.clineuro.2016.02.032] [PMID: 26945876]
[113]
Anrather, J.; Iadecola, C. Inflammation and Stroke: An overview. Neurotherapeutics, 2016, 13(4), 661-670.
[http://dx.doi.org/10.1007/s13311-016-0483-x] [PMID: 27730544]
[114]
Chamorro, Á.; Hallenbeck, J. The harms and benefits of inflammatory and immune responses in vascular disease. Stroke, 2006, 37(2), 291-293.
[http://dx.doi.org/10.1161/01.STR.0000200561.69611.f8] [PMID: 16410468]
[115]
Geocadin, R.G.; Tahsili-Fahadan, P.; Farrokh, S. Hypothermia and brain inflammation after cardiac arrest. Brain Circ., 2018, 4(1), 1-13.
[http://dx.doi.org/10.4103/bc.BC_4_18] [PMID: 30276330]
[116]
Rochfort, K.D.; Cummins, P.M. Cytokine-mediated dysregulation of zonula occludens-1 properties in human brain microvascular endothelium. Microvasc. Res., 2015, 100, 48-53.
[http://dx.doi.org/10.1016/j.mvr.2015.04.010] [PMID: 25953589]
[117]
dell’Aquila, M.; Maiese, A.; De Matteis, A.; Viola, R.V.; Arcangeli, M.; La Russa, R.; Fineschi, V. Traumatic brain injury: Estimate of the age of the injury based on neuroinflammation, endothelial activation markers and adhesion molecules. Histol. Histopathol., 2021, 36(8), 795-806.
[PMID: 33625724]
[118]
Gelderblom, M.; Leypoldt, F.; Steinbach, K.; Behrens, D.; Choe, C.U.; Siler, D.A.; Arumugam, T.V.; Orthey, E.; Gerloff, C.; Tolosa, E.; Magnus, T. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke, 2009, 40(5), 1849-1857.
[http://dx.doi.org/10.1161/STROKEAHA.108.534503] [PMID: 19265055]
[119]
Jayaraj, R.L.; Azimullah, S.; Beiram, R.; Jalal, F.Y.; Rosenberg, G.A. Neuroinflammation: Friend and foe for ischemic stroke. J. Neuroinflammation, 2019, 16(1), 142.
[http://dx.doi.org/10.1186/s12974-019-1516-2] [PMID: 31291966]
[120]
Ahn, S.J.; Anrather, J.; Nishimura, N.; Schaffer, C.B. Diverse inflammatory response after cerebral microbleeds includes coordinated microglial migration and proliferation. Stroke, 2018, 49(7), 1719-1726.
[http://dx.doi.org/10.1161/STROKEAHA.117.020461] [PMID: 29844029]
[121]
Neri, M.; Frati, A.; Turillazzi, E.; Cantatore, S.; Cipolloni, L.; Di Paolo, M.; Frati, P.; La Russa, R.; Maiese, A.; Scopetti, M.; Santurro, A.; Sessa, F.; Zamparese, R.; Fineschi, V. Immunohistochemical evaluation of aquaporin-4 and its correlation with CD68, IBA-1, HIF-1α, GFAP, and CD15 expressions in fatal traumatic brain injury. Int. J. Mol. Sci., 2018, 19(11), 3544.
[http://dx.doi.org/10.3390/ijms19113544] [PMID: 30423808]
[122]
Prinz, M.; Priller, J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat. Rev. Neurosci., 2014, 15(5), 300-312.
[http://dx.doi.org/10.1038/nrn3722] [PMID: 24713688]
[123]
Ketheeswaranathan, P.; Turner, N.A.; Spary, E.J.; Batten, T.F.C.; McColl, B.W.; Saha, S. Changes in glutamate transporter expression in mouse forebrain areas following focal ischemia. Brain Res., 2011, 1418, 93-103.
[http://dx.doi.org/10.1016/j.brainres.2011.08.029] [PMID: 21911209]
[124]
Wang, H.; Song, G.; Chuang, H.; Chiu, C.; Abdelmaksoud, A.; Ye, Y.; Zhao, L. Portrait of glial scar in neurological diseases. Int. J. Immunopathol. Pharmacol., 2018, 31.
[http://dx.doi.org/10.1177/2058738418801406] [PMID: 30309271]
[125]
Ferrara, M.; Bertozzi, G.; Volonnino, G.; Di Fazio, N.; Frati, P.; Cipolloni, L.; La Russa, R.; Fineschi, V. Glymphatic system a window on TBI pathophysiology: A systematic review. Int. J. Mol. Sci., 2022, 23(16), 9138.
[http://dx.doi.org/10.3390/ijms23169138] [PMID: 36012401]
[126]
Yang, J.; Wang, T.; Jin, X.; Wang, G.; Zhao, F.; Jin, Y. Roles of crosstalk between astrocytes and microglia in triggering neuroinflammation and brain edema formation in 1,2-dichloroethane-intoxicated mice. Cells, 2021, 10(10), 2647.
[http://dx.doi.org/10.3390/cells10102647] [PMID: 34685627]
[127]
Lai, A.Y.; Todd, K.G. Microglia in cerebral ischemia: molecular actions and interactionsThis paper is one of a selection of papers published in this Special Issue, entitled Young Investigator’s Forum. Can. J. Physiol. Pharmacol., 2006, 84(1), 49-59.
[http://dx.doi.org/10.1139/Y05-143] [PMID: 16845890]
[128]
Almolda, B.; de Labra, C.; Barrera, I.; Gruart, A.; Delgado-Garcia, J.M.; Villacampa, N.; Vilella, A.; Hofer, M.J.; Hidalgo, J.; Campbell, I.L.; González, B.; Castellano, B. Alterations in microglial phenotype and hippocampal neuronal function in transgenic mice with astrocyte-targeted production of interleukin-10. Brain Behav. Immun., 2015, 45, 80-97.
[http://dx.doi.org/10.1016/j.bbi.2014.10.015] [PMID: 25449577]
[129]
Ortega-Gómez, A.; Perretti, M.; Soehnlein, O. Resolution of inflammation: an integrated view. EMBO Mol. Med., 2013, 5(5), 661-674.
[http://dx.doi.org/10.1002/emmm.201202382] [PMID: 23592557]
[130]
Tang, Y.; Le, W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol., 2016, 53(2), 1181-1194.
[http://dx.doi.org/10.1007/s12035-014-9070-5] [PMID: 25598354]
[131]
Sica, A.; Mantovani, A. Macrophage plasticity and polarization: In vivo veritas. J. Clin. Invest., 2012, 122(3), 787-795.
[http://dx.doi.org/10.1172/JCI59643] [PMID: 22378047]
[132]
Kigerl, K.A.; Gensel, J.C.; Ankeny, D.P.; Alexander, J.K.; Donnelly, D.J.; Popovich, P.G. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci., 2009, 29(43), 13435-13444.
[http://dx.doi.org/10.1523/JNEUROSCI.3257-09.2009] [PMID: 19864556]
[133]
Singhal, G.; Baune, B.T. Microglia: An interface between the loss of neuroplasticity and depression. Front. Cell. Neurosci., 2017, 11, 270.
[http://dx.doi.org/10.3389/fncel.2017.00270] [PMID: 28943841]
[134]
Shinozaki, Y.; Shibata, K.; Yoshida, K.; Shigetomi, E.; Gachet, C.; Ikenaka, K.; Tanaka, K.F.; Koizumi, S. Transformation of astrocytes to a neuroprotective phenotype by microglia via P2Y1 receptor downregulation. Cell Rep., 2017, 19(6), 1151-1164.
[http://dx.doi.org/10.1016/j.celrep.2017.04.047] [PMID: 28494865]
[135]
Shindo, A.; Maki, T.; Mandeville, E.T.; Liang, A.C.; Egawa, N.; Itoh, K.; Itoh, N.; Borlongan, M.; Holder, J.C.; Chuang, T.T.; McNeish, J.D.; Tomimoto, H.; Lok, J.; Lo, E.H.; Arai, K. Astrocyte-derived pentraxin 3 supports blood-brain barrier integrity under acute phase of stroke. Stroke, 2016, 47(4), 1094-1100.
[http://dx.doi.org/10.1161/STROKEAHA.115.012133] [PMID: 26965847]
[136]
Okoreeh, A.K.; Bake, S.; Sohrabji, F. Astrocyte‐specific insulin‐like growth factor‐1 gene transfer in aging female rats improves stroke outcomes. Glia, 2017, 65(7), 1043-1058.
[http://dx.doi.org/10.1002/glia.23142] [PMID: 28317235]
[137]
Morizawa, Y.M.; Hirayama, Y.; Ohno, N.; Shibata, S.; Shigetomi, E.; Sui, Y.; Nabekura, J.; Sato, K.; Okajima, F.; Takebayashi, H.; Okano, H.; Koizumi, S. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat. Commun., 2017, 8(1), 28.
[http://dx.doi.org/10.1038/s41467-017-00037-1] [PMID: 28642575]
[138]
Li, P.; Gan, Y.; Sun, B.L.; Zhang, F.; Lu, B.; Gao, Y.; Liang, W.; Thomson, A.W.; Chen, J.; Hu, X. Adoptive regulatory T‐cell therapy protects against cerebral ischemia. Ann. Neurol., 2013, 74(3), 458-471.
[http://dx.doi.org/10.1002/ana.23815] [PMID: 23674483]
[139]
Park, K.P.; Rosell, A.; Foerch, C.; Xing, C.; Kim, W.J.; Lee, S.; Opdenakker, G.; Furie, K.L.; Lo, E.H. Plasma and brain matrix metalloproteinase-9 after acute focal cerebral ischemia in rats. Stroke, 2009, 40(8), 2836-2842.
[http://dx.doi.org/10.1161/STROKEAHA.109.554824] [PMID: 19556529]
[140]
Liesz, A.; Hu, X.; Kleinschnitz, C.; Offner, H. Functional role of regulatory lymphocytes in stroke: facts and controversies. Stroke, 2015, 46(5), 1422-1430.
[http://dx.doi.org/10.1161/STROKEAHA.114.008608] [PMID: 25791715]
[141]
Xie, L.; Choudhury, G.R.; Winters, A.; Yang, S.H.; Jin, K. Cerebral regulatory T cells restrain microglia/macrophage‐mediated inflammatory responses via IL‐10. Eur. J. Immunol., 2015, 45(1), 180-191.
[http://dx.doi.org/10.1002/eji.201444823] [PMID: 25329858]
[142]
Ito, M.; Komai, K.; Mise-Omata, S.; Iizuka-Koga, M.; Noguchi, Y.; Kondo, T.; Sakai, R.; Matsuo, K.; Nakayama, T.; Yoshie, O.; Nakatsukasa, H.; Chikuma, S.; Shichita, T.; Yoshimura, A. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature, 2019, 565(7738), 246-250.
[http://dx.doi.org/10.1038/s41586-018-0824-5] [PMID: 30602786]
[143]
Ruan, L.; Lau, B.W.M.; Wang, J.; Huang, L. ZhuGe, Q.; Wang, B.; Jin, K.; So, K.F. Neurogenesis in neurological and psychiatric diseases and brain injury: From bench to bedside. Prog. Neurobiol., 2014, 115, 116-137.
[http://dx.doi.org/10.1016/j.pneurobio.2013.12.006] [PMID: 24384539]
[144]
Müller, M.; Frese, A.; Nassenstein, I.; Hoppen, M.; Marziniak, M.; Ringelstein, E.B.; Kim, K.S.; Schäbitz, W.R.; Kraus, J. Serum from interferon-β-1b-treated patients with early multiple sclerosis stabilizes the blood-brain barrier in vitro. Mult. Scler., 2012, 18(2), 236-239.
[http://dx.doi.org/10.1177/1352458511416837] [PMID: 21844066]
[145]
Defazio, G.; Livrea, P.; Giorelli, M.; Martino, D.; Roselli, F.; Ricchiuti, F.; Trojano, M. Interferon β-1a downregulates TNFα-induced intercellular adhesion molecule 1 expression on brain microvascular endothelial cells through a tyrosine kinase-dependent pathway. Brain Res., 2000, 881(2), 227-230.
[http://dx.doi.org/10.1016/S0006-8993(00)02814-6] [PMID: 11036165]
[146]
Veldhuis, W.B.; Derksen, J.W.; Floris, S.; van der Meide, P.H.; de Vries, H.E.; Schepers, J.; Vos, I.M.P.; Dijkstra, C.D.; Kappelle, L.J.; Nicolay, K.; Bär, P.R. Interferon-beta blocks infiltration of inflammatory cells and reduces infarct volume after ischemic stroke in the rat. J. Cereb. Blood Flow Metab., 2003, 23(9), 1029-1039.
[http://dx.doi.org/10.1097/01.WCB.0000080703.47016.B6] [PMID: 12973019]
[147]
Bonaventura, A.; Liberale, L.; Vecchié, A.; Casula, M.; Carbone, F.; Dallegri, F.; Montecucco, F. Update on inflammatory biomarkers and treatments in ischemic stroke. Int. J. Mol. Sci., 2016, 17(12), 1967.
[http://dx.doi.org/10.3390/ijms17121967] [PMID: 27898011]
[148]
Pascual, M.; Calvo-Rodriguez, M.; Núñez, L.; Villalobos, C.; Ureña, J.; Guerri, C. Toll‐like receptors in neuroinflammation, neurodegeneration, and alcohol‐induced brain damage. IUBMB Life, 2021, 73(7), 900-915.
[http://dx.doi.org/10.1002/iub.2510] [PMID: 34033211]
[149]
Sun, G.; Fu, T.; Liu, Z.; Zhang, Y.; Chen, X.; Jin, S.; Chi, F. The rule of brain hematoma pressure gradient and its influence on hypertensive cerebral hemorrhage operation. Sci. Rep., 2021, 11(1), 4599.
[http://dx.doi.org/10.1038/s41598-021-84108-w] [PMID: 33633221]
[150]
Chandra, V.V.R.; Mowliswara Prasad, B.C.; Banavath, H.N.; Chandrasekhar Reddy, K. Cisternostomy versus decompressive craniectomy for the management of traumatic brain injury: A randomized controlled trial. World Neurosurg., 2022, 162, e58-e64.
[http://dx.doi.org/10.1016/j.wneu.2022.02.067] [PMID: 35192970]
[151]
Ito, U.; Tomita, H.; Yamazaki, S.; Takada, Y.; Inaba, Y. Brain swelling and brain oedema in acute head injury. Acta Neurochir. (Wien), 1986, 79(2-4), 120-124.
[http://dx.doi.org/10.1007/BF01407455] [PMID: 3962741]
[152]
Mould, W.A.; Carhuapoma, J.R.; Muschelli, J.; Lane, K.; Morgan, T.C.; McBee, N.A.; Bistran-Hall, A.J.; Ullman, N.L.; Vespa, P.; Martin, N.A.; Awad, I.; Zuccarello, M.; Hanley, D.F. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema. Stroke, 2013, 44(3), 627-634.
[http://dx.doi.org/10.1161/STROKEAHA.111.000411] [PMID: 23391763]
[153]
Schneweis, S.; Grond, M.; Staub, F.; Brinker, G.; Neveling, M.; Dohmen, C.; Graf, R.; Heiss, W.D. Predictive value of neurochemical monitoring in large middle cerebral artery infarction. Stroke, 2001, 32(8), 1863-1867.
[http://dx.doi.org/10.1161/01.STR.32.8.1863] [PMID: 11486118]
[154]
Rosenberg, G.A. Ischemic brain edema. Prog. Cardiovasc. Dis., 1999, 42(3), 209-216.
[http://dx.doi.org/10.1016/S0033-0620(99)70003-4] [PMID: 10598921]
[155]
Wise, B.L.; Chater, N. The value of hypertonic mannitol solution in decreasing brain mass and lowering cerebro-spinal-fluid pressure. J. Neurosurg., 1962, 19(12), 1038-1043.
[http://dx.doi.org/10.3171/jns.1962.19.12.1038] [PMID: 14001309]
[156]
Todd, M.M.; Tommasino, C.; Moore, S. Cerebral effects of isovolemic hemodilution with a hypertonic saline solution. J. Neurosurg., 1985, 63(6), 944-948.
[http://dx.doi.org/10.3171/jns.1985.63.6.0944] [PMID: 4056907]
[157]
Kaufmann, A.M.; Cardoso, E.R. Aggravation of vasogenic cerebral edema by multiple-dose mannitol. J. Neurosurg., 1992, 77(4), 584-589.
[http://dx.doi.org/10.3171/jns.1992.77.4.0584] [PMID: 1527619]
[158]
Li, S.; Sun, H.; Liu, X.; Ren, X.; Hao, S.; Zeng, M.; Wang, D.; Dong, J.; Kan, Q.; Peng, Y.; Han, R. Mannitol improves intraoperative brain relaxation in patients with a midline shift undergoing supratentorial tumor surgery: A randomized controlled trial. J. Neurosurg. Anesthesiol., 2020, 32(4), 307-314.
[http://dx.doi.org/10.1097/ANA.0000000000000585] [PMID: 30789384]
[159]
Frank, J.I. Large hemispheric infarction, deterioration, and intracranial pressure. Neurology, 1995, 45(7), 1286-1290.
[http://dx.doi.org/10.1212/WNL.45.7.1286] [PMID: 7617183]
[160]
Riha, H.M.; Erdman, M.J.; Vandigo, J.E.; Kimmons, L.A.; Goyal, N.; Davidson, K.E.; Pandhi, A.; Jones, G.M. Impact of moderate hyperchloremia on clinical outcomes in intracerebral hemorrhage patients treated with continuous infusion hypertonic saline: A pilot study. Crit. Care Med., 2017, 45(9), e947-e953.
[http://dx.doi.org/10.1097/CCM.0000000000002522] [PMID: 28538442]
[161]
Cooper, D.J.; Rosenfeld, J.V.; Murray, L.; Arabi, Y.M.; Davies, A.R.; D’Urso, P.; Kossmann, T.; Ponsford, J.; Seppelt, I.; Reilly, P.; Wolfe, R. Decompressive craniectomy in diffuse traumatic brain injury. N. Engl. J. Med., 2011, 364(16), 1493-1502.
[http://dx.doi.org/10.1056/NEJMoa1102077] [PMID: 21434843]
[162]
Hutchinson, P.J.; Kolias, A.G.; Timofeev, I.S.; Corteen, E.A.; Czosnyka, M.; Timothy, J.; Anderson, I.; Bulters, D.O.; Belli, A.; Eynon, C.A.; Wadley, J.; Mendelow, A.D.; Mitchell, P.M.; Wilson, M.H.; Critchley, G.; Sahuquillo, J.; Unterberg, A.; Servadei, F.; Teasdale, G.M.; Pickard, J.D.; Menon, D.K.; Murray, G.D.; Kirkpatrick, P.J. Trial of decompressive craniectomy for traumatic intracranial hypertension. N. Engl. J. Med., 2016, 375(12), 1119-1130.
[http://dx.doi.org/10.1056/NEJMoa1605215] [PMID: 27602507]
[163]
Simard, J.M.; Chen, M.; Tarasov, K.V.; Bhatta, S.; Ivanova, S.; Melnitchenko, L.; Tsymbalyuk, N.; West, G.A.; Gerzanich, V. Newly expressed SUR1-regulated NCCa-ATP channel mediates cerebral edema after ischemic stroke. Nat. Med., 2006, 12(4), 433-440.
[http://dx.doi.org/10.1038/nm1390] [PMID: 16550187]
[164]
Deng, G.; Ma, C.; Zhao, H.; Zhang, S.; Liu, J.; Liu, F.; Chen, Z.; Chen, A.T.; Yang, X.; Avery, J.; Zou, P.; Du, F.; Lim, K.; Holden, D.; Li, S.; Carson, R.E.; Huang, Y.; Chen, Q.; Kimberly, W.T.; Simard, J.M.; Sheth, K.N.; Zhou, J. Anti-edema and antioxidant combination therapy for ischemic stroke via glyburide-loaded betulinic acid nanoparticles. Theranostics, 2019, 9(23), 6991-7002.
[http://dx.doi.org/10.7150/thno.35791] [PMID: 31660082]
[165]
Papadopoulos, M.C.; Verkman, A.S. Aquaporin water channels in the nervous system. Nat. Rev. Neurosci., 2013, 14(4), 265-277.
[http://dx.doi.org/10.1038/nrn3468] [PMID: 23481483]
[166]
Mdzinarishvili, A.; Sutariya, V.; Talasila, P.K.; Geldenhuys, W.J.; Sadana, P. Engineering triiodothyronine (T3) nanoparticle for use in ischemic brain stroke. Drug Deliv. Transl. Res., 2013, 3(4), 309-317.
[http://dx.doi.org/10.1007/s13346-012-0117-8] [PMID: 23864999]
[167]
Sadana, P.; Coughlin, L.; Burke, J.; Woods, R.; Mdzinarishvili, A. Anti-edema action of thyroid hormone in MCAO model of ischemic brain stroke: Possible association with AQP4 modulation. J. Neurol. Sci., 2015, 354(1-2), 37-45.
[http://dx.doi.org/10.1016/j.jns.2015.04.042] [PMID: 25963308]
[168]
Wei, X.; Zhang, B.; Cheng, L.; Chi, M.; Deng, L.; Pan, H.; Yao, X.; Wang, G. Hydrogen sulfide induces neuroprotection against experimental stroke in rats by down-regulation of AQP4 via activating PKC. Brain Res., 2015, 1622, 292-299.
[http://dx.doi.org/10.1016/j.brainres.2015.07.001] [PMID: 26168888]
[169]
Catalin, B.; Rogoveanu, O.C.; Pirici, I.; Balseanu, T.A.; Stan, A.; Tudorica, V.; Balea, M.; Mindrila, I.; Albu, C.V.; Mohamed, G.; Pirici, D.; Muresanu, D.F. Cerebrolysin and aquaporin 4 inhibition improve pathological and motor recovery after ischemic stroke. CNS Neurol. Disord. Drug Targets, 2018, 17(4), 299-308.
[http://dx.doi.org/10.2174/1871527317666180425124340] [PMID: 29692268]
[170]
Yao, Y.; Zhang, Y.; Liao, X.; Yang, R.; Lei, Y.; Luo, J. Potential therapies for cerebral edema after ischemic stroke: A mini review. Front. Aging Neurosci., 2021, 12, 618819.
[http://dx.doi.org/10.3389/fnagi.2020.618819] [PMID: 33613264]
[171]
Farr, G.W.; Hall, C.H.; Farr, S.M.; Wade, R.; Detzel, J.M.; Adams, A.G.; Buch, J.M.; Beahm, D.L.; Flask, C.A.; Xu, K.; LaManna, J.C.; McGuirk, P.R.; Boron, W.F.; Pelletier, M.F. Functionalized phenylbenzamides inhibit aquaporin-4 reducing cerebral edema and improving outcome in two models of CNS Injury. Neuroscience, 2019, 404, 484-498.
[http://dx.doi.org/10.1016/j.neuroscience.2019.01.034] [PMID: 30738082]
[172]
Löscher, W.; Kaila, K. CNS pharmacology of NKCC1 inhibitors. Neuropharmacology, 2022, 205, 108910.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108910] [PMID: 34883135]
[173]
Wang, F.; Wang, X.; Shapiro, L.A.; Cotrina, M.L.; Liu, W.; Wang, E.W.; Gu, S.; Wang, W.; He, X.; Nedergaard, M.; Huang, J.H. NKCC1 up-regulation contributes to early post-traumatic seizures and increased post-traumatic seizure susceptibility. Brain Struct. Funct., 2017, 222(3), 1543-1556.
[http://dx.doi.org/10.1007/s00429-016-1292-z] [PMID: 27586142]
[174]
Zhang, M.; Cui, Z.; Cui, H.; Cao, Y.; Wang, Y.; Zhong, C. Astaxanthin alleviates cerebral edema by modulating NKCC1 and AQP4 expression after traumatic brain injury in mice. BMC Neurosci., 2016, 17(1), 60.
[http://dx.doi.org/10.1186/s12868-016-0295-2] [PMID: 27581370]
[175]
Zhang, J.; Pu, H.; Zhang, H.; Wei, Z.; Jiang, X.; Xu, M.; Zhang, L.; Zhang, W.; Liu, J.; Meng, H.; Stetler, R.A.; Sun, D.; Chen, J.; Gao, Y.; Chen, L. Inhibition of Na+-K+-2Cl− cotransporter attenuates blood-brain-barrier disruption in a mouse model of traumatic brain injury. Neurochem. Int., 2017, 111, 23-31.
[http://dx.doi.org/10.1016/j.neuint.2017.05.020] [PMID: 28577991]
[176]
Yan, X.; Liu, J.; Wang, X.; Li, W.; Chen, J.; Sun, H. Pretreatment with AQP4 and NKCC1 inhibitors concurrently attenuated spinal cord edema and tissue damage after spinal cord injury in rats. Front. Physiol., 2018, 9, 6.
[http://dx.doi.org/10.3389/fphys.2018.00006] [PMID: 29403391]
[177]
Jayakumar, A.R.; Panickar, K.S.; Curtis, K.M.; Tong, X.Y.; Moriyama, M.; Norenberg, M.D. Na-K-Cl cotransporter-1 in the mechanism of cell swelling in cultured astrocytes after fluid percussion injury. J. Neurochem., 2011, 117(3), 437-448.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07211.x] [PMID: 21306384]
[178]
Dobrogowska, D.H.; Lossinsky, A.S.; Tarnawski, M.; Vorbrodt, A.W. Increased blood-brain barrier permeability and endothelial abnormalities induced by vascular endothelial growth factor. J. Neurocytol., 1998, 27(3), 163-173.
[http://dx.doi.org/10.1023/A:1006907608230] [PMID: 10640176]
[179]
Machein, M.R.; Kullmer, J.; Rönicke, V.; Machein, U.; Krieg, M.; Damert, A.; Breier, G.; Risau, W.; Plate, K.H. Differential downregulation of vascular endothelial growth factor by dexamethasone in normoxic and hypoxic rat glioma cells. Neuropathol. Appl. Neurobiol., 1999, 25(2), 104-112.
[http://dx.doi.org/10.1046/j.1365-2990.1999.00166.x] [PMID: 10215998]
[180]
Gonzalez, J.; Kumar, A.J.; Conrad, C.A.; Levin, V.A. Effect of bevacizumab on radiation necrosis of the brain. Int. J. Radiat. Oncol. Biol. Phys., 2007, 67(2), 323-326.
[http://dx.doi.org/10.1016/j.ijrobp.2006.10.010] [PMID: 17236958]
[181]
Hsu, S.J.; Zhang, C.; Jeong, J.; Lee, S.; McConnell, M.; Utsumi, T.; Iwakiri, Y. Enhanced meningeal lymphatic drainage ameliorates neuroinflammation and hepatic encephalopathy in cirrhotic rats. Gastroenterology, 2021, 160(4), 1315-1329.e13.
[http://dx.doi.org/10.1053/j.gastro.2020.11.036] [PMID: 33227282]
[182]
Yao, Z-B.; Wen, Y-R.; Yang, J-H.; Wang, X. Induced dural lymphangiogenesis facilities soluble amyloid-beta clearance from brain in a transgenic mouse model of Alzheimer’s disease. Neural Regen. Res., 2018, 13(4), 709-716.
[http://dx.doi.org/10.4103/1673-5374.230299] [PMID: 29722325]
[183]
Hauglund, N.L.; Kusk, P.; Kornum, B.R.; Nedergaard, M. Meningeal lymphangiogenesis and enhanced glymphatic activity in mice with chronically implanted EEG electrodes. J. Neurosci., 2020, 40(11), 2371-2380.
[http://dx.doi.org/10.1523/JNEUROSCI.2223-19.2020] [PMID: 32047056]
[184]
Semyachkina-Glushkovskaya, O.; Terskov, A.; Khorovodov, A.; Telnova, V.; Blokhina, I.; Saranceva, E.; Kurths, J. Photodynamic opening of the blood-brain barrier and the meningeal lymphatic system: The new niche in immunotherapy for brain tumors. Pharmaceutics, 2022, 14(12), 2612.
[http://dx.doi.org/10.3390/pharmaceutics14122612] [PMID: 36559105]
[185]
Jha, R.M.; Raikwar, S.P.; Mihaljevic, S.; Casabella, A.M.; Catapano, J.S.; Rani, A.; Desai, S.; Gerzanich, V.; Simard, J.M. Emerging therapeutic targets for cerebral edema. Expert Opin. Ther. Targets, 2021, 25(11), 917-938.
[http://dx.doi.org/10.1080/14728222.2021.2010045] [PMID: 34844502]
[186]
Hsu, M.; Rayasam, A.; Kijak, J.A.; Choi, Y.H.; Harding, J.S.; Marcus, S.A.; Karpus, W.J.; Sandor, M.; Fabry, Z. Neuroinflammation-induced lymphangiogenesis near the cribriform plate contributes to drainage of CNS-derived antigens and immune cells. Nat. Commun., 2019, 10(1), 229.
[http://dx.doi.org/10.1038/s41467-018-08163-0] [PMID: 30651548]
[187]
Hablitz, L.M.; Vinitsky, H.S.; Sun, Q.; Stæger, F.F.; Sigurdsson, B.; Mortensen, K.N.; Lilius, T.O.; Nedergaard, M. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci. Adv., 2019, 5(2), eaav5447.
[http://dx.doi.org/10.1126/sciadv.aav5447] [PMID: 30820460]
[188]
Song, E.; Mao, T.; Dong, H.; Boisserand, L.S.B.; Antila, S.; Bosenberg, M.; Alitalo, K.; Thomas, J.L.; Iwasaki, A. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature, 2020, 577(7792), 689-694.
[http://dx.doi.org/10.1038/s41586-019-1912-x] [PMID: 31942068]
[189]
Shibata-Germanos, S.; Goodman, J.R.; Grieg, A.; Trivedi, C.A.; Benson, B.C.; Foti, S.C.; Faro, A.; Castellan, R.F.P.; Correra, R.M.; Barber, M.; Ruhrberg, C.; Weller, R.O.; Lashley, T.; Iliff, J.J.; Hawkins, T.A.; Rihel, J. Structural and functional conservation of non-lumenized lymphatic endothelial cells in the mammalian leptomeninges. Acta Neuropathol., 2020, 139(2), 383-401.
[http://dx.doi.org/10.1007/s00401-019-02091-z] [PMID: 31696318]
[190]
Mezey, É.; Szalayova, I.; Hogden, C.T.; Brady, A.; Dósa, Á.; Sótonyi, P.; Palkovits, M. An immunohistochemical study of lymphatic elements in the human brain. Proc. Natl. Acad. Sci. USA, 2021, 118(3), e2002574118.
[http://dx.doi.org/10.1073/pnas.2002574118] [PMID: 33446503]
[191]
Da Mesquita, S.; Papadopoulos, Z.; Dykstra, T.; Brase, L.; Farias, F.G.; Wall, M.; Jiang, H.; Kodira, C.D.; de Lima, K.A.; Herz, J.; Louveau, A.; Goldman, D.H.; Salvador, A.F.; Onengut-Gumuscu, S.; Farber, E.; Dabhi, N.; Kennedy, T.; Milam, M.G.; Baker, W.; Smirnov, I.; Rich, S.S.; Benitez, B.A.; Karch, C.M.; Perrin, R.J.; Farlow, M.; Chhatwal, J.P.; Holtzman, D.M.; Cruchaga, C.; Harari, O.; Kipnis, J. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. Nature, 2021, 593(7858), 255-260.
[http://dx.doi.org/10.1038/s41586-021-03489-0] [PMID: 33911285]
[192]
Hsu, M.; Laaker, C.; Madrid, A.; Herbath, M.; Choi, Y.H.; Sandor, M.; Fabry, Z. Neuroinflammation creates an immune regulatory niche at the meningeal lymphatic vasculature near the cribriform plate. Nat. Immunol., 2022, 23(4), 581-593.
[http://dx.doi.org/10.1038/s41590-022-01158-6] [PMID: 35347285]
[193]
Dai, W.; Yang, M.; Xia, P.; Xiao, C.; Huang, S.; Zhang, Z.; Cheng, X.; Li, W.; Jin, J.; Zhang, J.; Wu, B.; Zhang, Y.; Wu, P.; Lin, Y.; Wu, W.; Zhao, H.; Zhang, Y.; Lin, W.J.; Ye, X. A functional role of meningeal lymphatics in sex difference of stress susceptibility in mice. Nat. Commun., 2022, 13(1), 4825.
[http://dx.doi.org/10.1038/s41467-022-32556-x] [PMID: 35974004]
[194]
Holstein-Rønsbo, S.; Gan, Y.; Giannetto, M.J.; Rasmussen, M.K.; Sigurdsson, B.; Beinlich, F.R.M.; Rose, L.; Untiet, V.; Hablitz, L.M.; Kelley, D.H.; Nedergaard, M. Glymphatic influx and clearance are accelerated by neurovascular coupling. Nat. Neurosci., 2023, 26(6), 1042-1053.
[http://dx.doi.org/10.1038/s41593-023-01327-2] [PMID: 37264158]
[195]
Wang, X.; Zhang, A.; Yu, Q.; Wang, Z.; Wang, J.; Xu, P.; Liu, Y.; Lu, J.; Zheng, J.; Li, H.; Qi, Y.; Zhang, J.; Fang, Y.; Xu, S.; Zhou, J.; Wang, K.; Chen, S.; Zhang, J. Single‐Cell RNA sequencing and spatial transcriptomics reveal pathogenesis of meningeal lymphatic dysfunction after experimental subarachnoid hemorrhage. Adv. Sci. (Weinh.), 2023, 10(21), 2301428.
[http://dx.doi.org/10.1002/advs.202301428] [PMID: 37211686]
[196]
Ye, D.; Chen, S.; Liu, Y.; Weixel, C.; Hu, Z.; Yuan, J.; Chen, H. Mechanically manipulating glymphatic transport by ultrasound combined with microbubbles. Proc. Natl. Acad. Sci. USA, 2023, 120(21), e2212933120.
[http://dx.doi.org/10.1073/pnas.2212933120] [PMID: 37186852]
[197]
Sheth, K.N.; Elm, J.J.; Beslow, L.A.; Sze, G.K.; Kimberly, W.T. Glyburide advantage in malignant edema and stroke (GAMES-RP) Trial: Rationale and design. Neurocrit. Care, 2016, 24(1), 132-139.
[http://dx.doi.org/10.1007/s12028-015-0189-7] [PMID: 26268138]
[198]
Vaz, R.; Sarmento, A.; Borges, N.; Cruz, C.; Azevedo, I. Effect of mechanogated membrane ion channel blockers on experimental traumatic brain oedema. Acta Neurochir. (Wien), 1998, 140(4), 371-375.
[http://dx.doi.org/10.1007/s007010050111] [PMID: 9689329]
[199]
Frelin, C.; Barbry, P.; Vigne, P.; Chassande, O.; Cragoe, E.J., Jr; Lazdunski, M. Amiloride and its analogs as tools to inhibit Na+ transport via the Na+ channel, the Na+/H+ antiport and the Na+/Ca2+ exchanger. Biochimie, 1988, 70(9), 1285-1290.
[http://dx.doi.org/10.1016/0300-9084(88)90196-4] [PMID: 2852509]
[200]
van Megen, W.H.; Beggs, M.R.; An, S.W.; Ferreira, P.G.; Lee, J.J.; Wolf, M.T.; Alexander, R.T.; Dimke, H. Gentamicin inhibits Ca2+ channel TRPV5 and induces calciuresis independent of the calcium-sensing receptor-claudin-14 pathway. J. Am. Soc. Nephrol., 2022, 33(3), 547-564.
[http://dx.doi.org/10.1681/ASN.2021030392] [PMID: 35022312]
[201]
Ermakov, Y.A.; Kamaraju, K.; Sengupta, K.; Sukharev, S. Gadolinium ions block mechanosensitive channels by altering the packing and lateral pressure of anionic lipids. Biophys. J., 2010, 98(6), 1018-1027.
[http://dx.doi.org/10.1016/j.bpj.2009.11.044] [PMID: 20303859]
[202]
Li, X.; Zhu, J.; Liu, K.; Hu, Y.; Huang, K.; Pan, S. Heparin ameliorates cerebral edema and improves outcomes following status epilepticus by protecting endothelial glycocalyx in mice. Exp. Neurol., 2020, 330, 113320.
[http://dx.doi.org/10.1016/j.expneurol.2020.113320] [PMID: 32305420]
[203]
Krieg, S.M.; Sonanini, S.; Plesnila, N.; Trabold, R. Effect of small molecule vasopressin V1a and V2 receptor antagonists on brain edema formation and secondary brain damage following traumatic brain injury in mice. J. Neurotrauma, 2015, 32(4), 221-227.
[http://dx.doi.org/10.1089/neu.2013.3274] [PMID: 25111427]
[204]
Serradeil-Le Gal, C.; Wagnon, J.; Garcia, C.; Lacour, C.; Guiraudou, P.; Christophe, B.; Villanova, G.; Nisato, D.; Maffrand, J.P.; Le Fur, G. Biochemical and pharmacological properties of SR 49059, a new, potent, nonpeptide antagonist of rat and human vasopressin V1a receptors. J. Clin. Invest., 1993, 92(1), 224-231.
[http://dx.doi.org/10.1172/JCI116554] [PMID: 8392086]
[205]
Luh, C.; Kuhlmann, C.R.; Ackermann, B.; Timaru-Kast, R.; Luhmann, H.J.; Behl, C.; Werner, C.; Engelhard, K.; Thal, S.C. Inhibition of myosin light chain kinase reduces brain edema formation after traumatic brain injury. J. Neurochem., 2010, 112(4), 1015-1025.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06514.x] [PMID: 19943851]
[206]
Liu, J.; Jin, X.; Liu, K.J.; Liu, W. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage. J. Neurosci., 2012, 32(9), 3044-3057.
[http://dx.doi.org/10.1523/JNEUROSCI.6409-11.2012] [PMID: 22378877]
[207]
Zhou, J.; Tao, P.; Fisher, J.F.; Shi, Q.; Mobashery, S.; Schlegel, H.B. QM/MM studies of the matrix metalloproteinase 2 (MMP2) inhibition mechanism of (S)-SB-3CT and its oxirane analogue. J. Chem. Theory Comput., 2010, 6(11), 3580-3587.
[http://dx.doi.org/10.1021/ct100382k] [PMID: 21076643]
[208]
Besson, V.C.; Chen, X.R.; Plotkine, M.; Marchand-Verrecchia, C. Fenofibrate, a peroxisome proliferator-activated receptor α agonist, exerts neuroprotective effects in traumatic brain injury. Neurosci. Lett., 2005, 388(1), 7-12.
[http://dx.doi.org/10.1016/j.neulet.2005.06.019] [PMID: 16087294]
[209]
Chen, X.R.; Besson, V.C.; Palmier, B.; Garcia, Y.; Plotkine, M.; Marchand-Leroux, C. Neurological recovery-promoting, anti-inflammatory, and anti-oxidative effects afforded by fenofibrate, a PPAR alpha agonist, in traumatic brain injury. J. Neurotrauma, 2007, 24(7), 1119-1131.
[http://dx.doi.org/10.1089/neu.2006.0216] [PMID: 17610352]
[210]
Yi, J.H.; Park, S.W.; Brooks, N.; Lang, B.T.; Vemuganti, R. PPARγ agonist rosiglitazone is neuroprotective after traumatic brain injury via anti-inflammatory and anti-oxidative mechanisms. Brain Res., 2008, 1244, 164-172.
[http://dx.doi.org/10.1016/j.brainres.2008.09.074] [PMID: 18948087]
[211]
Qureshi, M.; Al-Suhaimi, E.A.; Wahid, F.; Shehzad, O.; Shehzad, A. Therapeutic potential of curcumin for multiple sclerosis. Neurol. Sci., 2018, 39(2), 207-214.
[http://dx.doi.org/10.1007/s10072-017-3149-5] [PMID: 29079885]
[212]
Zhang, Z.; Jiang, M.; Fang, J.; Yang, M.; Zhang, S.; Yin, Y.; Li, D.; Mao, L.; Fu, X.; Hou, Y.; Fu, X.; Fan, C.; Sun, B. Enhanced therapeutic potential of nano-curcumin against subarachnoid hemorrhage-induced blood-brain barrier disruption through inhibition of inflammatory response and oxidative stress. Mol. Neurobiol., 2017, 54(1), 1-14.
[http://dx.doi.org/10.1007/s12035-015-9635-y] [PMID: 26708209]
[213]
Yu, L.; Yi, J.; Ye, G.; Zheng, Y.; Song, Z.; Yang, Y.; Song, Y.; Wang, Z.; Bao, Q. Effects of curcumin on levels of nitric oxide synthase and AQP-4 in a rat model of hypoxia-ischemic brain damage. Brain Res., 2012, 1475, 88-95.
[http://dx.doi.org/10.1016/j.brainres.2012.07.055] [PMID: 22902770]
[214]
Pan, Y.; Zhang, Y.; Yuan, J.; Ma, X.; Zhao, Y.; Li, Y.; Li, F.; Gong, X.; Zhao, J.; Tang, H.; Wang, J. Tetrahydrocurcumin mitigates acute hypobaric hypoxia‐induced cerebral oedema and inflammation through the NF‐κB/VEGF/MMP‐9 pathway. Phytother. Res., 2020, 34(11), 2963-2977.
[http://dx.doi.org/10.1002/ptr.6724] [PMID: 32573860]
[215]
Yuan, J.; Liu, W.; Zhu, H.; Zhang, X.; Feng, Y.; Chen, Y.; Feng, H.; Lin, J. Curcumin attenuates blood-brain barrier disruption after subarachnoid hemorrhage in mice. J. Surg. Res., 2017, 207, 85-91.
[http://dx.doi.org/10.1016/j.jss.2016.08.090] [PMID: 27979493]
[216]
Gao, W.; Zhao, Z.; Yu, G.; Zhou, Z.; Zhou, Y.; Hu, T.; Jiang, R.; Zhang, J. VEGI attenuates the inflammatory injury and disruption of blood-brain barrier partly by suppressing the TLR4/NF-κB signaling pathway in experimental traumatic brain injury. Brain Res., 2015, 1622, 230-239.
[http://dx.doi.org/10.1016/j.brainres.2015.04.035] [PMID: 26080076]
[217]
Furuse, M.; Nonoguchi, N.; Kawabata, S.; Miyata, T.; Toho, T.; Kuroiwa, T.; Miyatake, S.I. Intratumoral and peritumoral post-irradiation changes, but not viable tumor tissue, may respond to bevacizumab in previously irradiated meningiomas. Radiat. Oncol., 2015, 10(1), 156.
[http://dx.doi.org/10.1186/s13014-015-0446-0] [PMID: 26223253]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy