Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Gut Microbiome in Alzheimer’s Disease: from Mice to Humans

Author(s): Chang Liang, Resel Pereira, Yan Zhang and Olga L. Rojas*

Volume 22, Issue 14, 2024

Published on: 22 March, 2024

Page: [2314 - 2329] Pages: 16

DOI: 10.2174/1570159X22666240308090741

Price: $65

Abstract

Alzheimer's disease (AD) is the most prevalent type of dementia, but its etiopathogenesis is not yet fully understood. Recent preclinical studies and clinical evidence indicate that changes in the gut microbiome could potentially play a role in the accumulation of amyloid beta. However, the relationship between gut dysbiosis and AD is still elusive. In this review, the potential impact of the gut microbiome on AD development and progression is discussed. Pre-clinical and clinical literature exploring changes in gut microbiome composition is assessed, which can contribute to AD pathology including increased amyloid beta deposition and cognitive impairment. The gut-brain axis and the potential involvement of metabolites produced by the gut microbiome in AD are also highlighted. Furthermore, the potential of antibiotics, prebiotics, probiotics, fecal microbiota transplantation, and dietary interventions as complementary therapies for the management of AD is summarized. This review provides valuable insights into potential therapeutic strategies to modulate the gut microbiome in AD.

[1]
Song, E.J.; Lee, E.S.; Nam, Y.D. Progress of analytical tools and techniques for human gut microbiome research. J. Microbiol., 2018, 56(10), 693-705.
[http://dx.doi.org/10.1007/s12275-018-8238-5] [PMID: 30267313]
[2]
Hodkinson, B.P.; Grice, E.A. Next-generation sequencing: A review of technologies and tools for wound microbiome research. Adv. Wound Care (New Rochelle), 2015, 4(1), 50-58.
[http://dx.doi.org/10.1089/wound.2014.0542] [PMID: 25566414]
[3]
Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; Mende, D.R.; Li, J.; Xu, J.; Li, S.; Li, D.; Cao, J.; Wang, B.; Liang, H.; Zheng, H.; Xie, Y.; Tap, J.; Lepage, P.; Bertalan, M.; Batto, J.M.; Hansen, T.; Le Paslier, D.; Linneberg, A.; Nielsen, H.B.; Pelletier, E.; Renault, P.; Sicheritz-Ponten, T.; Turner, K.; Zhu, H.; Yu, C.; Li, S.; Jian, M.; Zhou, Y.; Li, Y.; Zhang, X.; Li, S.; Qin, N.; Yang, H.; Wang, J.; Brunak, S.; Doré, J.; Guarner, F.; Kristiansen, K.; Pedersen, O.; Parkhill, J.; Weissenbach, J.; Bork, P.; Ehrlich, S.D.; Wang, J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285), 59-65.
[http://dx.doi.org/10.1038/nature08821] [PMID: 20203603]
[4]
Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728), 1635-1638.
[http://dx.doi.org/10.1126/science.1110591] [PMID: 15831718]
[5]
Canfora, E.E.; Meex, R.C.R.; Venema, K.; Blaak, E.E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol., 2019, 15(5), 261-273.
[http://dx.doi.org/10.1038/s41574-019-0156-z] [PMID: 30670819]
[6]
Cryan, J.F.; O’Riordan, K.J.; Sandhu, K.; Peterson, V.; Dinan, T.G. The gut microbiome in neurological disorders. Lancet Neurol., 2020, 19(2), 179-194.
[http://dx.doi.org/10.1016/S1474-4422(19)30356-4] [PMID: 31753762]
[7]
Lloyd-Price, J.; Arze, C.; Ananthakrishnan, A.N.; Schirmer, M.; Avila-Pacheco, J.; Poon, T.W.; Andrews, E.; Ajami, N.J.; Bonham, K.S.; Brislawn, C.J.; Casero, D.; Courtney, H.; Gonzalez, A.; Graeber, T.G.; Hall, A.B.; Lake, K.; Landers, C.J.; Mallick, H.; Plichta, D.R.; Prasad, M.; Rahnavard, G.; Sauk, J.; Shungin, D.; Vázquez-Baeza, Y.; White, R.A., III; Braun, J.; Denson, L.A.; Jansson, J.K.; Knight, R.; Kugathasan, S.; McGovern, D.P.B.; Petrosino, J.F.; Stappenbeck, T.S.; Winter, H.S.; Clish, C.B.; Franzosa, E.A.; Vlamakis, H.; Xavier, R.J.; Huttenhower, C. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature, 2019, 569(7758), 655-662.
[http://dx.doi.org/10.1038/s41586-019-1237-9] [PMID: 31142855]
[8]
Chok, K.C.; Ng, K.Y.; Koh, R.Y.; Chye, S.M. Role of the gut microbiome in Alzheimer’s disease. Rev. Neurosci., 2021, 32(7), 767-789.
[http://dx.doi.org/10.1515/revneuro-2020-0122] [PMID: 33725748]
[9]
Zhang, L.; Wang, Y.; Xiayu, X.; Shi, C.; Chen, W.; Song, N.; Fu, X.; Zhou, R.; Xu, Y.F.; Huang, L.; Zhu, H.; Han, Y.; Qin, C. Altered gut microbiota in a mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2017, 60(4), 1241-1257.
[http://dx.doi.org/10.3233/JAD-170020] [PMID: 29036812]
[10]
dos Santos Guilherme, M.; Todorov, H.; Osterhof, C.; Möllerke, A.; Cub, K.; Hankeln, T.; Gerber, S.; Endres, K. Impact of acute and chronic amyloid-β peptide exposure on gut microbial commensals in the mouse. Front. Microbiol., 2020, 11, 1008.
[http://dx.doi.org/10.3389/fmicb.2020.01008] [PMID: 32508799]
[11]
Zhang, Y.; Shen, Y.; Liufu, N.; Liu, L.; Li, W.; Shi, Z.; Zheng, H.; Mei, X.; Chen, C.Y.; Jiang, Z.; Abtahi, S.; Dong, Y.; Liang, F.; Shi, Y.; Cheng, L.L.; Yang, G.; Kang, J.X.; Wilkinson, J.E.; Xie, Z. Transmission of Alzheimer’s disease-associated microbiota dysbiosis and its impact on cognitive function: Evidence from mice and patients. Mol. Psychiatry, 2023, 28(10), 4421-4437.
[http://dx.doi.org/10.1038/s41380-023-02216-7] [PMID: 37604976]
[12]
Chen, C.; Ahn, E.H.; Kang, S.S.; Liu, X.; Alam, A.; Ye, K. Gut dysbiosis contributes to amyloid pathology, associated with C/EBPβ/AEP signaling activation in Alzheimer’s disease mouse model. Sci. Adv., 2020, 6(31), eaba0466.
[http://dx.doi.org/10.1126/sciadv.aba0466] [PMID: 32832679]
[13]
Grabrucker, S.; Marizzoni, M.; Silajdžić, E.; Lopizzo, N.; Mombelli, E.; Nicolas, S.; Dohm-Hansen, S.; Scassellati, C.; Moretti, D.V.; Rosa, M.; Hoffmann, K.; Cryan, J.F.; O’Leary, O.F.; English, J.A.; Lavelle, A.; O’Neill, C.; Thuret, S.; Cattaneo, A.; Nolan, Y.M. Microbiota from Alzheimer’s patients induce deficits in cognition and hippocampal neurogenesis. Brain, 2023, 146(12), 4916-4934.
[http://dx.doi.org/10.1093/brain/awad303] [PMID: 37849234]
[14]
Li, Z.; Zhu, H.; Guo, Y.; Du, X.; Qin, C. Gut microbiota regulate cognitive deficits and amyloid deposition in a model of Alzheimer’s disease. J. Neurochem., 2020, 155(4), 448-461.
[http://dx.doi.org/10.1111/jnc.15031] [PMID: 32319677]
[15]
Brandscheid, C.; Schuck, F.; Reinhardt, S.; Schäfer, K.H.; Pietrzik, C.U.; Grimm, M.; Hartmann, T.; Schwiertz, A.; Endres, K. Altered gut microbiome composition and tryptic activity of the 5xfad Alzheimer’s mouse model. J. Alzheimers Dis., 2017, 56(2), 775-788.
[http://dx.doi.org/10.3233/JAD-160926] [PMID: 28035935]
[16]
Cuervo-Zanatta, D.; Garcia-Mena, J.; Perez-Cruz, C. Gut microbiota alterations and cognitive impairment are sexually dissociated in a transgenic mice model of Alzheimer’s disease. J. Alzheimers Dis., 2021, 82(s1), S195-S214.
[http://dx.doi.org/10.3233/JAD-201367] [PMID: 33492296]
[17]
Park, J.Y.; Choi, J.; Lee, Y.; Lee, J.E.; Lee, E.H.; Kwon, H.J.; Yang, J.; Jeong, B.R.; Kim, Y.K.; Han, P.L. Metagenome analysis of bodily microbiota in a mouse model of Alzheimer disease using bacteria-derived membrane vesicles in blood. Exp. Neurobiol., 2017, 26(6), 369-379.
[http://dx.doi.org/10.5607/en.2017.26.6.369] [PMID: 29302204]
[18]
Zhan, G.; Yang, N.; Li, S.; Huang, N.; Fang, X.; Zhang, J.; Zhu, B.; Yang, L.; Yang, C.; Luo, A. Abnormal gut microbiota composition contributes to cognitive dysfunction in SAMP8 mice. Aging (Albany NY), 2018, 10(6), 1257-1267.
[http://dx.doi.org/10.18632/aging.101464] [PMID: 29886457]
[19]
Cao, J.; Amakye, W.K.; Qi, C.; Liu, X.; Ma, J.; Ren, J. Bifidobacterium lactis Probio-M8 regulates gut microbiota to alleviate Alzheimer’s disease in the APP/PS1 mouse model. Eur. J. Nutr., 2021, 60(7), 3757-3769.
[http://dx.doi.org/10.1007/s00394-021-02543-x] [PMID: 33796919]
[20]
Sun, Y.; Sommerville, N.R.; Liu, J.Y.H.; Ngan, M.P.; Poon, D.; Ponomarev, E.D.; Lu, Z.; Kung, J.S.C.; Rudd, J.A. Intra‐gastrointestinal amyloid‐β1–42 oligomers perturb enteric function and induce Alzheimer’s disease pathology. J. Physiol., 2020, 598(19), 4209-4223.
[http://dx.doi.org/10.1113/JP279919] [PMID: 32617993]
[21]
Fung, T.C.; Olson, C.A.; Hsiao, E.Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci., 2017, 20(2), 145-155.
[http://dx.doi.org/10.1038/nn.4476] [PMID: 28092661]
[22]
Wang, X.; Sun, G.; Feng, T.; Zhang, J.; Huang, X.; Wang, T.; Xie, Z.; Chu, X.; Yang, J.; Wang, H.; Chang, S.; Gong, Y.; Ruan, L.; Zhang, G.; Yan, S.; Lian, W.; Du, C.; Yang, D.; Zhang, Q.; Lin, F.; Liu, J.; Zhang, H.; Ge, C.; Xiao, S.; Ding, J.; Geng, M. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res., 2019, 29(10), 787-803.
[http://dx.doi.org/10.1038/s41422-019-0216-x] [PMID: 31488882]
[23]
Shukla, P.K.; Delotterie, D.F.; Xiao, J.; Pierre, J.F.; Rao, R.; McDonald, M.P.; Khan, M.M. Alterations in the gut-microbial-inflammasome-brain axis in a mouse model of Alzheimer’s disease. Cells, 2021, 10(4), 779.
[http://dx.doi.org/10.3390/cells10040779] [PMID: 33916001]
[24]
Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(8), 461-478.
[http://dx.doi.org/10.1038/s41575-019-0157-3] [PMID: 31123355]
[25]
Tran, T.T.T.; Corsini, S.; Kellingray, L.; Hegarty, C.; Le Gall, G.; Narbad, A.; Müller, M.; Tejera, N.; O’Toole, P.W.; Minihane, A.M.; Vauzour, D. APOE genotype influences the gut microbiome structure and function in humans and mice: Relevance for Alzheimer’s disease pathophysiology. FASEB J., 2019, 33(7), 8221-8231.
[http://dx.doi.org/10.1096/fj.201900071R] [PMID: 30958695]
[26]
Kundu, P.; Torres, E.R.S.; Stagaman, K.; Kasschau, K.; Okhovat, M.; Holden, S.; Ward, S.; Nevonen, K.A.; Davis, B.A.; Saito, T.; Saido, T.C.; Carbone, L.; Sharpton, T.J.; Raber, J. Integrated analysis of behavioral, epigenetic, and gut microbiome analyses in AppNL-G-F, AppNL-F, and wild type mice. Sci. Rep., 2021, 11(1), 4678.
[http://dx.doi.org/10.1038/s41598-021-83851-4] [PMID: 33633159]
[27]
Org, E.; Mehrabian, M.; Parks, B.W.; Shipkova, P.; Liu, X.; Drake, T.A.; Lusis, A.J. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes, 2016, 7(4), 313-322.
[http://dx.doi.org/10.1080/19490976.2016.1203502] [PMID: 27355107]
[28]
Wang, J.; Tanila, H.; Puoliväli, J.; Kadish, I.; Groen, T. Gender differences in the amount and deposition of amyloidβ in APPswe and PS1 double transgenic mice. Neurobiol. Dis., 2003, 14(3), 318-327.
[http://dx.doi.org/10.1016/j.nbd.2003.08.009] [PMID: 14678749]
[29]
Bäuerl, C.; Collado, M.C.; Diaz Cuevas, A.; Viña, J.; Pérez Martínez, G. Shifts in gut microbiota composition in an APP/PSS1 transgenic mouse model of Alzheimer’s disease during lifespan. Lett. Appl. Microbiol., 2018, 66(6), 464-471.
[http://dx.doi.org/10.1111/lam.12882] [PMID: 29575030]
[30]
Shen, L.; Liu, L.; Ji, H-F. Alzheimer’s disease histological and behavioral manifestations in transgenic mice correlate with specific gut microbiome state. J. Alzheimers Dis., 2017, 56, 385-390.
[http://dx.doi.org/10.3233/JAD-160884] [PMID: 27911317]
[31]
Xin, Y.; Diling, C.; Jian, Y.; Ting, L.; Guoyan, H.; Hualun, L.; Xiaocui, T.; Guoxiao, L.; Ou, S.; Chaoqun, Z.; Jun, Z.; Yizhen, X. Effects of oligosaccharides from Morinda officinalis on gut microbiota and metabolome of APP/PS1 transgenic mice. Front. Neurol., 2018, 9, 412.
[http://dx.doi.org/10.3389/fneur.2018.00412] [PMID: 29962999]
[32]
Cox, L.M.; Schafer, M.J.; Sohn, J.; Vincentini, J.; Weiner, H.L.; Ginsberg, S.D.; Blaser, M.J. Calorie restriction slows age-related microbiota changes in an Alzheimer’s disease model in female mice. Sci. Rep., 2019, 9(1), 17904.
[http://dx.doi.org/10.1038/s41598-019-54187-x] [PMID: 31784610]
[33]
Wang, S.; Jiang, W.; Ouyang, T.; Shen, X.Y.; Wang, F.; Qu, Y.; Zhang, M.; Luo, T.; Wang, H.Q. Jatrorrhizine balances the gut microbiota and reverses learning and memory deficits in APP/PS1 transgenic mice. Sci. Rep., 2019, 9(1), 19575.
[http://dx.doi.org/10.1038/s41598-019-56149-9] [PMID: 31862965]
[34]
Sun, B.L.; Li, W.W.; Wang, J.; Xu, Y.L.; Sun, H.L.; Tian, D.Y.; Wang, Y.J.; Yao, X.Q. Gut microbiota alteration and its time course in a tauopathy mouse model. J. Alzheimers Dis., 2019, 70(2), 399-412.
[http://dx.doi.org/10.3233/JAD-181220] [PMID: 31177213]
[35]
Kim, M.S.; Kim, Y.; Choi, H.; Kim, W.; Park, S.; Lee, D.; Kim, D.K.; Kim, H.J.; Choi, H.; Hyun, D.W.; Lee, J.Y.; Choi, E.Y.; Lee, D.S.; Bae, J.W.; Mook-Jung, I. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut, 2020, 69(2), 283-294.
[http://dx.doi.org/10.1136/gutjnl-2018-317431] [PMID: 31471351]
[36]
Colombo, A.V.; Sadler, R.K.; Llovera, G.; Singh, V.; Roth, S.; Heindl, S.; Sebastian Monasor, L.; Verhoeven, A.; Peters, F.; Parhizkar, S.; Kamp, F.; Gomez de Aguero, M.; MacPherson, A.J.; Winkler, E.; Herms, J.; Benakis, C.; Dichgans, M.; Steiner, H.; Giera, M.; Haass, C.; Tahirovic, S.; Liesz, A. Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition. eLife, 2021, 10, e59826.
[http://dx.doi.org/10.7554/eLife.59826] [PMID: 33845942]
[37]
Liu, S.; Gao, J.; Zhu, M.; Liu, K.; Zhang, H.L. Gut microbiota and dysbiosis in Alzheimer’s disease: implications for pathogenesis and treatment. Mol. Neurobiol., 2020, 57(12), 5026-5043.
[http://dx.doi.org/10.1007/s12035-020-02073-3] [PMID: 32829453]
[38]
Giau, V.; Wu, S.; Jamerlan, A.; An, S.; Kim, S.; Hulme, J. Gut microbiota and their neuroinflammatory implications in Alzheimer’s disease. Nutrients, 2018, 10(11), 1765.
[http://dx.doi.org/10.3390/nu10111765] [PMID: 30441866]
[39]
Szabady, R.L.; Louissaint, C.; Lubben, A.; Xie, B.; Reeksting, S.; Tuohy, C.; Demma, Z.; Foley, S.E.; Faherty, C.S.; Llanos-Chea, A.; Olive, A.J.; Mrsny, R.J.; McCormick, B.A. Intestinal P-glycoprotein exports endocannabinoids to prevent inflammation and maintain homeostasis. J. Clin. Invest., 2018, 128(9), 4044-4056.
[http://dx.doi.org/10.1172/JCI96817] [PMID: 30102254]
[40]
Ling, Z.; Zhu, M.; Yan, X.; Cheng, Y.; Shao, L.; Liu, X.; Jiang, R.; Wu, S. Structural and functional dysbiosis of fecal microbiota in chinese patients with Alzheimer’s disease. Front. Cell Dev. Biol., 2021, 8, 634069.
[http://dx.doi.org/10.3389/fcell.2020.634069] [PMID: 33614635]
[41]
Haran, J.P.; Bhattarai, S.K.; Foley, S.E.; Dutta, P.; Ward, D.V.; Bucci, V.; McCormick, B.A. Alzheimer’s disease microbiome is associated with dysregulation of the anti-inflammatory p-glycoprotein pathway. MBio, 2019, 10(3), e00632-e19.
[http://dx.doi.org/10.1128/mBio.00632-19] [PMID: 31064831]
[42]
Zhang, X.; Wang, Y.; Liu, W.; Wang, T.; Wang, L.; Hao, L.; Ju, M.; Xiao, R. Diet quality, gut microbiota, and microRNAs associated with mild cognitive impairment in middle-aged and elderly Chinese population. Am. J. Clin. Nutr., 2021, 114(2), 429-440.
[http://dx.doi.org/10.1093/ajcn/nqab078] [PMID: 33871591]
[43]
Liu, P.; Wu, L.; Peng, G.; Han, Y.; Tang, R.; Ge, J.; Zhang, L.; Jia, L.; Yue, S.; Zhou, K.; Li, L.; Luo, B.; Wang, B. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav. Immun., 2019, 80, 633-643.
[http://dx.doi.org/10.1016/j.bbi.2019.05.008] [PMID: 31063846]
[44]
Vogt, N.M.; Kerby, R.L.; Dill-McFarland, K.A.; Harding, S.J.; Merluzzi, A.P.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Zetterberg, H.; Blennow, K.; Bendlin, B.B.; Rey, F.E. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep., 2017, 7(1), 13537.
[http://dx.doi.org/10.1038/s41598-017-13601-y] [PMID: 29051531]
[45]
Zhuang, Z.Q.; Shen, L.L.; Li, W.W.; Fu, X.; Zeng, F.; Gui, L.; Lü, Y.; Cai, M.; Zhu, C.; Tan, Y.L.; Zheng, P.; Li, H.Y.; Zhu, J.; Zhou, H.D.; Bu, X.L.; Wang, Y.J. Gut microbiota is altered in patients with Alzheimer’s disease. J. Alzheimers Dis., 2018, 63(4), 1337-1346.
[http://dx.doi.org/10.3233/JAD-180176] [PMID: 29758946]
[46]
Zhan, X.; Stamova, B.; Jin, L.W.; DeCarli, C.; Phinney, B.; Sharp, F.R. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology, 2016, 87(22), 2324-2332.
[http://dx.doi.org/10.1212/WNL.0000000000003391] [PMID: 27784770]
[47]
Zhao, Y.; Cong, L.; Jaber, V.; Lukiw, W.J. Microbiome-derived lipopolysaccharide enriched in the perinuclear region of Alzheimer’s disease brain. Front. Immunol., 2017, 8, 1064.
[http://dx.doi.org/10.3389/fimmu.2017.01064] [PMID: 28928740]
[48]
Cattaneo, A.; Cattane, N.; Galluzzi, S.; Provasi, S.; Lopizzo, N.; Festari, C.; Ferrari, C.; Guerra, U.P.; Paghera, B.; Muscio, C.; Bianchetti, A.; Volta, G.D.; Turla, M.; Cotelli, M.S.; Gennuso, M.; Prelle, A.; Zanetti, O.; Lussignoli, G.; Mirabile, D.; Bellandi, D.; Gentile, S.; Belotti, G.; Villani, D.; Harach, T.; Bolmont, T.; Padovani, A.; Boccardi, M.; Frisoni, G.B. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging, 2017, 49, 60-68.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.019] [PMID: 27776263]
[49]
Sochocka, M.; Donskow-Łysoniewska, K.; Diniz, B.S.; Kurpas, D.; Brzozowska, E.; Leszek, J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease—a critical review. Mol. Neurobiol., 2019, 56(3), 1841-1851.
[http://dx.doi.org/10.1007/s12035-018-1188-4] [PMID: 29936690]
[50]
Li, B.; He, Y.; Ma, J.; Huang, P.; Du, J.; Cao, L.; Wang, Y.; Xiao, Q.; Tang, H.; Chen, S. Mild cognitive impairment has similar alterations as Alzheimer’s disease in gut microbiota. Alzheimers Dement., 2019, 15(10), 1357-1366.
[http://dx.doi.org/10.1016/j.jalz.2019.07.002] [PMID: 31434623]
[51]
Guo, M.; Peng, J.; Huang, X.; Xiao, L.; Huang, F.; Zuo, Z. Gut microbiome features of chinese patients newly diagnosed with Alzheimer’s disease or mild cognitive impairment. J. Alzheimers Dis., 2021, 80(1), 299-310.
[http://dx.doi.org/10.3233/JAD-201040] [PMID: 33523001]
[52]
Cammann, D.; Lu, Y.; Cummings, M.J.; Zhang, M.L.; Cue, J.M.; Do, J.; Ebersole, J.; Chen, X.; Oh, E.C.; Cummings, J.L.; Chen, J. Genetic correlations between Alzheimer’s disease and gut microbiome genera. Sci. Rep., 2023, 13(1), 5258.
[http://dx.doi.org/10.1038/s41598-023-31730-5] [PMID: 37002253]
[53]
Laske, C.; Müller, S.; Preische, O.; Ruschil, V.; Munk, M.H.J.; Honold, I.; Peter, S.; Schoppmeier, U.; Willmann, M. Signature of Alzheimer’s disease in intestinal microbiome: Results from the AlzBiom study. Front. Neurosci., 2022, 16, 792996.
[http://dx.doi.org/10.3389/fnins.2022.792996] [PMID: 35516807]
[54]
Jeong, S.; Huang, L.K.; Tsai, M.J.; Liao, Y.T.; Lin, Y.S.; Chang, C.; Chi, W-K.; Hu, C-J.; Hsu, Y-H. Whole genome shotgun metagenomic sequencing to identify differential abundant microbiome features between dementia and mild cognitive impairment (MCI) in AD subjects. Alzheimers Dement., 2021, 17(S5), e051914.
[http://dx.doi.org/10.1002/alz.051914]
[55]
Marizzoni, M.; Cattaneo, A.; Mirabelli, P.; Festari, C.; Lopizzo, N.; Nicolosi, V.; Mombelli, E.; Mazzelli, M.; Luongo, D.; Naviglio, D.; Coppola, L.; Salvatore, M.; Frisoni, G.B. Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer’s disease. J. Alzheimers Dis., 2020, 78(2), 683-697.
[http://dx.doi.org/10.3233/JAD-200306] [PMID: 33074224]
[56]
Ning, J.; Huang, S.Y.; Chen, S.D.; Zhang, Y.R.; Huang, Y.Y.; Yu, J.T. Investigating casual associations among gut microbiota, metabolites, and neurodegenerative diseases: A mendelian randomization study. J. Alzheimers Dis., 2022, 87(1), 211-222.
[http://dx.doi.org/10.3233/JAD-215411] [PMID: 35275534]
[57]
Vogt, N.M.; Romano, K.A.; Darst, B.F.; Engelman, C.D.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Blennow, K.; Zetterberg, H.; Bendlin, B.B.; Rey, F.E. The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease. Alzheimers Res. Ther., 2018, 10(1), 124.
[http://dx.doi.org/10.1186/s13195-018-0451-2] [PMID: 30579367]
[58]
Gulaj, E.; Pawlak, K.; Bien, B.; Pawlak, D. Kynurenine and its metabolites in Alzheimer’s disease patients. Adv. Med. Sci., 2010, 55(2), 204-211.
[http://dx.doi.org/10.2478/v10039-010-0023-6] [PMID: 20639188]
[59]
Guillemin, G.J.; Brew, B.J.; Noonan, C.E.; Takikawa, O.; Cullen, K.M. Indoleamine 2,3 dioxygenase and quinolinic acid Immunoreactivity in Alzheimer’s disease hippocampus. Neuropathol. Appl. Neurobiol., 2005, 31(4), 395-404.
[http://dx.doi.org/10.1111/j.1365-2990.2005.00655.x] [PMID: 16008823]
[60]
Kaddurah-Daouk, R.; Zhu, H.; Sharma, S.; Bogdanov, M.; Rozen, S.G.; Matson, W.; Oki, N.O.; Motsinger-Reif, A.A.; Churchill, E.; Lei, Z.; Appleby, D.; Kling, M.A.; Trojanowski, J.Q.; Doraiswamy, P.M.; Arnold, S.E. Alterations in metabolic pathways and networks in Alzheimer’s disease. Transl. Psychiatry, 2013, 3(4), e244.
[http://dx.doi.org/10.1038/tp.2013.18] [PMID: 23571809]
[61]
Ferreiro, A.L.; Choi, J.; Ryou, J.; Newcomer, E.P.; Thompson, R.; Bollinger, R.M.; Hall-Moore, C.; Ndao, I.M.; Sax, L.; Benzinger, T.L.S.; Stark, S.L.; Holtzman, D.M.; Fagan, A.M.; Schindler, S.E.; Cruchaga, C.; Butt, O.H.; Morris, J.C.; Tarr, P.I.; Ances, B.M.; Dantas, G. Gut microbiome composition may be an indicator of preclinical Alzheimer’s disease. Sci. Transl. Med., 2023, 15(700), eabo2984.
[http://dx.doi.org/10.1126/scitranslmed.abo2984] [PMID: 37315112]
[62]
Doifode, T.; Giridharan, V.V.; Generoso, J.S.; Bhatti, G.; Collodel, A.; Schulz, P.E.; Forlenza, O.V.; Barichello, T. The impact of the microbiota-gut-brain axis on Alzheimer’s disease pathophysiology. Pharmacol. Res., 2021, 164, 105314.
[http://dx.doi.org/10.1016/j.phrs.2020.105314] [PMID: 33246175]
[63]
Fröhlich, E.E.; Farzi, A.; Mayerhofer, R.; Reichmann, F.; Jačan, A.; Wagner, B.; Zinser, E.; Bordag, N.; Magnes, C.; Fröhlich, E.; Kashofer, K.; Gorkiewicz, G.; Holzer, P. Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. Brain Behav. Immun., 2016, 56, 140-155.
[http://dx.doi.org/10.1016/j.bbi.2016.02.020] [PMID: 26923630]
[64]
Minter, M.R.; Zhang, C.; Leone, V.; Ringus, D.L.; Zhang, X.; Oyler-Castrillo, P.; Musch, M.W.; Liao, F.; Ward, J.F.; Holtzman, D.M.; Chang, E.B.; Tanzi, R.E.; Sisodia, S.S. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci. Rep., 2016, 6(1), 30028.
[http://dx.doi.org/10.1038/srep30028] [PMID: 27443609]
[65]
Wang, T.; Hu, X.; Liang, S.; Li, W.; Wu, X.; Wang, L.; Jin, F. Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats. Benef. Microbes, 2015, 6(5), 707-717.
[http://dx.doi.org/10.3920/BM2014.0177] [PMID: 25869281]
[66]
Ravelli, K.G.; Rosário, B.A.; Camarini, R.; Hernandes, M.S.; Britto, L.R. Intracerebroventricular streptozotocin as a model of Alzheimer’s disease: Neurochemical and behavioral characterization in mice. Neurotox. Res., 2017, 31(3), 327-333.
[http://dx.doi.org/10.1007/s12640-016-9684-7] [PMID: 27913964]
[67]
Desbonnet, L.; Clarke, G.; Traplin, A.; O’Sullivan, O.; Crispie, F.; Moloney, R.D.; Cotter, P.D.; Dinan, T.G.; Cryan, J.F. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain Behav. Immun., 2015, 48, 165-173.
[http://dx.doi.org/10.1016/j.bbi.2015.04.004] [PMID: 25866195]
[68]
Payne, L.E.; Gagnon, D.J.; Riker, R.R.; Seder, D.B.; Glisic, E.K.; Morris, J.G.; Fraser, G.L. Cefepime-induced neurotoxicity: A systematic review. Crit. Care, 2017, 21(1), 276.
[http://dx.doi.org/10.1186/s13054-017-1856-1] [PMID: 29137682]
[69]
Mehta, R.S.; Lochhead, P.; Wang, Y.; Ma, W.; Nguyen, L.H.; Kochar, B.; Huttenhower, C.; Grodstein, F.; Chan, A.T. Association of midlife antibiotic use with subsequent cognitive function in women. PLoS One, 2022, 17(3), e0264649.
[http://dx.doi.org/10.1371/journal.pone.0264649] [PMID: 35320274]
[70]
Umeda, T.; Ono, K.; Sakai, A.; Yamashita, M.; Mizuguchi, M.; Klein, W.L.; Yamada, M.; Mori, H.; Tomiyama, T. Rifampicin is a candidate preventive medicine against amyloid-β and tau oligomers. Brain, 2016, 139(5), 1568-1586.
[http://dx.doi.org/10.1093/brain/aww042] [PMID: 27020329]
[71]
Tucker, S.; Ahl, M.; Bush, A.; Westaway, D.; Huang, X.; Rogers, J. Pilot study of the reducing effect on amyloidosis in vivo by three FDA pre-approved drugs via the Alzheimer’s APP 5′ untranslated region. Curr. Alzheimer Res., 2005, 2(2), 249-254.
[http://dx.doi.org/10.2174/1567205053585855] [PMID: 15974925]
[72]
Parachikova, A.; Vasilevko, V.; Cribbs, D.H.; LaFerla, F.M.; Green, K.N. Reductions in amyloid-beta-derived neuroinflammation, with minocycline, restore cognition but do not significantly affect tau hyperphosphorylation. J. Alzheimers Dis., 2010, 21(2), 527-542.
[http://dx.doi.org/10.3233/JAD-2010-100204] [PMID: 20555131]
[73]
Kountouras, J.; Boziki, M.; Gavalas, E.; Zavos, C.; Grigoriadis, N.; Deretzi, G.; Tzilves, D.; Katsinelos, P.; Tsolaki, M.; Chatzopoulos, D.; Venizelos, I. Eradication of helicobacter pylori may be beneficial in the management of Alzheimer’s disease. J. Neurol., 2009, 256(5), 758-767.
[http://dx.doi.org/10.1007/s00415-009-5011-z] [PMID: 19240960]
[74]
Loeb, M.B.; Molloy, D.W.; Smieja, M.; Standish, T.; Goldsmith, C.H.; Mahony, J.; Smith, S.; Borrie, M.; Decoteau, E.; Davidson, W.; Mcdougall, A.; Gnarpe, J.; O’donnell, M.; Chernesky, M. A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer’s disease. J. Am. Geriatr. Soc., 2004, 52(3), 381-387.
[http://dx.doi.org/10.1111/j.1532-5415.2004.52109.x] [PMID: 14962152]
[75]
David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; Biddinger, S.B.; Dutton, R.J.; Turnbaugh, P.J. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505(7484), 559-563.
[http://dx.doi.org/10.1038/nature12820] [PMID: 24336217]
[76]
Varesi, A.; Pierella, E.; Romeo, M.; Piccini, G.B.; Alfano, C.; Bjørklund, G.; Oppong, A.; Ricevuti, G.; Esposito, C.; Chirumbolo, S.; Pascale, A. The potential role of gut microbiota in Alzheimer’s disease: From diagnosis to treatment. Nutrients, 2022, 14(3), 668.
[http://dx.doi.org/10.3390/nu14030668] [PMID: 35277027]
[77]
Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The mediterranean diet and cardiovascular health. Circ. Res., 2019, 124(5), 779-798.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313348] [PMID: 30817261]
[78]
Wu, L.; Sun, D. Adherence to Mediterranean diet and risk of developing cognitive disorders: An updated systematic review and meta-analysis of prospective cohort studies. Sci. Rep., 2017, 7(1), 41317.
[http://dx.doi.org/10.1038/srep41317] [PMID: 28112268]
[79]
Loughrey, D.G.; Lavecchia, S.; Brennan, S.; Lawlor, B.A.; Kelly, M.E. The impact of the mediterranean diet on the cognitive functioning of healthy older adults: A systematic review and meta-analysis. Adv. Nutr., 2017, 8(4), 571-586.
[http://dx.doi.org/10.3945/an.117.015495] [PMID: 28710144]
[80]
Keenan, T.D.; Agrón, E.; Mares, J.A.; Clemons, T.E.; van Asten, F.; Swaroop, A.; Chew, E.Y. Adherence to a mediterranean diet and cognitive function in the age‐related eye disease studies 1 & 2. Alzheimers Dement., 2020, 16(6), 831-842.
[http://dx.doi.org/10.1002/alz.12077] [PMID: 32285590]
[81]
Mantzorou, M.; Vadikolias, K.; Pavlidou, E.; Tryfonos, C.; Vasios, G.; Serdari, A.; Giaginis, C. Mediterranean diet adherence is associated with better cognitive status and less depressive symptoms in a Greek elderly population. Aging Clin. Exp. Res., 2021, 33(4), 1033-1040.
[http://dx.doi.org/10.1007/s40520-020-01608-x] [PMID: 32488472]
[82]
Wade, A.T.; Davis, C.R.; Dyer, K.A.; Hodgson, J.M.; Woodman, R.J.; Keage, H.A.D.; Murphy, K.J. A mediterranean diet with fresh, lean pork improves processing speed and mood: Cognitive findings from the MedPork randomised controlled trial. Nutrients, 2019, 11(7), 1521.
[http://dx.doi.org/10.3390/nu11071521] [PMID: 31277446]
[83]
Wade, A.T.; Elias, M.F.; Murphy, K.J. Adherence to a Mediterranean diet is associated with cognitive function in an older non-Mediterranean sample: Findings from the Maine-Syracuse Longitudinal Study. Nutr. Neurosci., 2021, 24(7), 542-553.
[http://dx.doi.org/10.1080/1028415X.2019.1655201] [PMID: 31432770]
[84]
Knight, A.; Bryan, J.; Wilson, C.; Hodgson, J.; Davis, C.; Murphy, K. The mediterranean diet and cognitive function among healthy older adults in a 6-month randomised controlled trial: The medley study. Nutrients, 2016, 8(9), 579.
[http://dx.doi.org/10.3390/nu8090579] [PMID: 27657119]
[85]
Wardle, J.; Rogers, P.; Judd, P.; Taylor, M.A.; Rapoport, L.; Green, M.; Nicholson Perry, K. Randomized trial of the effects of cholesterol-lowering dietary treatment on psychological function. Am. J. Med., 2000, 108(7), 547-553.
[http://dx.doi.org/10.1016/S0002-9343(00)00330-2] [PMID: 10806283]
[86]
Ghosh, T.S.; Rampelli, S.; Jeffery, I.B.; Santoro, A.; Neto, M.; Capri, M.; Giampieri, E.; Jennings, A.; Candela, M.; Turroni, S.; Zoetendal, E.G.; Hermes, G.D.A.; Elodie, C.; Meunier, N.; Brugere, C.M.; Pujos-Guillot, E.; Berendsen, A.M.; De Groot, L.C.P.G.M.; Feskins, E.J.M.; Kaluza, J.; Pietruszka, B.; Bielak, M.J.; Comte, B.; Maijo-Ferre, M.; Nicoletti, C.; De Vos, W.M.; Fairweather-Tait, S.; Cassidy, A.; Brigidi, P.; Franceschi, C.; O’Toole, P.W. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: The NU-AGE 1-year dietary intervention across five European countries. Gut, 2020, 69(7), 1218-1228.
[http://dx.doi.org/10.1136/gutjnl-2019-319654] [PMID: 32066625]
[87]
Bailey, M.A.; Holscher, H.D. Microbiome-Mediated effects of the Mediterranean diet on inflammation. Adv. Nutr., 2018, 9(3), 193-206.
[http://dx.doi.org/10.1093/advances/nmy013] [PMID: 29767701]
[88]
Merra, G.; Noce, A.; Marrone, G.; Cintoni, M.; Tarsitano, M.G.; Capacci, A.; De Lorenzo, A. Influence of Mediterranean diet on human gut microbiota. Nutrients, 2020, 13(1), 7.
[http://dx.doi.org/10.3390/nu13010007] [PMID: 33375042]
[89]
Ho, L.; Ono, K.; Tsuji, M.; Mazzola, P.; Singh, R.; Pasinetti, G.M. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev. Neurother., 2018, 18(1), 83-90.
[http://dx.doi.org/10.1080/14737175.2018.1400909] [PMID: 29095058]
[90]
Levitan, E.B.; Wolk, A.; Mittleman, M.A. Consistency with the DASH diet and incidence of heart failure. Arch. Intern. Med., 2009, 169(9), 851-857.
[http://dx.doi.org/10.1001/archinternmed.2009.56] [PMID: 19433696]
[91]
Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; Lin, P.H.; Karanja, N.; Simons-Morton, D.; McCullough, M.; Swain, J.; Steele, P.; Evans, M.A.; Miller, E.R.; Harsha, D.W. A clinical trial of the effects of dietary patterns on blood pressure. N. Engl. J. Med., 1997, 336(16), 1117-1124.
[http://dx.doi.org/10.1056/NEJM199704173361601] [PMID: 9099655]
[92]
Wengreen, H.; Munger, R.G.; Cutler, A.; Quach, A.; Bowles, A.; Corcoran, C.; Tschanz, J.T.; Norton, M.C.; Welsh-Bohmer, K.A. Prospective study of dietary approaches to stop hypertension- and mediterranean-style dietary patterns and age-related cognitive change: The cache county study on memory, health and aging. Am. J. Clin. Nutr., 2013, 98(5), 1263-1271.
[http://dx.doi.org/10.3945/ajcn.112.051276] [PMID: 24047922]
[93]
Blumenthal, J.A.; Smith, P.J.; Mabe, S.; Hinderliter, A.; Lin, P.H.; Liao, L.; Welsh-Bohmer, K.A.; Browndyke, J.N.; Kraus, W.E.; Doraiswamy, P.M.; Burke, J.R.; Sherwood, A. Lifestyle and neurocognition in older adults with cognitive impairments. Neurology, 2019, 92(3), e212-e223.
[http://dx.doi.org/10.1212/WNL.0000000000006784] [PMID: 30568005]
[94]
Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Bennett, D.A.; Aggarwal, N.T. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement., 2015, 11(9), 1007-1014.
[http://dx.doi.org/10.1016/j.jalz.2014.11.009] [PMID: 25681666]
[95]
Kheirouri, S.; Alizadeh, M. MIND diet and cognitive performance in older adults: A systematic review. Crit. Rev. Food Sci. Nutr., 2022, 62(29), 8059-8077.
[http://dx.doi.org/10.1080/10408398.2021.1925220] [PMID: 33989093]
[96]
McEvoy, C.T.; Guyer, H.; Langa, K.M.; Yaffe, K. Neuroprotective diets are associated with better cognitive function: The health and retirement study. J. Am. Geriatr. Soc., 2017, 65(8), 1857-1862.
[http://dx.doi.org/10.1111/jgs.14922] [PMID: 28440854]
[97]
Hosking, D.E.; Eramudugolla, R.; Cherbuin, N.; Anstey, K.J. MIND not Mediterranean diet related to 12‐year incidence of cognitive impairment in an Australian longitudinal cohort study. Alzheimers Dement., 2019, 15(4), 581-589.
[http://dx.doi.org/10.1016/j.jalz.2018.12.011] [PMID: 30826160]
[98]
Chu, C.Q.; Yu, L.; Qi, G.; Mi, Y.S.; Wu, W.Q.; Lee, Y.; Zhai, Q.X.; Tian, F.W.; Chen, W. Can dietary patterns prevent cognitive impairment and reduce Alzheimer’s disease risk: Exploring the underlying mechanisms of effects. Neurosci. Biobehav. Rev., 2022, 135, 104556.
[http://dx.doi.org/10.1016/j.neubiorev.2022.104556] [PMID: 35122783]
[99]
Fortier, M.; Castellano, C.A.; St-Pierre, V.; Myette-Côté, É.; Langlois, F.; Roy, M.; Morin, M.C.; Bocti, C.; Fulop, T.; Godin, J.P.; Delannoy, C.; Cuenoud, B.; Cunnane, S.C. A ketogenic drink improves cognition in mild cognitive impairment: Results of a 6‐month RCT. Alzheimers Dement., 2021, 17(3), 543-552.
[http://dx.doi.org/10.1002/alz.12206] [PMID: 33103819]
[100]
Ota, M.; Matsuo, J.; Ishida, I.; Takano, H.; Yokoi, Y.; Hori, H.; Yoshida, S.; Ashida, K.; Nakamura, K.; Takahashi, T.; Kunugi, H. Effects of a medium-chain triglyceride-based ketogenic formula on cognitive function in patients with mild-to-moderate Alzheimer’s disease. Neurosci. Lett., 2019, 690, 232-236.
[http://dx.doi.org/10.1016/j.neulet.2018.10.048] [PMID: 30367958]
[101]
Ota, M.; Matsuo, J.; Ishida, I.; Hattori, K.; Teraishi, T.; Tonouchi, H.; Ashida, K.; Takahashi, T.; Kunugi, H. Effect of a ketogenic meal on cognitive function in elderly adults: Potential for cognitive enhancement. Psychopharmacology (Berl.), 2016, 233(21-22), 3797-3802.
[http://dx.doi.org/10.1007/s00213-016-4414-7] [PMID: 27568199]
[102]
Nagpal, R.; Neth, B.J.; Wang, S.; Craft, S.; Yadav, H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine, 2019, 47, 529-542.
[http://dx.doi.org/10.1016/j.ebiom.2019.08.032] [PMID: 31477562]
[103]
Nicco, C.; Paule, A.; Konturek, P.; Edeas, M. From Donor to Patient: Collection, preparation and cryopreservation of fecal samples for fecal microbiota transplantation. Diseases, 2020, 8(2), 9.
[http://dx.doi.org/10.3390/diseases8020009] [PMID: 32326509]
[104]
Dailey, F.E.; Turse, E.P.; Daglilar, E.; Tahan, V. The dirty aspects of fecal microbiota transplantation: A review of its adverse effects and complications. Curr. Opin. Pharmacol., 2019, 49, 29-33.
[http://dx.doi.org/10.1016/j.coph.2019.04.008] [PMID: 31103793]
[105]
Craig-Schapiro, R.; Fagan, A.M.; Holtzman, D.M. Biomarkers of Alzheimer’s disease. Neurobiol. Dis., 2009, 35(2), 128-140.
[http://dx.doi.org/10.1016/j.nbd.2008.10.003] [PMID: 19010417]
[106]
Hazan, S. Rapid improvement in Alzheimer’s disease symptoms following fecal microbiota transplantation: A case report. J. Int. Med. Res., 2020, 48(6)
[http://dx.doi.org/10.1177/0300060520925930] [PMID: 32600151]
[107]
Park, S.H.; Lee, J.H.; Shin, J.; Kim, J.S.; Cha, B.; Lee, S.; Kwon, K.S.; Shin, Y.W.; Choi, S.H. Cognitive function improvement after fecal microbiota transplantation in Alzheimer’s dementia patient: A case report. Curr. Med. Res. Opin., 2021, 37(10), 1739-1744.
[http://dx.doi.org/10.1080/03007995.2021.1957807] [PMID: 34289768]
[108]
Roberfroid, M.; Gibson, G.R.; Hoyles, L.; McCartney, A.L.; Rastall, R.; Rowland, I.; Wolvers, D.; Watzl, B.; Szajewska, H.; Stahl, B.; Guarner, F.; Respondek, F.; Whelan, K.; Coxam, V.; Davicco, M.J.; Léotoing, L.; Wittrant, Y.; Delzenne, N.M.; Cani, P.D.; Neyrinck, A.M.; Meheust, A. Prebiotic effects: Metabolic and health benefits. Br. J. Nutr., 2010, 104(S2)(Suppl. 2), S1-S63.
[http://dx.doi.org/10.1017/S0007114510003363] [PMID: 20920376]
[109]
McLoughlin, R.F.; Berthon, B.S.; Jensen, M.E.; Baines, K.J.; Wood, L.G. Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: A systematic review and meta-analysis. Am. J. Clin. Nutr., 2017, 106(3), 930-945.
[http://dx.doi.org/10.3945/ajcn.117.156265] [PMID: 28793992]
[110]
Paiva, I.H.R.; Duarte-Silva, E.; Peixoto, C.A. The role of prebiotics in cognition, anxiety, and depression. Eur. Neuropsychopharmacol., 2020, 34, 1-18.
[http://dx.doi.org/10.1016/j.euroneuro.2020.03.006] [PMID: 32241688]
[111]
Gu, Y.; Nishikawa, M.; Brickman, A.M.; Manly, J.J.; Schupf, N.; Mayeux, R.P. Association of dietary prebiotic consumption with reduced risk of Alzheimer’s disease in a multiethnic population. Curr. Alzheimer Res., 2021, 18(12), 984-992.
[http://dx.doi.org/10.2174/1567205019666211222115142] [PMID: 34951365]
[112]
Alfa, M.J.; Strang, D.; Tappia, P.S.; Graham, M.; Van Domselaar, G.; Forbes, J.D.; Laminman, V.; Olson, N.; DeGagne, P.; Bray, D.; Murray, B.L.; Dufault, B.; Lix, L.M. A randomized trial to determine the impact of a digestion resistant starch composition on the gut microbiome in older and mid-age adults. Clin. Nutr., 2018, 37(3), 797-807.
[http://dx.doi.org/10.1016/j.clnu.2017.03.025] [PMID: 28410921]
[113]
Vulevic, J.; Juric, A.; Walton, G.E.; Claus, S.P.; Tzortzis, G.; Toward, R.E.; Gibson, G.R. Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. Br. J. Nutr., 2015, 114(4), 586-595.
[http://dx.doi.org/10.1017/S0007114515001889] [PMID: 26218845]
[114]
Walton, G.E.; van den Heuvel, E.G.H.M.; Kosters, M.H.W.; Rastall, R.A.; Tuohy, K.M.; Gibson, G.R. A randomised crossover study investigating the effects of galacto-oligosaccharides on the faecal microbiota in men and women over 50 years of age. Br. J. Nutr., 2012, 107(10), 1466-1475.
[http://dx.doi.org/10.1017/S0007114511004697] [PMID: 21910949]
[115]
Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol., 2019, 10, 277.
[http://dx.doi.org/10.3389/fimmu.2019.00277] [PMID: 30915065]
[116]
Larroya-García, A.; Navas-Carrillo, D.; Orenes-Piñero, E. Impact of gut microbiota on neurological diseases: Diet composition and novel treatments. Crit. Rev. Food Sci. Nutr., 2019, 59(19), 3102-3116.
[http://dx.doi.org/10.1080/10408398.2018.1484340] [PMID: 29870270]
[117]
Akbari, E.; Asemi, Z.; Daneshvar Kakhaki, R.; Bahmani, F.; Kouchaki, E.; Tamtaji, O.R.; Hamidi, G.A.; Salami, M. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Front. Aging Neurosci., 2016, 8, 256.
[http://dx.doi.org/10.3389/fnagi.2016.00256] [PMID: 27891089]
[118]
Agahi, A.; Hamidi, G.A.; Daneshvar, R.; Hamdieh, M.; Soheili, M.; Alinaghipour, A.; Esmaeili, T.S.M.; Salami, M. Does severity of Alzheimer’s disease contribute to its responsiveness to modifying gut microbiota? A double blind clinical trial. Front. Neurol., 2018, 9, 662.
[http://dx.doi.org/10.3389/fneur.2018.00662] [PMID: 30158897]
[119]
Leblhuber, F.; Steiner, K.; Schuetz, B.; Fuchs, D.; Gostner, J.M. Probiotic supplementation in patients with Alzheimer’s dementia - An explorative intervention study. Curr. Alzheimer Res., 2018, 15(12), 1106-1113.
[http://dx.doi.org/10.2174/1389200219666180813144834] [PMID: 30101706]
[120]
Tamtaji, O.R.; Heidari-soureshjani, R.; Mirhosseini, N.; Kouchaki, E.; Bahmani, F.; Aghadavod, E.; Tajabadi-Ebrahimi, M.; Asemi, Z. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: A randomized, double-blind, controlled trial. Clin. Nutr., 2019, 38(6), 2569-2575.
[http://dx.doi.org/10.1016/j.clnu.2018.11.034] [PMID: 30642737]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy