Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

In Silico Prediction of Quercetin Analogs for Targeting Death-Associated Protein Kinase 1 (DAPK1) Against Alzheimer’s Disease

Author(s): Yilu Sun, Jia Zhao, Yizhu Lu, Fung Yin Ngo, Bo Shuai, Zhang-Jin Zhang, Yibin Feng* and Jianhui Rong*

Volume 22, Issue 14, 2024

Published on: 15 May, 2024

Page: [2353 - 2367] Pages: 15

DOI: 10.2174/1570159X22666240515090434

Price: $65

Abstract

Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that greatly affects the health and life quality of the elderly population. Existing drugs mainly alleviate symptoms but fail to halt disease progression, underscoring the urgent need for the development of novel drugs. Based on the neuroprotective effects of flavonoid quercetin in AD, this study was designed to identify potential AD-related targets for quercetin and perform in silico prediction of promising analogs for the treatment of AD. Database mining suggested death-associated protein kinase 1 (DAPK1) as the most promising AD-related target for quercetin among seven protein candidates. To achieve better biological effects for the treatment of AD, we devised a series of quercetin analogs as ligands for DAPK1, and molecular docking analyses, absorption, distribution, metabolism, and excretion (ADME) predictions, as well as molecular dynamics (MD) simulations, were performed. The energy for drug-protein interaction was predicted and ranked. As a result, quercetin-A1a and quercetin-A1a1 out of 19 quercetin analogs exhibited the lowest interaction energy for binding to DAPK1 than quercetin, and they had similar dynamics performance with quercetin. In addition, quercetin-A1a and quercetin-A1a1 were predicted to have better water solubility. Thus, quercetin-A1a and quercetin-A1a1 could be promising agents for the treatment of AD. Our findings paved the way for further experimental studies and the development of novel drugs.

[1]
Nichols, E.; Szoeke, C.E.I.; Vollset, S.E.; Abbasi, N.; Abd-Allah, F.; Abdela, J.; Aichour, M.T.E.; Akinyemi, R.O.; Alahdab, F.; Asgedom, S.W.; Awasthi, A.; Barker-Collo, S.L.; Baune, B.T.; Béjot, Y.; Belachew, A.B.; Bennett, D.A.; Biadgo, B.; Bijani, A.; Bin Sayeed, M.S.; Brayne, C.; Carpenter, D.O.; Carvalho, F.; Catalá-López, F.; Cerin, E.; Choi, J-Y.J.; Dang, A.K.; Degefa, M.G.; Djalalinia, S.; Dubey, M.; Duken, E.E.; Edvardsson, D.; Endres, M.; Eskandarieh, S.; Faro, A.; Farzadfar, F.; Fereshtehnejad, S-M.; Fernandes, E.; Filip, I.; Fischer, F.; Gebre, A.K.; Geremew, D.; Ghasemi-Kasman, M.; Gnedovskaya, E.V.; Gupta, R.; Hachinski, V.; Hagos, T.B.; Hamidi, S.; Hankey, G.J.; Haro, J.M.; Hay, S.I.; Irvani, S.S.N.; Jha, R.P.; Jonas, J.B.; Kalani, R.; Karch, A.; Kasaeian, A.; Khader, Y.S.; Khalil, I.A.; Khan, E.A.; Khanna, T.; Khoja, T.A.M.; Khubchandani, J.; Kisa, A.; Kissimova-Skarbek, K.; Kivimäki, M.; Koyanagi, A.; Krohn, K.J.; Logroscino, G.; Lorkowski, S.; Majdan, M.; Malekzadeh, R.; März, W.; Massano, J.; Mengistu, G.; Meretoja, A.; Mohammadi, M.; Mohammadi-Khanaposhtani, M.; Mokdad, A.H.; Mondello, S.; Moradi, G.; Nagel, G.; Naghavi, M.; Naik, G.; Nguyen, L.H.; Nguyen, T.H.; Nirayo, Y.L.; Nixon, M.R.; Ofori-Asenso, R.; Ogbo, F.A.; Olagunju, A.T.; Owolabi, M.O.; Panda-Jonas, S.; Passos, V.M.A.; Pereira, D.M.; Pinilla-Monsalve, G.D.; Piradov, M.A.; Pond, C.D.; Poustchi, H.; Qorbani, M.; Radfar, A.; Reiner, R.C., Jr; Robinson, S.R.; Roshandel, G.; Rostami, A.; Russ, T.C.; Sachdev, P.S.; Safari, H.; Safiri, S.; Sahathevan, R.; Salimi, Y.; Satpathy, M.; Sawhney, M.; Saylan, M.; Sepanlou, S.G.; Shafieesabet, A.; Shaikh, M.A.; Sahraian, M.A.; Shigematsu, M.; Shiri, R.; Shiue, I.; Silva, J.P.; Smith, M.; Sobhani, S.; Stein, D.J.; Tabarés-Seisdedos, R.; Tovani-Palone, M.R.; Tran, B.X.; Tran, T.T.; Tsegay, A.T.; Ullah, I.; Venketasubramanian, N.; Vlassov, V.; Wang, Y-P.; Weiss, J.; Westerman, R.; Wijeratne, T.; Wyper, G.M.A.; Yano, Y.; Yimer, E.M.; Yonemoto, N.; Yousefifard, M.; Zaidi, Z.; Zare, Z.; Vos, T.; Feigin, V.L.; Murray, C.J.L. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol., 2019, 18(1), 88-106.
[http://dx.doi.org/10.1016/S1474-4422(18)30403-4] [PMID: 30497964]
[2]
2020 Alzheimer’s disease facts and figures. Alzheimers Dement., 2020, 2020.
[PMID: 32157811]
[3]
Chen, G.; Xu, T.; Yan, Y.; Zhou, Y.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin., 2017, 38(9), 1205-1235.
[http://dx.doi.org/10.1038/aps.2017.28] [PMID: 28713158]
[4]
Binder, L.I.; Guillozet-Bongaarts, A.L.; Garcia-Sierra, F.; Berry, R.W. Tau, tangles, and Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2005, 1739(2-3), 216-223.
[http://dx.doi.org/10.1016/j.bbadis.2004.08.014] [PMID: 15615640]
[5]
Lyketsos, C.G.; Carrillo, M.C.; Ryan, J.M.; Khachaturian, A.S.; Trzepacz, P.; Amatniek, J.; Cedarbaum, J.; Brashear, R.; Miller, D.S. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement., 2011, 7(5), 532-539.
[http://dx.doi.org/10.1016/j.jalz.2011.05.2410] [PMID: 21889116]
[6]
Jacobsen, J.S.; Wu, C.C.; Redwine, J.M.; Comery, T.A.; Arias, R.; Bowlby, M.; Martone, R.; Morrison, J.H.; Pangalos, M.N.; Reinhart, P.H.; Bloom, F.E. Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. , 2006, 103(13), 5161-5166.
[http://dx.doi.org/10.1073/pnas.0600948103] [PMID: 16549764]
[7]
Murphy, M.P.; LeVine, H., III Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimers Dis., 2010, 19(1), 311-323.
[http://dx.doi.org/10.3233/JAD-2010-1221] [PMID: 20061647]
[8]
Yao, M.; Nguyen, T.V.V.; Pike, C.J. Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. J. Neurosci., 2005, 25(5), 1149-1158.
[http://dx.doi.org/10.1523/JNEUROSCI.4736-04.2005] [PMID: 15689551]
[9]
Tan, Z.; Shi, L.; Schreiber, S.S. Differential expression of redox factor-1 associated with beta-amyloid-mediated neurotoxicity. Open Neurosci. J., 2009, 3(1), 26-34.
[http://dx.doi.org/10.2174/1874082000903010026] [PMID: 19898678]
[10]
Misonou, H.; Morishima-Kawashima, M.; Ihara, Y. Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells. Biochemistry, 2000, 39(23), 6951-6959.
[http://dx.doi.org/10.1021/bi000169p] [PMID: 10841777]
[11]
Sun, X.; Chen, W.D.; Wang, Y.D. β-Amyloid: The key peptide in the pathogenesis of Alzheimer’s disease. Front. Pharmacol., 2015, 6, 221.
[http://dx.doi.org/10.3389/fphar.2015.00221] [PMID: 26483691]
[12]
Panza, F.; Solfrizzi, V.; Seripa, D.; Imbimbo, B.P.; Lozupone, M.; Santamato, A.; Zecca, C.; Barulli, M.R.; Bellomo, A.; Pilotto, A.; Daniele, A.; Greco, A.; Logroscino, G. Tau-centric targets and drugs in clinical development for the treatment of alzheimer’s disease. BioMed Res. Int., 2016, 2016, 1-15.
[http://dx.doi.org/10.1155/2016/3245935] [PMID: 27429978]
[13]
Wang, L.; Benzinger, T.L.; Su, Y.; Christensen, J.; Friedrichsen, K.; Aldea, P.; McConathy, J.; Cairns, N.J.; Fagan, A.M.; Morris, J.C.; Ances, B.M. Evaluation of tau imaging in staging alzheimer disease and revealing interactions between β-amyloid and tauopathy. JAMA Neurol., 2016, 73(9), 1070-1077.
[http://dx.doi.org/10.1001/jamaneurol.2016.2078] [PMID: 27454922]
[14]
Götz, J.; Chen, F.; van Dorpe, J.; Nitsch, R.M. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science, 2001, 293(5534), 1491-1495.
[http://dx.doi.org/10.1126/science.1062097] [PMID: 11520988]
[15]
Jaworski, J.; Sheng, M. The growing role of mTOR in neuronal development and plasticity. Mol. Neurobiol., 2006, 34(3), 205-220.
[http://dx.doi.org/10.1385/MN:34:3:205] [PMID: 17308353]
[16]
Ma, T.; Hoeffer, C.A.; Capetillo-Zarate, E.; Yu, F.; Wong, H.; Lin, M.T.; Tampellini, D.; Klann, E.; Blitzer, R.D.; Gouras, G.K. Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer’s disease. PLoS One, 2010, 5(9), e12845.
[http://dx.doi.org/10.1371/journal.pone.0012845] [PMID: 20862226]
[17]
Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement., 2018, 4(1), 575-590.
[http://dx.doi.org/10.1016/j.trci.2018.06.014] [PMID: 30406177]
[18]
Xu, L.Z.; Li, B.Q.; Li, F.Y.; Li, Y.; Qin, W.; Zhao, Y.; Jia, J.P. NMDA receptor GluN2B subunit is involved in excitotoxicity mediated by death-associated protein kinase 1 in alzheimer’s disease. J. Alzheimers Dis., 2023, 91(2), 877-893.
[http://dx.doi.org/10.3233/JAD-220747] [PMID: 36502323]
[19]
Wang, L.; Shui, X.; Zhang, M.; Mei, Y.; Xia, Y.; Lan, G.; Hu, L.; Gan, C.L.; Tian, Y.; Li, R.; Gu, X.; Zhang, T.; Chen, D.; Lee, T.H. MiR-191-5p attenuates tau phosphorylation, aβ generation, and neuronal cell death by regulating death-associated protein kinase 1. ACS Chem. Neurosci., 2022, 13(24), 3554-3566.
[http://dx.doi.org/10.1021/acschemneuro.2c00423] [PMID: 36454178]
[20]
Xu, L.; Li, B.; Jia, J. DAPK1: A novel pathology and treatment target for alzheimer’s disease. Mol. Neurobiol., 2019, 56(4), 2838-2844.
[http://dx.doi.org/10.1007/s12035-018-1242-2] [PMID: 30062675]
[21]
Li, R.; Zhi, S.; Lan, G.; Chen, X.; Zheng, X.; Hu, L.; Wang, L.; Zhang, T.; Lee, T.H.; Rao, S.; Chen, D. Ablation of death-associated protein kinase 1 changes the transcriptomic profile and alters neural-related pathways in the brain. Int. J. Mol. Sci., 2023, 24(7), 6542.
[http://dx.doi.org/10.3390/ijms24076542] [PMID: 37047515]
[22]
Guan, P.P.; Ding, W.Y.; Wang, P. Molecular mechanism of acetylsalicylic acid in improving learning and memory impairment in APP/PS1 transgenic mice by inhibiting the abnormal cell cycle re-entry of neurons. Front. Mol. Neurosci., 2022, 15, 1006216.
[http://dx.doi.org/10.3389/fnmol.2022.1006216] [PMID: 36263378]
[23]
Song, B.; Davis, K.; Liu, X.S.; Lee, H.; Smith, M.; Liu, X. Inhibition of polo-like kinase 1 reduces beta-amyloid-induced neuronal cell death in Alzheimer’s disease. Aging , 2011, 3(9), 846-851.
[http://dx.doi.org/10.18632/aging.100382] [PMID: 21931181]
[24]
Park, J.Y.; Darvas, M.; Ladiges, W. Targeting IGF1R signaling for brain aging and Alzheimer’s disease. Aging Pathobiol. Ther., 2022, 4(4), 129-131.
[http://dx.doi.org/10.31491/APT.2022.12.103] [PMID: 36776414]
[25]
Hamasaki, H.; Honda, H.; Suzuki, S.O.; Hokama, M.; Kiyohara, Y.; Nakabeppu, Y.; Iwaki, T. Down‐regulation of MET in hippocampal neurons of Alzheimer’s disease brains. Neuropathology, 2014, 34(3), 284-290.
[http://dx.doi.org/10.1111/neup.12095] [PMID: 24444253]
[26]
Wang, L.; Chiang, H.C.; Wu, W.; Liang, B.; Xie, Z.; Yao, X.; Ma, W.; Du, S.; Zhong, Y. Epidermal growth factor receptor is a preferred target for treating Amyloid-β-induced memory loss. Proc. Natl. Acad. Sci. , 2012, 109(41), 16743-16748.
[http://dx.doi.org/10.1073/pnas.1208011109] [PMID: 23019586]
[27]
Lin, W.Y.; Wu, B.T.; Lee, C.C.; Sheu, J.J.; Liu, S.H.; Wang, W.F.; Tsai, C.H.; Liu, H.P.; Tsai, F.J. Association analysis of dopaminergic gene variants (Comt, Drd4 And Dat1) with Alzheimer s disease. J. Biol. Regul. Homeost. Agents, 2012, 26(3), 401-410.
[PMID: 23034259]
[28]
Lannfelt, L.; Möller, C.; Basun, H.; Osswald, G.; Sehlin, D.; Satlin, A.; Logovinsky, V.; Gellerfors, P. Perspectives on future Alzheimer therapies: amyloid-β protofibrils - a new target for immunotherapy with BAN2401 in Alzheimer’s disease. Alzheimers Res. Ther., 2014, 6(2), 16.
[http://dx.doi.org/10.1186/alzrt246] [PMID: 25031633]
[29]
Boutajangout, A.; Sigurdsson, E.M.; Krishnamurthy, P.K. Tau as a therapeutic target for Alzheimer’s disease. Curr. Alzheimer Res., 2011, 8(6), 666-677.
[http://dx.doi.org/10.2174/156720511796717195] [PMID: 21679154]
[30]
Pimplikar, S.W. Neuroinflammation in Alzheimer’s disease: From pathogenesis to a therapeutic target. J. Clin. Immunol., 2014, 34(S1), 64-69.
[http://dx.doi.org/10.1007/s10875-014-0032-5] [PMID: 24711006]
[31]
Jiang, T.; Sun, Q.; Chen, S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog. Neurobiol., 2016, 147, 1-19.
[http://dx.doi.org/10.1016/j.pneurobio.2016.07.005] [PMID: 27769868]
[32]
Neve, R.L.; McPhie, D.L. The cell cycle as a therapeutic target for Alzheimer’s disease. Pharmacol. Ther., 2006, 111(1), 99-113.
[http://dx.doi.org/10.1016/j.pharmthera.2005.09.005] [PMID: 16274748]
[33]
Kem, W.R. The brain α7 nicotinic receptor may be an important therapeutic target for the treatment of Alzheimer’s disease: Studies with DMXBA (GTS-21). Behav. Brain Res., 2000, 113(1-2), 169-181.
[http://dx.doi.org/10.1016/S0166-4328(00)00211-4] [PMID: 10942043]
[34]
Yiannopoulou, K.G.; Papageorgiou, S.G. Current and future treatments in Alzheimer Disease: An update. J. Cent. Nerv. Syst. Dis., 2020, 12.
[http://dx.doi.org/10.1177/1179573520907397] [PMID: 32165850]
[35]
Tan, C.C.; Yu, J.T.; Wang, H.F.; Tan, M.S.; Meng, X.F.; Wang, C.; Jiang, T.; Zhu, X.C.; Tan, L. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimers Dis., 2014, 41(2), 615-631.
[http://dx.doi.org/10.3233/JAD-132690] [PMID: 24662102]
[36]
Chen, J.; Bian, X.; Li, Y.; Xiao, X.; Yin, Y.; Du, X.; Wang, C.; Li, L.; Bai, Y.; Liu, X. Moderate hypothermia induces protection against hypoxia/reoxygenation injury by enhancing SUMOylation in cardiomyocytes. Mol. Med. Rep., 2020, 22(4), 2617-2626.
[http://dx.doi.org/10.3892/mmr.2020.11374] [PMID: 32945433]
[37]
Siemers, E.R.; Sundell, K.L.; Carlson, C.; Case, M.; Sethuraman, G.; Liu-Seifert, H.; Dowsett, S.A.; Pontecorvo, M.J.; Dean, R.A.; Demattos, R. Phase 3 solanezumab trials: Secondary outcomes in mild Alzheimer’s disease patients. Alzheimers Dement., 2016, 12(2), 110-120.
[http://dx.doi.org/10.1016/j.jalz.2015.06.1893] [PMID: 26238576]
[38]
Cummings, J.L.; Cohen, S.; van Dyck, C.H.; Brody, M.; Curtis, C.; Cho, W.; Ward, M.; Friesenhahn, M.; Rabe, C.; Brunstein, F.; Quartino, A.; Honigberg, L.A.; Fuji, R.N.; Clayton, D.; Mortensen, D.; Ho, C.; Paul, R. ABBY: A phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease. Neurology, 2018, 90(21), e1889-e1897.
[http://dx.doi.org/10.1212/WNL.0000000000005550] [PMID: 29695589]
[39]
Kontsekova, E.; Zilka, N.; Kovacech, B.; Skrabana, R.; Novak, M. Identification of structural determinants on tau protein essential for its pathological function: Novel therapeutic target for tau immunotherapy in Alzheimer’s disease. Alzheimers Res. Ther., 2014, 6(4), 45.
[http://dx.doi.org/10.1186/alzrt277] [PMID: 25478018]
[40]
Wischik, C.M.; Edwards, P.C.; Lai, R.Y.; Roth, M.; Harrington, C.R. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc. Natl. Acad. Sci. , 1996, 93(20), 11213-11218.
[http://dx.doi.org/10.1073/pnas.93.20.11213] [PMID: 8855335]
[41]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[42]
Calabrese, V.; Cornelius, C.; Cuzzocrea, S.; Iavicoli, I.; Rizzarelli, E.; Calabrese, E.J. Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol. Aspects Med., 2011, 32(4-6), 279-304.
[http://dx.doi.org/10.1016/j.mam.2011.10.007] [PMID: 22020114]
[43]
Szekely, C.A.; Zandi, P.P. Non-steroidal anti-inflammatory drugs and Alzheimer’s disease: The epidemiological evidence. CNS Neurol. Disord. Drug Targets, 2010, 9(2), 132-139.
[http://dx.doi.org/10.2174/187152710791012026] [PMID: 20205647]
[44]
Matsuoka, Y.; Jouroukhin, Y.; Gray, A.J.; Ma, L.; Hirata-Fukae, C.; Li, H.F.; Feng, L.; Lecanu, L.; Walker, B.R.; Planel, E.; Arancio, O.; Gozes, I.; Aisen, P.S. A neuronal microtubule-interacting agent, NAPVSIPQ, reduces tau pathology and enhances cognitive function in a mouse model of Alzheimer’s disease. J. Pharmacol. Exp. Ther., 2008, 325(1), 146-153.
[http://dx.doi.org/10.1124/jpet.107.130526] [PMID: 18199809]
[45]
Butterfield, D.A.; Boyd-Kimball, D. Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of alzheimer’s disease. J. Alzheimers Dis., 2018, 62(3), 1345-1367.
[http://dx.doi.org/10.3233/JAD-170543] [PMID: 29562527]
[46]
Abate, G.; Vezzoli, M.; Sandri, M.; Rungratanawanich, W.; Memo, M.; Uberti, D. Mitochondria and cellular redox state on the route from ageing to Alzheimer’s disease. Mech. Ageing Dev., 2020, 192, 111385.
[http://dx.doi.org/10.1016/j.mad.2020.111385] [PMID: 33129798]
[47]
Álvarez-Berbel, I.; Espargaró, A.; Viayna, A.; Caballero, A.B.; Busquets, M.A.; Gámez, P.; Luque, F.J.; Sabaté, R. Three to tango: Inhibitory effect of quercetin and apigenin on acetylcholinesterase, amyloid-β aggregation and acetylcholinesterase-amyloid interaction. Pharmaceutics, 2022, 14(11), 2342.
[http://dx.doi.org/10.3390/pharmaceutics14112342] [PMID: 36365159]
[48]
Youdim, K.A.; Joseph, J.A. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: A multiplicity of effects. Free Radic. Biol. Med., 2001, 30(6), 583-594.
[http://dx.doi.org/10.1016/S0891-5849(00)00510-4] [PMID: 11295356]
[49]
Piccialli, I.; Tedeschi, V.; Caputo, L.; D’Errico, S.; Ciccone, R.; De Feo, V.; Secondo, A.; Pannaccione, A. Exploring the therapeutic potential of phytochemicals in alzheimer’s disease: Focus on polyphenols and monoterpenes. Front. Pharmacol., 2022, 13, 876614.
[http://dx.doi.org/10.3389/fphar.2022.876614] [PMID: 35600880]
[50]
Hertog, M.G.L.; Hollman, P.C.H.; van de Putte, B. Content of potentially anticarcinogenic flavonoids of tea infusions, wines, and fruit juices. J. Agric. Food Chem., 1993, 41(8), 1242-1246.
[http://dx.doi.org/10.1021/jf00032a015]
[51]
Hertog, M.G. Flavonols and flavones in foods and their relation with cancer and coronary heart disease risk; Wageningen University and Research, 1994.
[52]
Dajas, F. Life or death: Neuroprotective and anticancer effects of quercetin. J. Ethnopharmacol., 2012, 143(2), 383-396.
[http://dx.doi.org/10.1016/j.jep.2012.07.005] [PMID: 22820241]
[53]
Zhang, M.; Swarts, S.G.; Yin, L.; Liu, C.; Tian, Y.; Cao, Y.; Swarts, M.; Yang, S.; Zhang, S.B.; Zhang, K.; Ju, S.; Olek, D.J., Jr; Schwartz, L.; Keng, P.C.; Howell, R.; Zhang, L.; Okunieff, P. Antioxidant properties of quercetin. Adv. Exp. Med. Biol., 2011, 701, 283-289.
[http://dx.doi.org/10.1007/978-1-4419-7756-4_38] [PMID: 21445799]
[54]
Wu, W.; Li, R.; Li, X.; He, J.; Jiang, S.; Liu, S.; Yang, J. Quercetin as an antiviral agent inhibits influenza a virus (IAV) entry. Viruses, 2015, 8(1), 6.
[http://dx.doi.org/10.3390/v8010006] [PMID: 26712783]
[55]
Yi, L.; Li, Z.; Yuan, K.; Qu, X.; Chen, J.; Wang, G.; Zhang, H.; Luo, H.; Zhu, L.; Jiang, P.; Chen, L.; Shen, Y.; Luo, M.; Zuo, G.; Hu, J.; Duan, D.; Nie, Y.; Shi, X.; Wang, W.; Han, Y.; Li, T.; Liu, Y.; Ding, M.; Deng, H.; Xu, X. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J. Virol., 2004, 78(20), 11334-11339.
[http://dx.doi.org/10.1128/JVI.78.20.11334-11339.2004] [PMID: 15452254]
[56]
Colunga Biancatelli, R.M.L.; Berrill, M.; Catravas, J.D.; Marik, P.E. Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front. Immunol., 2020, 11, 1451.
[http://dx.doi.org/10.3389/fimmu.2020.01451] [PMID: 32636851]
[57]
Vessal, M.; Hemmati, M.; Vasei, M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2003, 135(3), 357-364.
[http://dx.doi.org/10.1016/S1532-0456(03)00140-6] [PMID: 12927910]
[58]
Bruning, A. Inhibition of mTOR signaling by quercetin in cancer treatment and prevention. Anticancer. Agents Med. Chem., 2013, 13(7), 1025-1031.
[http://dx.doi.org/10.2174/18715206113139990114] [PMID: 23272907]
[59]
Yang, H.; Song, Y.; Liang, Y.; Li, R. Quercetin treatment improves renal function and protects the kidney in a rat model of adenine-induced chronic kidney disease. Med. Sci. Monit., 2018, 24, 4760-4766.
[http://dx.doi.org/10.12659/MSM.909259] [PMID: 29987270]
[60]
Patel, R.V.; Mistry, B.M.; Shinde, S.K.; Syed, R.; Singh, V.; Shin, H.S. Therapeutic potential of quercetin as a cardiovascular agent. Eur. J. Med. Chem., 2018, 155, 889-904.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.053] [PMID: 29966915]
[61]
Haleagrahara, N.; Miranda-Hernandez, S.; Alim, M.A.; Hayes, L.; Bird, G.; Ketheesan, N. Therapeutic effect of quercetin in collagen-induced arthritis. Biomed. Pharmacother., 2017, 90, 38-46.
[http://dx.doi.org/10.1016/j.biopha.2017.03.026] [PMID: 28342364]
[62]
Ansari, M.A.; Abdul, H.M.; Joshi, G.; Opii, W.O.; Butterfield, D.A. Protective effect of quercetin in primary neurons against Aβ(1-42): Relevance to Alzheimer’s disease. J. Nutr. Biochem., 2009, 20(4), 269-275.
[http://dx.doi.org/10.1016/j.jnutbio.2008.03.002] [PMID: 18602817]
[63]
Nakagawa, T.; Itoh, M.; Ohta, K.; Hayashi, Y.; Hayakawa, M.; Yamada, Y.; Akanabe, H.; Chikaishi, T.; Nakagawa, K.; Itoh, Y.; Muro, T.; Yanagida, D.; Nakabayashi, R.; Mori, T.; Saito, K.; Ohzawa, K.; Suzuki, C.; Li, S.; Ueda, M.; Wang, M.X.; Nishida, E.; Islam, S. Tana; Kobori, M.; Inuzuka, T. Improvement of memory recall by quercetin in rodent contextual fear conditioning and human early-stage Alzheimer’s disease patients. Neuroreport, 2016, 27(9), 671-676.
[http://dx.doi.org/10.1097/WNR.0000000000000594] [PMID: 27145228]
[64]
Sabogal-Guáqueta, A.M.; Muñoz-Manco, J.I.; Ramírez-Pineda, J.R.; Lamprea-Rodriguez, M.; Osorio, E.; Cardona-Gómez, G.P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology, 2015, 93, 134-145.
[http://dx.doi.org/10.1016/j.neuropharm.2015.01.027] [PMID: 25666032]
[65]
Kang, C.H.; Choi, Y.H.; Moon, S.K.; Kim, W.J.; Kim, G.Y. Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway. Int. Immunopharmacol., 2013, 17(3), 808-813.
[http://dx.doi.org/10.1016/j.intimp.2013.09.009] [PMID: 24076371]
[66]
Li, Y.; Zhou, S.; Li, J.; Sun, Y.; Hasimu, H.; Liu, R.; Zhang, T. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid1-40-induced toxicity. Acta Pharm. Sin. B, 2015, 5(1), 47-54.
[http://dx.doi.org/10.1016/j.apsb.2014.12.003] [PMID: 26579424]
[67]
Imai, K.; Nakanishi, I.; Ohkubo, K.; Ohba, Y.; Arai, T.; Mizuno, M.; Fukuzumi, S.; Matsumoto, K.; Fukuhara, K. Synthesis of methylated quercetin analogs for enhancement of radical-scavenging activity. RSC Advances, 2017, 7(29), 17968-17979.
[http://dx.doi.org/10.1039/C7RA02329D]
[68]
Qi, P.; Li, J.; Gao, S.; Yuan, Y.; Sun, Y.; Liu, N.; Li, Y.; Wang, G.; Chen, L.; Shi, J. Network pharmacology-based and experimental identification of the effects of quercetin on Alzheimer’s Disease. Front. Aging Neurosci., 2020, 12, 589588.
[http://dx.doi.org/10.3389/fnagi.2020.589588] [PMID: 33192484]
[69]
Olayinka, J.; Eduviere, A.; Adeoluwa, O.; Fafure, A.; Adebanjo, A.; Ozolua, R. Quercetin mitigates memory deficits in scopolamine mice model via protection against neuroinflammation and neurodegeneration. Life Sci., 2022, 292, 120326.
[http://dx.doi.org/10.1016/j.lfs.2022.120326] [PMID: 35031260]
[70]
Bukhari, S.N.A. Dietary polyphenols as therapeutic intervention for Alzheimer’s Disease: A mechanistic insight. Antioxidants, 2022, 11(3), 554.
[http://dx.doi.org/10.3390/antiox11030554] [PMID: 35326204]
[71]
Zizkova, P.; Stefek, M.; Rackova, L.; Prnova, M.; Horakova, L. Novel quercetin derivatives: From redox properties to promising treatment of oxidative stress related diseases. Chem. Biol. Interact., 2017, 265, 36-46.
[http://dx.doi.org/10.1016/j.cbi.2017.01.019] [PMID: 28137512]
[72]
Shah-abadi, M.E.; Ariaei, A.; Moradi, F.; Rustamzadeh, A.; Tanha, R.R.; Sadigh, N.; Marzban, M.; Heydari, M.; Ferdousie, V.T. In silico interactions of natural and synthetic compounds with key proteins involved in Alzheimer’s disease: Prospects for designing new therapeutics compound. Neurotox. Res., 2023, 41(5), 408-430.
[http://dx.doi.org/10.1007/s12640-023-00648-1] [PMID: 37086338]
[73]
Wahid, M.; Saqib, F.; Qamar, M.; Ziora, Z.M. Antispasmodic activity of the ethanol extract of Citrullus lanatus seeds: Justifying ethnomedicinal use in Pakistan to treat asthma and diarrhea. J. Ethnopharmacol., 2022, 295, 115314.
[http://dx.doi.org/10.1016/j.jep.2022.115314] [PMID: 35490899]
[74]
Ngo, F.Y.; Wang, W.; Chen, Q.; Zhao, J.; Chen, H.; Gao, J.M.; Rong, J. Network pharmacology analysis and molecular characterization of the herbal medicine formulation Qi-Fu-Yin for the inhibition of the neuroinflammatory biomarker iNOS in microglial BV-2 cells: Implication for the treatment of alzheimer’s disease. Oxid. Med. Cell. Longev., 2020, 2020, 1-15.
[http://dx.doi.org/10.1155/2020/5780703] [PMID: 32952851]
[75]
Lin, A.; Wang, R.T.; Ahn, S.; Park, C.C.; Smith, D.J. A genome-wide map of human genetic interactions inferred from radiation hybrid genotypes. Genome Res., 2010, 20(8), 1122-1132.
[http://dx.doi.org/10.1101/gr.104216.109] [PMID: 20508145]
[76]
Johnson, J.M.; Castle, J.; Garrett-Engele, P.; Kan, Z.; Loerch, P.M.; Armour, C.D.; Santos, R.; Schadt, E.E.; Stoughton, R.; Shoemaker, D.D. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science, 2003, 302(5653), 2141-2144.
[http://dx.doi.org/10.1126/science.1090100] [PMID: 14684825]
[77]
Rosenwald, A.; Alizadeh, A.A.; Widhopf, G.; Simon, R.; Davis, R.E.; Yu, X.; Yang, L.; Pickeral, O.K.; Rassenti, L.Z.; Powell, J.; Botstein, D.; Byrd, J.C.; Grever, M.R.; Cheson, B.D.; Chiorazzi, N.; Wilson, W.H.; Kipps, T.J.; Brown, P.O.; Staudt, L.M. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J. Exp. Med., 2001, 194(11), 1639-1648.
[http://dx.doi.org/10.1084/jem.194.11.1639] [PMID: 11733578]
[78]
Alizadeh, A.A.; Eisen, M.B.; Davis, R.E.; Ma, C.; Lossos, I.S.; Rosenwald, A.; Boldrick, J.C.; Sabet, H.; Tran, T.; Yu, X.; Powell, J.I.; Yang, L.; Marti, G.E.; Moore, T.; Hudson, J., Jr; Lu, L.; Lewis, D.B.; Tibshirani, R.; Sherlock, G.; Chan, W.C.; Greiner, T.C.; Weisenburger, D.D.; Armitage, J.O.; Warnke, R.; Levy, R.; Wilson, W.; Grever, M.R.; Byrd, J.C.; Botstein, D.; Brown, P.O.; Staudt, L.M. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 2000, 403(6769), 503-511.
[http://dx.doi.org/10.1038/35000501] [PMID: 10676951]
[79]
Luo, D.; Fan, N.; Zhang, X.; Ngo, F.Y.; Zhao, J.; Zhao, W.; Huang, M.; Li, D.; Wang, Y.; Rong, J. Covalent inhibition of endoplasmic reticulum chaperone GRP78 disconnects the transduction of ER stress signals to inflammation and lipid accumulation in diet-induced obese mice. eLife, 2022, 11, e72182.
[http://dx.doi.org/10.7554/eLife.72182] [PMID: 35138251]
[80]
Singh, P.; Ravanan, P.; Talwar, P. Death associated protein kinase 1 (DAPK1): A regulator of apoptosis and autophagy. Front. Mol. Neurosci., 2016, 9, 46.
[http://dx.doi.org/10.3389/fnmol.2016.00046] [PMID: 27445685]
[81]
Hainsworth, A.H.; Allsopp, R.C.; Jim, A.; Potter, J.F.; Lowe, J.; Talbot, C.J.; Prettyman, R.J. Death-associated protein kinase (DAPK1) in cerebral cortex of late-onset Alzheimer’s disease patients and aged controls. Neuropathol. Appl. Neurobiol., 2010, 36(1), 17-24.
[http://dx.doi.org/10.1111/j.1365-2990.2009.01035.x] [PMID: 19627511]
[82]
Kim, B.M.; You, M.H.; Chen, C.H.; Suh, J.; Tanzi, R.E.; Ho Lee, T. Inhibition of death-associated protein kinase 1 attenuates the phosphorylation and amyloidogenic processing of amyloid precursor protein. Hum. Mol. Genet., 2016, 25(12), ddw114.
[http://dx.doi.org/10.1093/hmg/ddw114] [PMID: 27094130]
[83]
Kim, B.M.; You, M-H.; Chen, C-H.; Lee, S.; Hong, Y.; Hong, Y.; Kimchi, A.; Zhou, X.Z.; Lee, T.H. Death-associated protein kinase 1 has a critical role in aberrant tau protein regulation and function. Cell Death Dis., 2014, 5(5), e1237.
[http://dx.doi.org/10.1038/cddis.2014.216] [PMID: 24853415]
[84]
Zhang, H.; Wei, W.; Zhao, M.; Ma, L.; Jiang, X.; Pei, H.; Cao, Y.; Li, H. Interaction between Aβ and Tau in the Pathogenesis of Alzheimer’s Disease. Int. J. Biol. Sci., 2021, 17(9), 2181-2192.
[http://dx.doi.org/10.7150/ijbs.57078] [PMID: 34239348]
[85]
Kim, N.; Chen, D.; Zhou, X.Z.; Lee, T.H. Death-associated protein kinase 1 phosphorylation in neuronal cell death and neurodegenerative disease. Int. J. Mol. Sci., 2019, 20(13), 3131.
[http://dx.doi.org/10.3390/ijms20133131] [PMID: 31248062]
[86]
Shu, S.; Zhu, H.; Tang, N.; Chen, W.; Li, X.; Li, H.; Pei, L.; Liu, D.; Mu, Y.; Tian, Q.; Zhu, L.Q.; Lu, Y. Selective degeneration of entorhinal-ca1 synapses in Alzheimer’s disease via activation of DAPK1. J. Neurosci., 2016, 36(42), 10843-10852.
[http://dx.doi.org/10.1523/JNEUROSCI.2258-16.2016] [PMID: 27798139]
[87]
Chen, D.; Mei, Y.; Kim, N.; Lan, G.; Gan, C.L.; Fan, F.; Zhang, T.; Xia, Y.; Wang, L.; Lin, C.; Ke, F.; Zhou, X.Z.; Lu, K.P.; Lee, T.H. Melatonin directly binds and inhibits death‐associated protein kinase 1 function in Alzheimer’s disease. J. Pineal Res., 2020, 69(2), e12665.
[http://dx.doi.org/10.1111/jpi.12665] [PMID: 32358852]
[88]
Cai, X.; Fang, Z.; Dou, J.; Yu, A.; Zhai, G. Bioavailability of quercetin: Problems and promises. Curr. Med. Chem., 2013, 20(20), 2572-2582.
[http://dx.doi.org/10.2174/09298673113209990120] [PMID: 23514412]
[89]
Massi, A.; Bortolini, O.; Ragno, D.; Bernardi, T.; Sacchetti, G.; Tacchini, M.; De Risi, C. Research progress in the modification of quercetin leading to anticancer agents. Molecules, 2017, 22(8), 1270.
[http://dx.doi.org/10.3390/molecules22081270] [PMID: 28758919]
[90]
Babaei, P.; Kouhestani, S.; Jafari, A. Kaempferol attenuates cognitive deficit via regulating oxidative stress and neuroinflammation in an ovariectomized rat model of sporadic dementia. Neural Regen. Res., 2018, 13(10), 1827-1832.
[http://dx.doi.org/10.4103/1673-5374.238714] [PMID: 30136699]
[91]
Mohammadi, N.; Asle-Rousta, M.; Rahnema, M.; Amini, R. Morin attenuates memory deficits in a rat model of Alzheimer’s disease by ameliorating oxidative stress and neuroinflammation. Eur. J. Pharmacol., 2021, 910, 174506.
[http://dx.doi.org/10.1016/j.ejphar.2021.174506] [PMID: 34534533]
[92]
Koch, P.; Brunschweiger, A.; Namasivayam, V.; Ullrich, S.; Maruca, A.; Lazzaretto, B.; Küppers, P.; Hinz, S.; Hockemeyer, J.; Wiese, M.; Heer, J.; Alcaro, S.; Kiec-Kononowicz, K.; Müller, C.E. Probing substituents in the 1- and 3-position: Tetrahydropyrazino-annelated water-soluble xanthine derivatives as multi-target drugs with potent adenosine receptor antagonistic activity. Front Chem., 2018, 6, 206.
[http://dx.doi.org/10.3389/fchem.2018.00206] [PMID: 29998095]
[93]
Egan, W.J.; Merz, K.M., Jr; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem., 2000, 43(21), 3867-3877.
[http://dx.doi.org/10.1021/jm000292e] [PMID: 11052792]
[94]
Delaney, J.S. ESOL: Estimating aqueous solubility directly from molecular structure. J. Chem. Inf. Comput. Sci., 2004, 44(3), 1000-1005.
[http://dx.doi.org/10.1021/ci034243x] [PMID: 15154768]
[95]
Ali, J.; Camilleri, P.; Brown, M.B.; Hutt, A.J.; Kirton, S.B. Revisiting the general solubility equation: In silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. J. Chem. Inf. Model., 2012, 52(2), 420-428.
[http://dx.doi.org/10.1021/ci200387c] [PMID: 22196228]
[96]
Sturgeon, J.B.; Laird, B.B. Symplectic algorithm for constant-pressure molecular dynamics using a Nosé-Poincaré thermostat. J. Chem. Phys., 2000, 112(8), 3474-3482.
[http://dx.doi.org/10.1063/1.480502]
[97]
Khelfaoui, H.; Harkati, D.; Saleh, B.A. Molecular docking, molecular dynamics simulations and reactivity, studies on approved drugs library targeting ACE2 and SARS-CoV-2 binding with ACE2. J. Biomol. Struct. Dyn., 2021, 39(18), 7246-7262.
[http://dx.doi.org/10.1080/07391102.2020.1803967] [PMID: 32752951]
[98]
Moya-Alvarado, G.; Gershoni-Emek, N.; Perlson, E.; Bronfman, F.C. Neurodegeneration and Alzheimer’s disease (AD). What can proteomics tell us about the Alzheimer’s brain? Mol. Cell. Proteomics, 2016, 15(2), 409-425.
[http://dx.doi.org/10.1074/mcp.R115.053330] [PMID: 26657538]
[99]
van der Flier, W.M.; de Vugt, M.E.; Smets, E.M.A.; Blom, M.; Teunissen, C.E. Towards a future where Alzheimer’s disease pathology is stopped before the onset of dementia. Nature. Aging, 2023, 3(5), 494-505.
[http://dx.doi.org/10.1038/s43587-023-00404-2] [PMID: 37202515]
[100]
Passeri, E.; Elkhoury, K.; Morsink, M.; Broersen, K.; Linder, M.; Tamayol, A.; Malaplate, C.; Yen, F.T.; Arab-Tehrany, E. Alzheimer’s Disease: Treatment strategies and their limitations. Int. J. Mol. Sci., 2022, 23(22), 13954.
[http://dx.doi.org/10.3390/ijms232213954] [PMID: 36430432]
[101]
You, M.H.; Kim, B.M.; Chen, C.H.; Begley, M.J.; Cantley, L.C.; Lee, T.H. Death-associated protein kinase 1 phosphorylates NDRG2 and induces neuronal cell death. Cell Death Differ., 2017, 24(2), 238-250.
[http://dx.doi.org/10.1038/cdd.2016.114] [PMID: 28141794]
[102]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[103]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[104]
Kim, J.H.; Lee, J.; Lee, S.; Cho, E.J. Quercetin and quercetin-3-β-d-glucoside improve cognitive and memory function in Alzheimer’s disease mouse. Appl. Biol. Chem., 2016, 59(5), 721-728.
[http://dx.doi.org/10.1007/s13765-016-0217-0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy