Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Emerging Neuroprotective Strategies: Unraveling the Potential of HDAC Inhibitors in Traumatic Brain Injury Management

Author(s): Lisha Ye, Wenfeng Li, Xiaoyan Tang, Ting Xu and Guohua Wang*

Volume 22, Issue 14, 2024

Published on: 29 January, 2024

Page: [2298 - 2313] Pages: 16

DOI: 10.2174/1570159X22666240128002056

Price: $65

Abstract

Traumatic brain injury (TBI) is a significant global health problem, leading to high rates of mortality and disability. It occurs when an external force damages the brain, causing immediate harm and triggering further pathological processes that exacerbate the condition. Despite its widespread impact, the underlying mechanisms of TBI remain poorly understood, and there are no specific pharmacological treatments available. This creates an urgent need for new, effective neuroprotective drugs and strategies tailored to the diverse needs of TBI patients. In the realm of gene expression regulation, chromatin acetylation plays a pivotal role. This process is controlled by two classes of enzymes: histone acetyltransferase (HAT) and histone deacetylase (HDAC). These enzymes modify lysine residues on histone proteins, thereby determining the acetylation status of chromatin. HDACs, in particular, are involved in the epigenetic regulation of gene expression in TBI. Recent research has highlighted the potential of HDAC inhibitors (HDACIs) as promising neuroprotective agents. These compounds have shown encouraging results in animal models of various neurodegenerative diseases. HDACIs offer multiple avenues for TBI management: they mitigate the neuroinflammatory response, alleviate oxidative stress, inhibit neuronal apoptosis, and promote neurogenesis and axonal regeneration. Additionally, they reduce glial activation, which is associated with TBI-induced neuroinflammation. This review aims to provide a comprehensive overview of the roles and mechanisms of HDACs in TBI and to evaluate the therapeutic potential of HDACIs. By summarizing current knowledge and emphasizing the neuroregenerative capabilities of HDACIs, this review seeks to advance TBI management and contribute to the development of targeted treatments.

[1]
Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; Rosenfeld, J.V.; Park, K.B. Estimating the global incidence of traumatic brain injury. J. Neurosurg., 2019, 130(4), 1080-1097.
[http://dx.doi.org/10.3171/2017.10.JNS17352] [PMID: 29701556]
[2]
Badhiwala, J.H.; Wilson, J.R.; Fehlings, M.G. Global burden of traumatic brain and spinal cord injury. Lancet Neurol., 2019, 18(1), 24-25.
[http://dx.doi.org/10.1016/S1474-4422(18)30444-7] [PMID: 30497967]
[3]
Schneider, A.L.C.; Selvin, E.; Latour, L.; Turtzo, L.C.; Coresh, J.; Mosley, T.; Ling, G.; Gottesman, R.F. Head injury and 25‐year risk of dementia. Alzheimers Dement., 2021, 17(9), 1432-1441.
[http://dx.doi.org/10.1002/alz.12315] [PMID: 33687142]
[4]
Kaur, P.; Sharma, S. Recent advances in pathophysiology of traumatic brain injury. Curr. Neuropharmacol., 2018, 16(8), 1224-1238.
[http://dx.doi.org/10.2174/1570159X15666170613083606] [PMID: 28606040]
[5]
McGuire, J.L.; Ngwenya, L.B.; McCullumsmith, R.E. Neurotransmitter changes after traumatic brain injury: An update for new treatment strategies. Mol. Psychiatry, 2019, 24(7), 995-1012.
[http://dx.doi.org/10.1038/s41380-018-0239-6] [PMID: 30214042]
[6]
Akamatsu, Y.; Hanafy, K.A. Cell death and recovery in traumatic brain injury. Neurotherapeutics, 2020, 17(2), 446-456.
[http://dx.doi.org/10.1007/s13311-020-00840-7] [PMID: 32056100]
[7]
Kalra, S.; Malik, R.; Singh, G.; Bhatia, S.; Al-Harrasi, A.; Mohan, S.; Albratty, M.; Albarrati, A.; Tambuwala, M.M. Pathogenesis and management of traumatic brain injury (TBI): Role of neuroinflammation and anti-inflammatory drugs. Inflammopharmacology, 2022, 30(4), 1153-1166.
[http://dx.doi.org/10.1007/s10787-022-01017-8] [PMID: 35802283]
[8]
Park, S.Y.; Kim, J.S. A short guide to histone deacetylases including recent progress on class II enzymes. Exp. Mol. Med., 2020, 52(2), 204-212.
[http://dx.doi.org/10.1038/s12276-020-0382-4] [PMID: 32071378]
[9]
Demyanenko, S.; Sharifulina, S. The role of post-translational acetylation and deacetylation of signaling proteins and transcription factors after cerebral ischemia: facts and hypotheses. Int. J. Mol. Sci., 2021, 22(15), 7947.
[http://dx.doi.org/10.3390/ijms22157947] [PMID: 34360712]
[10]
Irfan, J.; Febrianto, M.R.; Sharma, A.; Rose, T.; Mahmudzade, Y.; Di Giovanni, S.; Nagy, I.; Torres-Perez, J.V. DNA Methylation and Non-Coding RNAs during tissue-injury associated pain. Int. J. Mol. Sci., 2022, 23(2), 752.
[http://dx.doi.org/10.3390/ijms23020752] [PMID: 35054943]
[11]
Dolinar, A.; Ravnik-Glavač, M.; Glavač, D. Epigenetic mechanisms in amyotrophic lateral sclerosis: A short review. Mech. Ageing Dev., 2018, 174, 103-110.
[http://dx.doi.org/10.1016/j.mad.2018.03.005] [PMID: 29545202]
[12]
Kabir, F.; Atkinson, R.; Cook, A.L.; Phipps, A.J.; King, A.E. The role of altered protein acetylation in neurodegenerative disease. Front. Aging Neurosci., 2023, 14, 1025473.
[http://dx.doi.org/10.3389/fnagi.2022.1025473] [PMID: 36688174]
[13]
Chatterjee, S.; Cassel, R.; Schneider-Anthony, A.; Merienne, K.; Cosquer, B.; Tzeplaeff, L.; Halder Sinha, S.; Kumar, M.; Chaturbedy, P.; Eswaramoorthy, M.; Le Gras, S.; Keime, C.; Bousiges, O.; Dutar, P.; Petsophonsakul, P.; Rampon, C.; Cassel, J.C.; Buée, L.; Blum, D.; Kundu, T.K.; Boutillier, A.L. Reinstating plasticity and memory in a tauopathy mouse model with an acetyltransferase activator. EMBO Mol. Med., 2018, 10(11), e8587.
[http://dx.doi.org/10.15252/emmm.201708587] [PMID: 30275019]
[14]
Rodrigues, D.A.; Pinheiro, P.S.M.; Sagrillo, F.S.; Bolognesi, M.L.; Fraga, C.A.M. Histone deacetylases as targets for the treatment of neurodegenerative disorders: Challenges and future opportunities. Med. Res. Rev., 2020, 40(6), 2177-2211.
[http://dx.doi.org/10.1002/med.21701] [PMID: 32588916]
[15]
Ziemka-Nalecz, M.; Jaworska, J.; Sypecka, J.; Zalewska, T. Histone deacetylase inhibitors: A therapeutic key in neurological disorders? J. Neuropathol. Exp. Neurol., 2018, 77(10), 855-870.
[http://dx.doi.org/10.1093/jnen/nly073] [PMID: 30165682]
[16]
Matheson, R.; Chida, K.; Lu, H.; Clendaniel, V.; Fisher, M.; Thomas, A.; Lo, E.H.; Selim, M.; Shehadah, A. Neuroprotective effects of selective inhibition of histone deacetylase 3 in experimental stroke. Transl. Stroke Res., 2020, 11(5), 1052-1063.
[http://dx.doi.org/10.1007/s12975-020-00783-3] [PMID: 32016769]
[17]
Sun, L.; Telles, E.; Karl, M.; Cheng, F.; Luetteke, N.; Sotomayor, E.M.; Miller, R.H.; Seto, E. Loss of HDAC11 ameliorates clinical symptoms in a multiple sclerosis mouse model. Life Sci. Alliance, 2018, 1(5), e201800039.
[http://dx.doi.org/10.26508/lsa.201800039] [PMID: 30456376]
[18]
Nakatsuka, D.; Izumi, T.; Tsukamoto, T.; Oyama, M.; Nishitomi, K.; Deguchi, Y.; Niidome, K.; Yamakawa, H.; Ito, H.; Ogawa, K. Histone Deacetylase 2 knockdown ameliorates morphological abnormalities of dendritic branches and spines to improve synaptic plasticity in an APP/PS1 Transgenic Mouse Model. Front. Mol. Neurosci., 2021, 14, 782375.
[http://dx.doi.org/10.3389/fnmol.2021.782375] [PMID: 34899185]
[19]
Macabuag, N.; Esmieu, W.; Breccia, P.; Jarvis, R.; Blackaby, W.; Lazari, O.; Urbonas, L.; Eznarriaga, M.; Williams, R.; Strijbosch, A.; Van de Bospoort, R.; Matthews, K.; Clissold, C.; Ladduwahetty, T.; Vater, H.; Heaphy, P.; Stafford, D.G.; Wang, H.J.; Mangette, J.E.; McAllister, G.; Beaumont, V.; Vogt, T.F.; Wilkinson, H.A.; Doherty, E.M.; Dominguez, C. Developing HDAC4-Selective protein degraders to investigate the role of hdac4 in huntington’s disease pathology. J. Med. Chem., 2022, 65(18), 12445-12459.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01149] [PMID: 36098485]
[20]
Lu, J.; Frerich, J.M.; Turtzo, L.C.; Li, S.; Chiang, J.; Yang, C.; Wang, X.; Zhang, C.; Wu, C.; Sun, Z.; Niu, G.; Zhuang, Z.; Brady, R.O.; Chen, X. Histone deacetylase inhibitors are neuroprotective and preserve NGF-mediated cell survival following traumatic brain injury. Proc. Natl. Acad. Sci. USA, 2013, 110(26), 10747-10752.
[http://dx.doi.org/10.1073/pnas.1308950110] [PMID: 23754423]
[21]
Liang, D.Y.; Sahbaie, P.; Sun, Y.; Irvine, K.A.; Shi, X.; Meidahl, A.; Liu, P.; Guo, T.Z.; Yeomans, D.C.; Clark, J.D. TBI-induced nociceptive sensitization is regulated by histone acetylation. IBRO Rep., 2017, 2, 14-23.
[http://dx.doi.org/10.1016/j.ibror.2016.12.001] [PMID: 30135929]
[22]
Lu, J.; Frerich, J.M.; Turtzo, L.C.; Li, S.; Chiang, J.; Yang, C.; Wang, X.; Zhang, C.; Wu, C.; Sun, Z.; Niu, G.; Zhuang, Z.; Brady, R.O.; Chen, X. Histone deacetylase inhibitors are neuroprotective and preserve NGF-mediated cell survival following traumatic brain injury. Proc. Natl. Acad. Sci. , 2013, 110(26), 10747-10752.
[http://dx.doi.org/10.1073/pnas.1308950110] [PMID: 23754423]
[23]
Sorby-Adams, A.; Marcoionni, A.; Dempsey, E.; Woenig, J.; Turner, R. The role of neurogenic inflammation in blood-brain barrier disruption and development of cerebral oedema following acute central nervous system (CNS) injury. Int. J. Mol. Sci., 2017, 18(8), 1788.
[http://dx.doi.org/10.3390/ijms18081788] [PMID: 28817088]
[24]
Hanscom, M.; Loane, D.J.; Shea-Donohue, T. Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury. J. Clin. Invest., 2021, 131(12), e143777.
[http://dx.doi.org/10.1172/JCI143777] [PMID: 34128471]
[25]
Salehi, A.; Zhang, J.H.; Obenaus, A. Response of the cerebral vasculature following traumatic brain injury. J. Cereb. Blood Flow Metab., 2017, 37(7), 2320-2339.
[http://dx.doi.org/10.1177/0271678X17701460] [PMID: 28378621]
[26]
Nikolian, V.C.; Dekker, S.E.; Bambakidis, T.; Higgins, G.A.; Dennahy, I.S.; Georgoff, P.E.; Williams, A.M.; Andjelkovic, A.V.; Alam, H.B. Improvement of blood-brain barrier integrity in traumatic brain injury and hemorrhagic shock following treatment with valproic acid and fresh frozen plasma. Crit. Care Med., 2018, 46(1), e59-e66.
[http://dx.doi.org/10.1097/CCM.0000000000002800] [PMID: 29095204]
[27]
Winkler, E.A.; Minter, D.; Yue, J.K.; Manley, G.T. Cerebral edema in traumatic brain injury. Neurosurg. Clin. N. Am., 2016, 27(4), 473-488.
[http://dx.doi.org/10.1016/j.nec.2016.05.008] [PMID: 27637397]
[28]
Vella, M.A.; Crandall, M.L.; Patel, M.B. Acute management of traumatic brain injury. Surg. Clin. North Am., 2017, 97(5), 1015-1030.
[http://dx.doi.org/10.1016/j.suc.2017.06.003] [PMID: 28958355]
[29]
Shi, M.; Chen, F.; Chen, Z.; Yang, W.; Yue, S.; Zhang, J.; Chen, X. Sigma-1 Receptor: A potential therapeutic target for traumatic brain injury. Front. Cell. Neurosci., 2021, 15, 685201.
[http://dx.doi.org/10.3389/fncel.2021.685201] [PMID: 34658788]
[30]
Sande, A.; West, C. Traumatic brain injury: A review of pathophysiology and management. J. Vet. Emerg. Crit. Care (San Antonio), 2010, 20(2), 177-190.
[http://dx.doi.org/10.1111/j.1476-4431.2010.00527.x] [PMID: 20487246]
[31]
Desai, M.; Jain, A. Neuroprotection in traumatic brain injury. J. Neurosurg. Sci., 2018, 62(5), 563-573.
[http://dx.doi.org/10.23736/S0390-5616.18.04476-4] [PMID: 29790724]
[32]
Saha, P.; Gupta, R.; Sen, T.; Sen, N. Histone deacetylase 4 downregulation elicits post-traumatic psychiatric disorders through impairment of neurogenesis. J. Neurotrauma, 2019, 36(23), 3284-3296.
[http://dx.doi.org/10.1089/neu.2019.6373] [PMID: 31169064]
[33]
Biesterveld, B.E.; Pumiglia, L.; Iancu, A.; Shamshad, A.A.; Remmer, H.A.; Siddiqui, A.Z.; O’Connell, R.L.; Wakam, G.K.; Kemp, M.T.; Williams, A.M.; Pai, M.P.; Alam, H.B. Valproic acid treatment rescues injured tissues after traumatic brain injury. J. Trauma Acute Care Surg., 2020, 89(6), 1156-1165.
[http://dx.doi.org/10.1097/TA.0000000000002918] [PMID: 32890344]
[34]
Sada, N.; Fujita, Y.; Mizuta, N.; Ueno, M.; Furukawa, T.; Yamashita, T. Inhibition of HDAC increases BDNF expression and promotes neuronal rewiring and functional recovery after brain injury. Cell Death Dis., 2020, 11(8), 655.
[http://dx.doi.org/10.1038/s41419-020-02897-w] [PMID: 32811822]
[35]
Pumiglia, L.; Williams, A.M.; Kemp, M.T.; Wakam, G.K.; Alam, H.B.; Biesterveld, B.E. Brain proteomic changes by histone deacetylase inhibition after traumatic brain injury. Trauma Surg. Acute Care Open, 2021, 6(1), e000682.
[http://dx.doi.org/10.1136/tsaco-2021-000682] [PMID: 33880414]
[36]
Kim, H.J.; Rowe, M.; Ren, M.; Hong, J.S.; Chen, P.S.; Chuang, D.M. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J. Pharmacol. Exp. Ther., 2007, 321(3), 892-901.
[http://dx.doi.org/10.1124/jpet.107.120188] [PMID: 17371805]
[37]
Zhao, Y.; Mu, H.; Huang, Y.; Li, S.; Wang, Y.; Stetler, R.A.; Bennett, M.V.L.; Dixon, C.E.; Chen, J.; Shi, Y. Microglia-specific deletion of histone deacetylase 3 promotes inflammation resolution, white matter integrity, and functional recovery in a mouse model of traumatic brain injury. J. Neuroinflammation, 2022, 19(1), 201.
[http://dx.doi.org/10.1186/s12974-022-02563-2] [PMID: 35933343]
[38]
Chen, X.; Wang, H.; Zhou, M.; Li, X.; Fang, Z.; Gao, H.; Li, Y.; Hu, W. Valproic acid attenuates traumatic brain injury-induced inflammation in vivo: Involvement of autophagy and the Nrf2/ARE Signaling Pathway. Front. Mol. Neurosci., 2018, 11, 117.
[http://dx.doi.org/10.3389/fnmol.2018.00117] [PMID: 29719500]
[39]
Bowman, G.D.; Poirier, M.G. Post-translational modifications of histones that influence nucleosome dynamics. Chem. Rev., 2015, 115(6), 2274-2295.
[http://dx.doi.org/10.1021/cr500350x] [PMID: 25424540]
[40]
Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res., 2011, 21(3), 381-395.
[http://dx.doi.org/10.1038/cr.2011.22] [PMID: 21321607]
[41]
Luger, K.; Dechassa, M.L.; Tremethick, D.J. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat. Rev. Mol. Cell Biol., 2012, 13(7), 436-447.
[http://dx.doi.org/10.1038/nrm3382] [PMID: 22722606]
[42]
Fyodorov, D.V.; Zhou, B.R.; Skoultchi, A.I.; Bai, Y. Emerging roles of linker histones in regulating chromatin structure and function. Nat. Rev. Mol. Cell Biol., 2018, 19(3), 192-206.
[http://dx.doi.org/10.1038/nrm.2017.94] [PMID: 29018282]
[43]
Nunez-Vazquez, R.; Desvoyes, B.; Gutierrez, C. Histone variants and modifications during abiotic stress response. Front. Plant Sci., 2022, 13, 984702.
[http://dx.doi.org/10.3389/fpls.2022.984702] [PMID: 36589114]
[44]
Zovkic, I.B.; Paulukaitis, B.S.; Day, J.J.; Etikala, D.M.; Sweatt, J.D. Histone H2A.Z subunit exchange controls consolidation of recent and remote memory. Nature, 2014, 515(7528), 582-586.
[http://dx.doi.org/10.1038/nature13707] [PMID: 25219850]
[45]
Allis, C.D.; Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet., 2016, 17(8), 487-500.
[http://dx.doi.org/10.1038/nrg.2016.59] [PMID: 27346641]
[46]
Shen, Y.; Wei, W.; Zhou, D.X. Histone acetylation enzymes coordinate metabolism and gene expression. Trends Plant Sci., 2015, 20(10), 614-621.
[http://dx.doi.org/10.1016/j.tplants.2015.07.005] [PMID: 26440431]
[47]
Dang, F.; Wei, W. Targeting the acetylation signaling pathway in cancer therapy. Semin. Cancer Biol., 2022, 85, 209-218.
[http://dx.doi.org/10.1016/j.semcancer.2021.03.001] [PMID: 33705871]
[48]
Ramaiah, M.J.; Tangutur, A.D.; Manyam, R.R. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci., 2021, 277, 119504.
[http://dx.doi.org/10.1016/j.lfs.2021.119504] [PMID: 33872660]
[49]
Chen, R.; Zhang, M.; Zhou, Y.; Guo, W.; Yi, M.; Zhang, Z.; Ding, Y.; Wang, Y. The application of histone deacetylases inhibitors in glioblastoma. J. Exp. Clin. Cancer Res., 2020, 39(1), 138.
[http://dx.doi.org/10.1186/s13046-020-01643-6] [PMID: 32682428]
[50]
Ding, P.; Ma, Z.; Liu, D.; Pan, M.; Li, H.; Feng, Y.; Zhang, Y.; Shao, C.; Jiang, M.; Lu, D.; Han, J.; Wang, J.; Yan, X. Lysine Acetylation/Deacetylation modification of immune-related molecules in cancer immunotherapy. Front. Immunol., 2022, 13, 865975.
[http://dx.doi.org/10.3389/fimmu.2022.865975] [PMID: 35585975]
[51]
Filippakopoulos, P.; Knapp, S. Targeting bromodomains: Epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov., 2014, 13(5), 337-356.
[http://dx.doi.org/10.1038/nrd4286] [PMID: 24751816]
[52]
Xue, J.; Wu, G.; Ejaz, U.; Akhtar, F.; Wan, X.; Zhu, Y.; Geng, A.; Chen, Y.; He, S. A novel histone deacetylase inhibitor LT-548-133-1 induces apoptosis by inhibiting HDAC and interfering with microtubule assembly in MCF-7 cells. Invest. New Drugs, 2021, 39(5), 1222-1231.
[http://dx.doi.org/10.1007/s10637-021-01102-9] [PMID: 33788074]
[53]
Wang, P.; Wang, Z.; Liu, J. Correction to: Role of HDACs in normal and malignant hematopoiesis. Mol. Cancer, 2020, 19(1), 55.
[http://dx.doi.org/10.1186/s12943-020-01182-w] [PMID: 32164749]
[54]
Bahl, S.; Seto, E. Regulation of histone deacetylase activities and functions by phosphorylation and its physiological relevance. Cell. Mol. Life Sci., 2021, 78(2), 427-445.
[http://dx.doi.org/10.1007/s00018-020-03599-4] [PMID: 32683534]
[55]
Dewanjee, S.; Vallamkondu, J.; Kalra, R.S.; Chakraborty, P.; Gangopadhyay, M.; Sahu, R.; Medala, V.; John, A.; Reddy, P.H.; De Feo, V.; Kandimalla, R. The Emerging Role of HDACs: Pathology and therapeutic targets in diabetes mellitus. Cells, 2021, 10(6), 1340.
[http://dx.doi.org/10.3390/cells10061340] [PMID: 34071497]
[56]
Kelly, R.D.W.; Cowley, S.M. The physiological roles of histone deacetylase (HDAC) 1 and 2: Complex co-stars with multiple leading parts. Biochem. Soc. Trans., 2013, 41(3), 741-749.
[http://dx.doi.org/10.1042/BST20130010] [PMID: 23697933]
[57]
Ferguson, B.S.; McKinsey, T.A. Non-sirtuin histone deacetylases in the control of cardiac aging. J. Mol. Cell. Cardiol., 2015, 83, 14-20.
[http://dx.doi.org/10.1016/j.yjmcc.2015.03.010] [PMID: 25791169]
[58]
Wang, Y.; Abrol, R.; Mak, J.Y.W.; Das Gupta, K.; Ramnath, D.; Karunakaran, D.; Fairlie, D.P.; Sweet, M.J. Histone deacetylase 7: A signalling hub controlling development, inflammation, metabolism and disease. FEBS J., 2022.
[http://dx.doi.org/10.1111/febs.16437] [PMID: 35303381]
[59]
Jiao, F.; Gong, Z. The beneficial roles of SIRT1 in neuroinflammation-related diseases. Oxid. Med. Cell. Longev., 2020, 2020, 1-19.
[http://dx.doi.org/10.1155/2020/6782872] [PMID: 33014276]
[60]
Kee, H.J.; Kim, I.; Jeong, M.H. Zinc-dependent histone deacetylases: Potential therapeutic targets for arterial hypertension. Biochem. Pharmacol., 2022, 202, 115111.
[http://dx.doi.org/10.1016/j.bcp.2022.115111] [PMID: 35640713]
[61]
Nayak, R.; Rosh, I.; Kustanovich, I.; Stern, S. Mood stabilizers in psychiatric disorders and mechanisms learnt from in vitro model systems. Int. J. Mol. Sci., 2021, 22(17), 9315.
[http://dx.doi.org/10.3390/ijms22179315] [PMID: 34502224]
[62]
Tasneem, S.; Alam, M.M.; Amir, M.; Akhter, M.; Parvez, S.; Verma, G.; Nainwal, L.M.; Equbal, A.; Anwer, T.; Shaquiquzzaman, M. Heterocyclic Moieties as HDAC Inhibitors: Role in cancer therapeutics. Mini Rev. Med. Chem., 2022, 22(12), 1648-1706.
[http://dx.doi.org/10.2174/1389557519666211221144013] [PMID: 34939540]
[63]
Singh, A.; Bishayee, A.; Pandey, A. Targeting histone deacetylases with natural and synthetic agents: An emerging anticancer strategy. Nutrients, 2018, 10(6), 731.
[http://dx.doi.org/10.3390/nu10060731] [PMID: 29882797]
[64]
Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18(7), 1414.
[http://dx.doi.org/10.3390/ijms18071414] [PMID: 28671573]
[65]
He, J.; Chu, Y.; Li, J.; Meng, Q.; Liu, Y.; Jin, J.; Wang, Y.; Wang, J.; Huang, B.; Shi, L.; Shi, X.; Tian, J.; Zhufeng, Y.; Feng, R.; Xiao, W.; Gan, Y.; Guo, J.; Shao, C.; Su, Y.; Hu, F.; Sun, X.; Yu, J.; Kang, Y.; Li, Z. Intestinal butyrate-metabolizing species contribute to autoantibody production and bone erosion in rheumatoid arthritis. . Sci. Adv., , 2022, 8(6), eabm1511.
[http://dx.doi.org/10.1126/sciadv.abm1511]
[66]
Mazzocchi, M.; Goulding, S.R.; Morales-Prieto, N.; Foley, T.; Collins, L.M.; Sullivan, A.M.; O’Keeffe, G.W. Peripheral administration of the Class-IIa HDAC inhibitor MC1568 partially protects against nigrostriatal neurodegeneration in the striatal 6-OHDA rat model of Parkinson’s disease. Brain Behav. Immun., 2022, 102, 151-160.
[http://dx.doi.org/10.1016/j.bbi.2022.02.025] [PMID: 35217173]
[67]
Brookes, R.L.; Crichton, S.; Wolfe, C.D.A.; Yi, Q.; Li, L.; Hankey, G.J.; Rothwell, P.M.; Markus, H.S. Sodium valproate, a histone deacetylase inhibitor, Is associated with reduced stroke risk after previous ischemic stroke or transient ischemic attack. Stroke, 2018, 49(1), 54-61.
[http://dx.doi.org/10.1161/STROKEAHA.117.016674] [PMID: 29247141]
[68]
Gupta, R.; Ambasta, R.K.; Kumar, P. Histone deacetylase in neuropathology. Adv. Clin. Chem., 2021, 104, 151-231.
[http://dx.doi.org/10.1016/bs.acc.2020.09.004] [PMID: 34462055]
[69]
Kumar, S.; Attrish, D.; Srivastava, A.; Banerjee, J.; Tripathi, M.; Chandra, P.S.; Dixit, A.B. Non-histone substrates of histone deacetylases as potential therapeutic targets in epilepsy. Expert Opin. Ther. Targets, 2021, 25(1), 75-85.
[http://dx.doi.org/10.1080/14728222.2021.1860016] [PMID: 33275850]
[70]
Wang, G.; Jiang, X.; Pu, H.; Zhang, W.; An, C.; Hu, X.; Liou, A.K.F.; Leak, R.K.; Gao, Y.; Chen, J. Scriptaid, a novel histone deacetylase inhibitor, protects against traumatic brain injury via modulation of PTEN and AKT pathway: scriptaid protects against TBI via AKT. Neurotherapeutics, 2013, 10(1), 124-142.
[http://dx.doi.org/10.1007/s13311-012-0157-2] [PMID: 23132328]
[71]
Wang, G.; Shi, Y.; Jiang, X.; Leak, R.K.; Hu, X.; Wu, Y.; Pu, H.; Li, W.W.; Tang, B.; Wang, Y.; Gao, Y.; Zheng, P.; Bennett, M.V.L.; Chen, J. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proc. Natl. Acad. Sci. USA, 2015, 112(9), 2853-2858.
[http://dx.doi.org/10.1073/pnas.1501441112] [PMID: 25691750]
[72]
Meng, Q.; Yang, G.; Yang, Y.; Ding, F.; Hu, F. Protective effects of histone deacetylase inhibition by Scriptaid on brain injury in neonatal rat models of cerebral ischemia and hypoxia. Int. J. Clin. Exp. Pathol., 2020, 13(2), 179-191.
[PMID: 32211098]
[73]
Chang, P.; Williams, A.M.; Bhatti, U.F.; Biesterveld, B.E.; Liu, B.; Nikolian, V.C.; Dennahy, I.S.; Lee, J.; Li, Y.; Alam, H.B. Valproic acid and neural apoptosis, inflammation, and degeneration 30 days after traumatic brain injury, hemorrhagic shock, and polytrauma in a swine model. J. Am. Coll. Surg., 2019, 228(3), 265-275.
[http://dx.doi.org/10.1016/j.jamcollsurg.2018.12.026] [PMID: 30639301]
[74]
Bambakidis, T.; Dekker, S.E.; Sillesen, M.; Liu, B.; Johnson, C.N.; Jin, G.; de Vries, H.E.; Li, Y.; Alam, H.B. Resuscitation with valproic acid alters inflammatory genes in a porcine model of combined traumatic brain injury and hemorrhagic shock. J. Neurotrauma, 2016, 33(16), 1514-1521.
[http://dx.doi.org/10.1089/neu.2015.4163] [PMID: 26905959]
[75]
Wakam, G.K.; Biesterveld, B.E.; Pai, M.P.; Kemp, M.T.; O’Connell, R.L.; Williams, A.M.; Srinivasan, A.; Chtraklin, K.; Siddiqui, A.Z.; Bhatti, U.F.; Vercruysse, C.A.; Alam, H.B. Administration of valproic acid in clinically approved dose improves neurologic recovery and decreases brain lesion size in swine subjected to hemorrhagic shock and traumatic brain injury. J. Trauma Acute Care Surg., 2021, 90(2), 346-352.
[http://dx.doi.org/10.1097/TA.0000000000003036] [PMID: 33230090]
[76]
Dash, P.K.; Orsi, S.A.; Zhang, M.; Grill, R.J.; Pati, S.; Zhao, J.; Moore, A.N. Valproate administered after traumatic brain injury provides neuroprotection and improves cognitive function in rats. PLoS One, 2010, 5(6), e11383.
[http://dx.doi.org/10.1371/journal.pone.0011383] [PMID: 20614021]
[77]
Bhatti, U.F.; Karnovsky, A.; Dennahy, I.S.; Kachman, M.; Williams, A.M.; Nikolian, V.C.; Biesterveld, B.E.; Siddiqui, A.; O’Connell, R.L.; Liu, B.; Li, Y.; Alam, H.B. Pharmacologic modulation of brain metabolism by valproic acid can induce a neuroprotective environment. J. Trauma Acute Care Surg., 2021, 90(3), 507-514.
[http://dx.doi.org/10.1097/TA.0000000000003026] [PMID: 33196629]
[78]
Jepsen, C.H.; deMoya, M.A.; Perner, A.; Sillesen, M.; Ostrowski, S.R.; Alam, H.B.; Johansson, P.I. Effect of valproic acid and injury on lesion size and endothelial glycocalyx shedding in a rodent model of isolated traumatic brain injury. J. Trauma Acute Care Surg., 2014, 77(2), 292-297.
[http://dx.doi.org/10.1097/TA.0000000000000333] [PMID: 25058256]
[79]
Dekker, S.E.; Bambakidis, T.; Sillesen, M.; Liu, B.; Johnson, C.N.; Jin, G.; Li, Y.; Alam, H.B. Effect of pharmacologic resuscitation on the brain gene expression profiles in a swine model of traumatic brain injury and hemorrhage. J. Trauma Acute Care Surg., 2014, 77(6), 906-912.
[http://dx.doi.org/10.1097/TA.0000000000000345] [PMID: 25051383]
[80]
Dekker, S.E.; Biesterveld, B.E.; Bambakidis, T.; Williams, A.M.; Tagett, R.; Johnson, C.N.; Sillesen, M.; Liu, B.; Li, Y.; Alam, H.B. modulation of brain transcriptome by combined histone deacetylase inhibition and plasma treatment following traumatic brain injury and hemorrhagic shock. Shock, 2021, 55(1), 110-120.
[http://dx.doi.org/10.1097/SHK.0000000000001605] [PMID: 32925172]
[81]
Weykamp, M.; Nikolian, V.C.; Dennahy, I.S.; Higgins, G.A.; Georgoff, P.E.; Remmer, H.; Ghandour, M.H.; Alam, H.B. Rapid valproic acid-induced modulation of the traumatic proteome in a porcine model of traumatic brain injury and hemorrhagic shock. J. Surg. Res., 2018, 228, 84-92.
[http://dx.doi.org/10.1016/j.jss.2018.02.046] [PMID: 29907235]
[82]
Shein, N.A.; Grigoriadis, N.; Alexandrovich, A.G.; Simeonidou, C.; Lourbopoulos, A.; Polyzoidou, E.; Trembovler, V.; Mascagni, P.; Dinarello, C.A.; Shohami, E. Histone deacetylase inhibitor ITF2357 is neuroprotective, improves functional recovery, and induces glial apoptosis following experimental traumatic brain injury. FASEB J., 2009, 23(12), 4266-4275.
[http://dx.doi.org/10.1096/fj.09-134700] [PMID: 19723705]
[83]
Sagarkar, S.; Balasubramanian, N.; Mishra, S.; Choudhary, A.G.; Kokare, D.M.; Sakharkar, A.J. Repeated mild traumatic brain injury causes persistent changes in histone deacetylase function in hippocampus: Implications in learning and memory deficits in rats. Brain Res., 2019, 1711, 183-192.
[http://dx.doi.org/10.1016/j.brainres.2019.01.022] [PMID: 30664848]
[84]
Li, T.; Zhang, Y.; Han, D.; Hua, R.; Guo, B.; Hu, S.; Yan, X.; Xu, T. Involvement of IL-17 in secondary brain injury after a traumatic brain injury in rats. Neuromol. Med., 2017, 19(4), 541-554.
[http://dx.doi.org/10.1007/s12017-017-8468-4] [PMID: 28916896]
[85]
Xu, J.; Shi, J.; Zhang, J.; Zhang, Y. Vorinostat: a histone deacetylases (HDAC) inhibitor ameliorates traumatic brain injury by inducing iNOS/Nrf2/ARE pathway. Folia Neuropathol., 2018, 56(3), 179-186.
[http://dx.doi.org/10.5114/fn.2018.78697] [PMID: 30509039]
[86]
Balasubramanian, N.; Sagarkar, S.; Jadhav, M.; Shahi, N.; Sirmaur, R.; Sakharkar, A.J. Role for histone deacetylation in traumatic brain injury-induced deficits in neuropeptide y in arcuate nucleus: Possible implications in feeding behavior. Neuroendocrinology, 2021, 111(12), 1187-1200.
[http://dx.doi.org/10.1159/000513638] [PMID: 33291119]
[87]
Dash, P.K.; Orsi, S.A.; Moore, A.N. Histone deactylase inhibition combined with behavioral therapy enhances learning and memory following traumatic brain injury. Neuroscience, 2009, 163(1), 1-8.
[http://dx.doi.org/10.1016/j.neuroscience.2009.06.028] [PMID: 19531374]
[88]
Nikolian, V.C.; Dennahy, I.S.; Weykamp, M.; Williams, A.M.; Bhatti, U.F.; Eidy, H.; Ghandour, M.H.; Chtraklin, K.; Li, Y.; Alam, H.B. Isoform 6–selective histone deacetylase inhibition reduces lesion size and brain swelling following traumatic brain injury and hemorrhagic shock. J. Trauma Acute Care Surg., 2019, 86(2), 232-239.
[http://dx.doi.org/10.1097/TA.0000000000002119] [PMID: 30399139]
[89]
Zhang, B.; West, E.J.; Van, K.C.; Gurkoff, G.G.; Zhou, J.; Zhang, X.M.; Kozikowski, A.P.; Lyeth, B.G. HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res., 2008, 1226, 181-191.
[http://dx.doi.org/10.1016/j.brainres.2008.05.085] [PMID: 18582446]
[90]
Dekker, S.E.; Sillesen, M.; Bambakidis, T.; Andjelkovic, A.V.; Jin, G.; Liu, B.; Boer, C.; Johansson, P.I.; Linzel, D.; Halaweish, I.; Alam, H.B. Treatment with a histone deacetylase inhibitor, valproic acid, is associated with increased platelet activation in a large animal model of traumatic brain injury and hemorrhagic shock. J. Surg. Res., 2014, 190(1), 312-318.
[http://dx.doi.org/10.1016/j.jss.2014.02.049] [PMID: 24694719]
[91]
Yu, F.; Wang, Z.; Tanaka, M.; Chiu, C.T.; Leeds, P.; Zhang, Y.; Chuang, D.M. Posttrauma cotreatment with lithium and valproate: reduction of lesion volume, attenuation of blood-brain barrier disruption, and improvement in motor coordination in mice with traumatic brain injury. J. Neurosurg., 2013, 119(3), 766-773.
[http://dx.doi.org/10.3171/2013.6.JNS13135] [PMID: 23848820]
[92]
Wang, W.; Tan, T.; Cao, Q.; Zhang, F.; Rein, B.; Duan, W.M.; Yan, Z. Histone deacetylase inhibition restores behavioral and synaptic function in a mouse model of 16p11.2 Deletion. Int. J. Neuropsychopharmacol., 2022, 25(10), 877-889.
[http://dx.doi.org/10.1093/ijnp/pyac048] [PMID: 35907244]
[93]
Kusaczuk, M.; Krętowski, R.; Stypułkowska, A.; Cechowska-Pasko, M. Molecular and cellular effects of a novel hydroxamate-based HDAC inhibitor – belinostat – in glioblastoma cell lines: a preliminary report. Invest. New Drugs, 2016, 34(5), 552-564.
[http://dx.doi.org/10.1007/s10637-016-0372-5] [PMID: 27468826]
[94]
Rodríguez-Gómez, J.A.; Kavanagh, E.; Engskog-Vlachos, P.; Engskog, M.K.R.; Herrera, A.J.; Espinosa-Oliva, A.M.; Joseph, B.; Hajji, N.; Venero, J.L.; Burguillos, M.A. Microglia: Agents of the CNS Pro-inflammatory response. Cells, 2020, 9(7), 1717.
[http://dx.doi.org/10.3390/cells9071717] [PMID: 32709045]
[95]
Yadav, A.; Huang, T.C.; Chen, S.H.; Ramasamy, T.S.; Hsueh, Y.Y.; Lin, S.P.; Lu, F.I.; Liu, Y.H.; Wu, C.C. Sodium phenylbutyrate inhibits Schwann cell inflammation via HDAC and NFκB to promote axonal regeneration and remyelination. J. Neuroinflammation, 2021, 18(1), 238.
[http://dx.doi.org/10.1186/s12974-021-02273-1] [PMID: 34656124]
[96]
Cho, W.; Hong, S.H.; Choe, J. IL-4 and HDAC Inhibitors Suppress Cyclooxygenase-2 expression in human follicular dendritic cells. Immune Netw., 2013, 13(2), 75-79.
[http://dx.doi.org/10.4110/in.2013.13.2.75] [PMID: 23700398]
[97]
Yang, H.; Ni, W.; Wei, P.; Li, S.; Gao, X.; Su, J.; Jiang, H.; Lei, Y.; Zhou, L.; Gu, Y. HDAC inhibition reduces white matter injury after intracerebral hemorrhage. J. Cereb. Blood Flow Metab., 2021, 41(5), 958-974.
[http://dx.doi.org/10.1177/0271678X20942613] [PMID: 32703113]
[98]
Patnala, R.; Arumugam, T.V.; Gupta, N.; Dheen, S.T. HDAC inhibitor sodium butyrate-mediated epigenetic regulation enhances neuroprotective function of microglia during ischemic stroke. Mol. Neurobiol., 2017, 54(8), 6391-6411.
[http://dx.doi.org/10.1007/s12035-016-0149-z] [PMID: 27722928]
[99]
Czapski, G.A.; Strosznajder, J.B. Glutamate and GABA in microglia-neuron cross-talk in alzheimer’s disease. Int. J. Mol. Sci., 2021, 22(21), 11677.
[http://dx.doi.org/10.3390/ijms222111677] [PMID: 34769106]
[100]
Nathalie, M.; Polineni, S.P.; Chin, C.N.; Fawcett, D.; Clervius, H.; Maria, Q.S.L.; Legnay, F.; Rego, L.; Mahavadi, A.K.; Jermakowicz, W.J.; Sw-T, L.; Yokobori, S.; Gajavelli, S. Targeting microglial polarization to improve TBI outcomes. CNS Neurol. Disord. Drug Targets, 2021, 20(3), 216-227.
[http://dx.doi.org/10.2174/1871527319666200918145903] [PMID: 32951588]
[101]
Shein, N.A.; Shohami, E. Histone deacetylase inhibitors as therapeutic agents for acute central nervous system injuries. Mol. Med., 2011, 17(5-6), 448-456.
[http://dx.doi.org/10.2119/molmed.2011.00038] [PMID: 21274503]
[102]
Glauben, R.; Siegmund, B. Inhibition of histone deacetylases in inflammatory bowel diseases. Mol. Med., 2011, 17(5-6), 426-433.
[http://dx.doi.org/10.2119/molmed.2011.00069] [PMID: 21365125]
[103]
Dietz, K.C.; Casaccia, P. HDAC inhibitors and neurodegeneration: At the edge between protection and damage. Pharmacol. Res., 2010, 62(1), 11-17.
[http://dx.doi.org/10.1016/j.phrs.2010.01.011] [PMID: 20123018]
[104]
Gupta, R.; Ambasta, R.K.; Kumar, P. Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders. Life Sci., 2020, 243, 117278.
[http://dx.doi.org/10.1016/j.lfs.2020.117278] [PMID: 31926248]
[105]
Chen, J.; Zhang, J.; Shaik, N.F.; Yi, B.; Wei, X.; Yang, X.F.; Naik, U.P.; Summer, R.; Yan, G.; Xu, X.; Sun, J. The histone deacetylase inhibitor tubacin mitigates endothelial dysfunction by up-regulating the expression of endothelial nitric oxide synthase. J. Biol. Chem., 2019, 294(51), 19565-19576.
[http://dx.doi.org/10.1074/jbc.RA119.011317] [PMID: 31719145]
[106]
Shen, Y.; Yang, R.; Zhao, J.; Chen, M.; Chen, S.; Ji, B.; Chen, H.; Liu, D.; Li, L.; Du, G. The histone deacetylase inhibitor belinostat ameliorates experimental autoimmune encephalomyelitis in mice by inhibiting TLR2/MyD88 and HDAC3/NF-κB p65-mediated neuroinflammation. Pharmacol. Res., 2022, 176, 105969.
[http://dx.doi.org/10.1016/j.phrs.2021.105969] [PMID: 34758400]
[107]
Royce, S.G.; Dang, W.; Yuan, G.; Tran, J.; El-Osta, A.; Karagiannis, T.C.; Tang, M.L.K. Effects of the histone deacetylase inhibitor, trichostatin A, in a chronic allergic airways disease model in mice. Arch. Immunol. Ther. Exp. (Warsz.), 2012, 60(4), 295-306.
[http://dx.doi.org/10.1007/s00005-012-0180-3] [PMID: 22684086]
[108]
Dinarello, C.A. Anti-inflammatory agents: Present and future. Cell, 2010, 140(6), 935-950.
[http://dx.doi.org/10.1016/j.cell.2010.02.043] [PMID: 20303881]
[109]
Khatri, N.; Thakur, M.; Pareek, V.; Kumar, S.; Sharma, S.; Datusalia, A.K. Oxidative stress: Major threat in traumatic brain injury. CNS Neurol. Disord. Drug Targets, 2018, 17(9), 689-695.
[http://dx.doi.org/10.2174/1871527317666180627120501] [PMID: 29952272]
[110]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[111]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J. Vitagenes, cellular stress response, and acetylcarnitine: Relevance to hormesis. Biofactors, 2009, 35(2), 146-160.
[http://dx.doi.org/10.1002/biof.22] [PMID: 19449442]
[112]
Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775.
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]
[113]
Renis, M.; Calabrese, V.; Russo, A.; Calderone, A.; Barcellona, M.L.; Rizza, V. Nuclear DNA strand breaks during ethanol-induced oxidative stress in rat brain. FEBS Lett., 1996, 390(2), 153-156.
[http://dx.doi.org/10.1016/0014-5793(96)00647-3] [PMID: 8706848]
[114]
Misztak, P.; Sowa-Kućma, M.; Szewczyk, B.; Nowak, G. Vorinostat (SAHA) may exert its antidepressant-like effects through the modulation of oxidative stress pathways. Neurotox. Res., 2021, 39(2), 170-181.
[http://dx.doi.org/10.1007/s12640-020-00317-7] [PMID: 33400178]
[115]
Valvassori, S.S.; Dal-Pont, G.C.; Steckert, A.V.; Varela, R.B.; Lopes-Borges, J.; Mariot, E.; Resende, W.R.; Arent, C.O.; Carvalho, A.F.; Quevedo, J. Sodium butyrate has an antimanic effect and protects the brain against oxidative stress in an animal model of mania induced by ouabain. Psychiatry Res., 2016, 235, 154-159.
[http://dx.doi.org/10.1016/j.psychres.2015.11.017] [PMID: 26654753]
[116]
Varoglu, A.O.; Yildirim, A.; Aygul, R.; Gundogdu, O.L.; Sahin, Y.N. Effects of valproate, carbamazepine, and levetiracetam on the antioxidant and oxidant systems in epileptic patients and their clinical importance. Clin. Neuropharmacol., 2010, 33(3), 155-157.
[http://dx.doi.org/10.1097/WNF.0b013e3181d1e133] [PMID: 20502135]
[117]
Fu, J.; Shao, C.J.; Chen, F.R.; Ng, H.K.; Chen, Z.P. Autophagy induced by valproic acid is associated with oxidative stress in glioma cell lines. Neuro-oncol., 2010, 12(4), 328-340.
[http://dx.doi.org/10.1093/neuonc/nop005] [PMID: 20308311]
[118]
Fourcade, S.; Ruiz, M.; Guilera, C.; Hahnen, E.; Brichta, L.; Naudi, A.; Portero-Otín, M.; Dacremont, G.; Cartier, N.; Wanders, R.; Kemp, S.; Mandel, J.L.; Wirth, B.; Pamplona, R.; Aubourg, P.; Pujol, A. Valproic acid induces antioxidant effects in X-linked adrenoleukodystrophy. Hum. Mol. Genet., 2010, 19(10), 2005-2014.
[http://dx.doi.org/10.1093/hmg/ddq082] [PMID: 20179078]
[119]
Iranpak, F.; Saberzadeh, J.; Vessal, M.; Takhshid, M.A. Sodium valproate ameliorates aluminum-induced oxidative stress and apoptosis of PC12 cells. Iran. J. Basic Med. Sci., 2019, 22(11), 1353-1358.
[http://dx.doi.org/10.22038/ijbms.2019.36930.8804] [PMID: 32128102]
[120]
Sun, X.; Sun, Y.; Lin, S.; Xu, Y.; Zhao, D. Histone deacetylase inhibitor valproic acid attenuates high glucose induced endoplasmic reticulum stress and apoptosis in NRK 52E cells. Mol. Med. Rep., 2020, 22(5), 4041-4047.
[http://dx.doi.org/10.3892/mmr.2020.11496] [PMID: 32901855]
[121]
Wu, M.S.; Li, X.J.; Liu, C.Y.; Xu, Q.; Huang, J.Q.; Gu, S.; Chen, J.X. Effects of histone modification in major depressive disorder. Curr. Neuropharmacol., 2022, 20(7), 1261-1277.
[http://dx.doi.org/10.2174/1570159X19666210922150043] [PMID: 34551699]
[122]
Faraco, G.; Pancani, T.; Formentini, L.; Mascagni, P.; Fossati, G.; Leoni, F.; Moroni, F.; Chiarugi, A. Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Mol. Pharmacol., 2006, 70(6), 1876-1884.
[http://dx.doi.org/10.1124/mol.106.027912] [PMID: 16946032]
[123]
Lee, H.A.; Lee, E.; Do, G.Y.; Moon, E.K.; Quan, F.S.; Kim, I. Histone deacetylase inhibitor MGCD0103 protects the pancreas from streptozotocin-induced oxidative stress and β-cell death. Biomed. Pharmacother., 2019, 109, 921-929.
[http://dx.doi.org/10.1016/j.biopha.2018.10.163] [PMID: 30551546]
[124]
Langley, B.; Gensert, J.; Beal, M.; Ratan, R. Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Curr. Drug Targets CNS Neurol. Disord., 2005, 4(1), 41-50.
[http://dx.doi.org/10.2174/1568007053005091] [PMID: 15723612]
[125]
Ferrante, R.J.; Kubilus, J.K.; Lee, J.; Ryu, H.; Beesen, A.; Zucker, B.; Smith, K.; Kowall, N.W.; Ratan, R.R.; Luthi-Carter, R.; Hersch, S.M. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J. Neurosci., 2003, 23(28), 9418-9427.
[http://dx.doi.org/10.1523/JNEUROSCI.23-28-09418.2003] [PMID: 14561870]
[126]
Graham, N.S.N.; Sharp, D.J. Understanding neurodegeneration after traumatic brain injury: From mechanisms to clinical trials in dementia. J. Neurol. Neurosurg. Psychiatry, 2019, 90(11), 1221-1233.
[http://dx.doi.org/10.1136/jnnp-2017-317557] [PMID: 31542723]
[127]
Toshkezi, G.; Kyle, M.; Longo, S.L.; Chin, L.S.; Zhao, L.R. Brain repair by hematopoietic growth factors in the subacute phase of traumatic brain injury. J. Neurosurg., 2018, 129(5), 1286-1294.
[http://dx.doi.org/10.3171/2017.7.JNS17878] [PMID: 29372883]
[128]
Kitahara, M.; Inoue, T.; Mani, H.; Takamatsu, Y.; Ikegami, R.; Tohyama, H.; Maejima, H. Exercise and pharmacological inhibition of histone deacetylase improves cognitive function accompanied by an increase of gene expressions crucial for neuronal plasticity in the hippocampus. Neurosci. Lett., 2021, 749, 135749.
[http://dx.doi.org/10.1016/j.neulet.2021.135749] [PMID: 33610667]
[129]
Pawelec, P.; Sypecka, J.; Zalewska, T.; Ziemka-Nalecz, M. Analysis of Givinostat/ITF2357 treatment in a rat model of neonatal hypoxic-ischemic brain damage. Int. J. Mol. Sci., 2022, 23(15), 8287.
[http://dx.doi.org/10.3390/ijms23158287] [PMID: 35955430]
[130]
Francelle, L.; Outeiro, T.F.; Rappold, G.A. Inhibition of HDAC6 activity protects dopaminergic neurons from alpha-synuclein toxicity. Sci. Rep., 2020, 10(1), 6064.
[http://dx.doi.org/10.1038/s41598-020-62678-5] [PMID: 32269243]
[131]
Gao, W.M.; Chadha, M.S.; Kline, A.E.; Clark, R.S.B.; Kochanek, P.M.; Dixon, C.E.; Jenkins, L.W. Immunohistochemical analysis of histone H3 acetylation and methylation—Evidence for altered epigenetic signaling following traumatic brain injury in immature rats. Brain Res., 2006, 1070(1), 31-34.
[http://dx.doi.org/10.1016/j.brainres.2005.11.038] [PMID: 16406269]
[132]
Guan, J.S.; Haggarty, S.J.; Giacometti, E.; Dannenberg, J.H.; Joseph, N.; Gao, J.; Nieland, T.J.F.; Zhou, Y.; Wang, X.; Mazitschek, R.; Bradner, J.E.; DePinho, R.A.; Jaenisch, R.; Tsai, L.H. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 2009, 459(7243), 55-60.
[http://dx.doi.org/10.1038/nature07925] [PMID: 19424149]
[133]
Prior, R.; Van Helleputte, L.; Klingl, Y.E.; Van Den Bosch, L. HDAC6 as a potential therapeutic target for peripheral nerve disorders. Expert Opin. Ther. Targets, 2018, 22(12), 993-1007.
[http://dx.doi.org/10.1080/14728222.2018.1541235] [PMID: 30360671]
[134]
Calliari, A.; Bobba, N.; Escande, C.; Chini, E.N. Resveratrol delays Wallerian degeneration in a NAD+ and DBC1 dependent manner. Exp. Neurol., 2014, 251, 91-100.
[http://dx.doi.org/10.1016/j.expneurol.2013.11.013] [PMID: 24252177]
[135]
Zhan, X.; Cox, C.; Ander, B.P.; Liu, D.; Stamova, B.; Jin, L.W.; Jickling, G.C.; Sharp, F.R. Inflammation combined with ischemia produces myelin injury and plaque-like aggregates of myelin, amyloid-β and AβPP in adult rat brain. J. Alzheimers Dis., 2015, 46(2), 507-523.
[http://dx.doi.org/10.3233/JAD-143072] [PMID: 25790832]
[136]
Xu, Z.; Lv, X.A.; Dai, Q.; Ge, Y.Q.; Xu, J. Acute upregulation of neuronal mitochondrial type-1 cannabinoid receptor and it’s role in metabolic defects and neuronal apoptosis after TBI. Mol. Brain, 2016, 9(1), 75.
[http://dx.doi.org/10.1186/s13041-016-0257-8] [PMID: 27485212]
[137]
Buyandelger, B.; Bar, E.E.; Hung, K.S.; Chen, R.M.; Chiang, Y.H.; Liou, J.P.; Huang, H.M.; Wang, J.Y. Histone deacetylase inhibitor MPT0B291 suppresses glioma growth in vitro and in vivo partially through acetylation of p53. Int. J. Biol. Sci., 2020, 16(16), 3184-3199.
[http://dx.doi.org/10.7150/ijbs.45505] [PMID: 33162824]
[138]
Uo, T.; Veenstra, T.D.; Morrison, R.S. Histone deacetylase inhibitors prevent p53-dependent and p53-independent Bax-mediated neuronal apoptosis through two distinct mechanisms. J. Neurosci., 2009, 29(9), 2824-2832.
[http://dx.doi.org/10.1523/JNEUROSCI.6186-08.2009] [PMID: 19261878]
[139]
Cope, E.C.; Gould, E. Adult neurogenesis, glia, and the extracellular matrix. Cell Stem Cell, 2019, 24(5), 690-705.
[http://dx.doi.org/10.1016/j.stem.2019.03.023] [PMID: 31051133]
[140]
Nieto-Estevez, V.; Changarathil, G.; Adeyeye, A.O.; Coppin, M.O.; Kassim, R.S.; Zhu, J.; Hsieh, J. HDAC1 regulates neuronal differentiation. Front. Mol. Neurosci., 2022, 14, 815808.
[http://dx.doi.org/10.3389/fnmol.2021.815808] [PMID: 35095417]
[141]
Yoo, D.Y.; Kim, D.W.; Kim, M.J.; Choi, J.H.; Jung, H.Y.; Nam, S.M.; Kim, J.W.; Yoon, Y.S.; Choi, S.Y.; Hwang, I.K. Sodium butyrate, a histone deacetylase Inhibitor, ameliorates SIRT2-induced memory impairment, reduction of cell proliferation, and neuroblast differentiation in the dentate gyrus. Neurol. Res., 2015, 37(1), 69-76.
[http://dx.doi.org/10.1179/1743132814Y.0000000416] [PMID: 24963697]
[142]
Uittenbogaard, M.; Brantner, C.A.; Chiaramello, A. Epigenetic modifiers promote mitochondrial biogenesis and oxidative metabolism leading to enhanced differentiation of neuroprogenitor cells. Cell Death Dis., 2018, 9(3), 360.
[http://dx.doi.org/10.1038/s41419-018-0396-1] [PMID: 29500414]
[143]
Moon, B.S.; Lu, W.; Park, H.J. Valproic acid promotes the neuronal differentiation of spiral ganglion neural stem cells with robust axonal growth. Biochem. Biophys. Res. Commun., 2018, 503(4), 2728-2735.
[http://dx.doi.org/10.1016/j.bbrc.2018.08.032] [PMID: 30119886]
[144]
Wu, C.H.; Tsai, Y.C.; Tsai, T.H.; Kuo, K.L.; Su, Y.F.; Chang, C.H.; Lin, C.L. Valproic acid reduces vasospasm through modulation of Akt phosphorylation and attenuates neuronal apoptosis in subarachnoid hemorrhage rats. Int. J. Mol. Sci., 2021, 22(11), 5975.
[http://dx.doi.org/10.3390/ijms22115975] [PMID: 34205883]
[145]
Yu, I.T.; Park, J.Y.; Kim, S.H.; Lee, J.; Kim, Y.S.; Son, H. Valproic acid promotes neuronal differentiation by induction of proneural factors in association with H4 acetylation. Neuropharmacology, 2009, 56(2), 473-480.
[http://dx.doi.org/10.1016/j.neuropharm.2008.09.019] [PMID: 19007798]
[146]
Rao, T.; Wu, F.; Xing, D.; Peng, Z.; Ren, D.; Feng, W.; Chen, Y.; Zhao, Z.; Wang, H.; Wang, J.; Kan, W.; Zhang, Q. Effects of valproic Acid on axonal regeneration and recovery of motor function after peripheral nerve injury in the rat. Arch. Bone Jt. Surg., 2014, 2(1), 17-24.
[PMID: 25207308]
[147]
Rozenbaum, M.; Rajman, M.; Rishal, I.; Koppel, I.; Koley, S.; Medzihradszky, K.F.; Oses-Prieto, J.A.; Kawaguchi, R.; Amieux, P.S.; Burlingame, A.L.; Coppola, G.; Fainzilber, M. Translatome regulation in neuronal injury and axon regrowth. eNeuro, 2018, 5(2), ENEURO.0276, 17.2018.
[http://dx.doi.org/10.1523/ENEURO.0276-17.2018] [PMID: 29756027]
[148]
Petrova, V.; Eva, R. The virtuous cycle of axon growth: Axonal transport of growth-promoting machinery as an intrinsic determinant of axon regeneration. Dev. Neurobiol., 2018, 78(10), 898-925.
[http://dx.doi.org/10.1002/dneu.22608] [PMID: 29989351]
[149]
Mahgoub, M.; Monteggia, L.M. A role for histone deacetylases in the cellular and behavioral mechanisms underlying learning and memory. Learn. Mem., 2014, 21(10), 564-568.
[http://dx.doi.org/10.1101/lm.036012.114] [PMID: 25227251]
[150]
Fischer, A.; Sananbenesi, F.; Wang, X.; Dobbin, M.; Tsai, L.H. Recovery of learning and memory is associated with chromatin remodelling. Nature, 2007, 447(7141), 178-182.
[http://dx.doi.org/10.1038/nature05772] [PMID: 17468743]
[151]
Gaub, P.; Tedeschi, A.; Puttagunta, R.; Nguyen, T.; Schmandke, A.; Di Giovanni, S. HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ., 2010, 17(9), 1392-1408.
[http://dx.doi.org/10.1038/cdd.2009.216] [PMID: 20094059]
[152]
Johnson, E.C.B.; Dammer, E.B.; Duong, D.M.; Ping, L.; Zhou, M.; Yin, L.; Higginbotham, L.A.; Guajardo, A.; White, B.; Troncoso, J.C.; Thambisetty, M.; Montine, T.J.; Lee, E.B.; Trojanowski, J.Q.; Beach, T.G.; Reiman, E.M.; Haroutunian, V.; Wang, M.; Schadt, E.; Zhang, B.; Dickson, D.W.; Ertekin-Taner, N.; Golde, T.E.; Petyuk, V.A.; De Jager, P.L.; Bennett, D.A.; Wingo, T.S.; Rangaraju, S.; Hajjar, I.; Shulman, J.M.; Lah, J.J.; Levey, A.I.; Seyfried, N.T. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat. Med., 2020, 26(5), 769-780.
[http://dx.doi.org/10.1038/s41591-020-0815-6] [PMID: 32284590]
[153]
Shanaki-Bavarsad, M.; Almolda, B.; González, B.; Castellano, B. Astrocyte-targeted overproduction of IL-10 reduces neurodegeneration after TBI. Exp. Neurobiol., 2022, 31(3), 173-195.
[http://dx.doi.org/10.5607/en21035] [PMID: 35786640]
[154]
Liu, Z.; Chopp, M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog. Neurobiol., 2016, 144, 103-120.
[http://dx.doi.org/10.1016/j.pneurobio.2015.09.008] [PMID: 26455456]
[155]
Wang, J.; Hou, Y.; Zhang, L.; Liu, M.; Zhao, J.; Zhang, Z.; Ma, Y.; Hou, W. Estrogen attenuates traumatic brain injury by inhibiting the activation of microglia and astrocyte-mediated neuroinflammatory responses. Mol. Neurobiol., 2021, 58(3), 1052-1061.
[http://dx.doi.org/10.1007/s12035-020-02171-2] [PMID: 33085047]
[156]
Borgonetti, V.; Meacci, E.; Pierucci, F.; Romanelli, M.N.; Galeotti, N. Dual HDAC/BRD4 inhibitors relieves neuropathic pain by attenuating inflammatory response in microglia after spared nerve injury. Neurotherapeutics, 2022, 19(5), 1634-1648.
[http://dx.doi.org/10.1007/s13311-022-01243-6] [PMID: 35501470]
[157]
Prozorovski, T.; Schulze-Topphoff, U.; Glumm, R.; Baumgart, J.; Schröter, F.; Ninnemann, O.; Siegert, E.; Bendix, I.; Brüstle, O.; Nitsch, R.; Zipp, F.; Aktas, O. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat. Cell Biol., 2008, 10(4), 385-394.
[http://dx.doi.org/10.1038/ncb1700] [PMID: 18344989]
[158]
Zhang, Y.; Du, Z.; Zhuang, Z.; Wang, Y.; Wang, F.; Liu, S.; Wang, H.; Feng, H.; Li, H.; Wang, L.; Zhang, X.; Hao, A. E804 induces growth arrest, differentiation and apoptosis of glioblastoma cells by blocking Stat3 signaling. J. Neurooncol., 2015, 125(2), 265-275.
[http://dx.doi.org/10.1007/s11060-015-1917-8] [PMID: 26386687]
[159]
Michinaga, S.; Koyama, Y. Pathophysiological responses and roles of astrocytes in traumatic brain injury. Int. J. Mol. Sci., 2021, 22(12), 6418.
[http://dx.doi.org/10.3390/ijms22126418] [PMID: 34203960]
[160]
Li, X.; Su, X.; Liu, R.; Pan, Y.; Fang, J.; Cao, L.; Feng, C.; Shang, Q.; Chen, Y.; Shao, C.; Shi, Y. HDAC inhibition potentiates anti-tumor activity of macrophages and enhances anti-PD-L1-mediated tumor suppression. Oncogene, 2021, 40(10), 1836-1850.
[http://dx.doi.org/10.1038/s41388-020-01636-x] [PMID: 33564072]
[161]
Dong, Z.; Yang, Y.; Liu, S.; Lu, J.; Huang, B.; Zhang, Y. HDAC inhibitor PAC-320 induces G2/M cell cycle arrest and apoptosis in human prostate cancer. Oncotarget, 2018, 9(1), 512-523.
[http://dx.doi.org/10.18632/oncotarget.23070] [PMID: 29416632]
[162]
Dashwood, R.; Ho, E. Dietary histone deacetylase inhibitors: From cells to mice to man. Semin. Cancer Biol., 2007, 17(5), 363-369.
[http://dx.doi.org/10.1016/j.semcancer.2007.04.001] [PMID: 17555985]
[163]
Jaworska, J.; Zalewska, T.; Sypecka, J.; Ziemka-Nalecz, M. Effect of the HDAC inhibitor, sodium butyrate, on neurogenesis in a rat model of neonatal hypoxia–ischemia: Potential mechanism of action. Mol. Neurobiol., 2019, 56(9), 6341-6370.
[http://dx.doi.org/10.1007/s12035-019-1518-1] [PMID: 30767185]
[164]
Tung, B.; Ma, D.; Wang, S.; Oyinlade, O.; Laterra, J.; Ying, M.; Lv, S.Q.; Wei, S.; Xia, S. Krüppel-like factor 9 and histone deacetylase inhibitors synergistically induce cell death in glioblastoma stem-like cells. BMC Cancer, 2018, 18(1), 1025.
[http://dx.doi.org/10.1186/s12885-018-4874-8] [PMID: 30348136]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy