Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Alpha-amylase Inhibitory and Cytotoxicity Investigation of Biologically Synthesized Silver Nanoparticles Using Balanites aegyptiaca on C2C12 Cells

Author(s): Monika Bhardwaj, Sudhir Kumar Kataria*, Shammi Sharma and Jaya Parkash Yadav

Volume 14, Issue 3, 2024

Published on: 01 April, 2024

Article ID: e010424228516 Pages: 14

DOI: 10.2174/0122106812284060240323175059

Price: $65

Abstract

Introduction: Silver nanoparticles were biologically synthesized from the leaf and seed extract of Balanites aegyptiaca against diabetes.

Method: The silver nanoparticles were characterized using UV-visible spectroscopy, FTIR, SEM, TEM, zeta potential and dynamic light scattering for size distribution. The finding proved the nanosize and spherical shapes of the nanoparticles. In-vitro antidiabetic and cytotoxic activities of the synthesized nanoparticles were evaluated for the first time in both the plant extract, and they showed significant inhibition of α-amylase. However, the inhibition was elevated in the case of nanoparticles.

Result: It was found that seed and leaf extract inhibited α-amylase up to 62.23±7.25631% and 63.90±5.632%, respectively. The elevation in the inhibition was observed in the case of their respective silver nanoparticles, such as AgNP seeds and AgNP leaves inhibited the enzyme up to 72.71±7.8569% and 74.04±6.3254%, respectively. They showed lesser cytotoxicity against C2C12 cells.

Conclusion: It can be concluded that the leaf and seed extracts of Balanites aegyptiaca and synthesized silver nanoparticles from this plant can be good anti-diabetic agents.

Graphical Abstract

[1]
Zaid, H.; Antonescu, C.N.; Randhawa, V.K.; Klip, A. Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem. J., 2008, 413(2), 201-215.
[http://dx.doi.org/10.1042/BJ20080723] [PMID: 18570632]
[2]
Lee, Y.; Berglund, E.D.; Wang, M.; Fu, X.; Yu, X.; Charron, M.J.; Burgess, S.C.; Unger, R.H. Metabolic manifestations of insulin deficiency do not occur without glucagon action. Proc. Natl. Acad. Sci. , 2012, 109(37), 14972-14976.
[http://dx.doi.org/10.1073/pnas.1205983109] [PMID: 22891336]
[3]
International diabetes foundation, 2020. Available from: https://www.idf.org/aboutdiabetes/what-is-diabetes/factsfigures.html (Assessed on 16 March).
[4]
World health organisation, 2019. Available from: https://www.who.int/health-topics/diabetes#tab=tab_1
[5]
Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol., 2018, 14(2), 88-98.
[http://dx.doi.org/10.1038/nrendo.2017.151] [PMID: 29219149]
[6]
Nasser, S.; Vialichka, V.; Biesiekierska, M.; Balcerczyk, A.; Pirola, L. Effects of ketogenic diet and ketone bodies on the cardiovascular system: Concentration matters. World J. Diabetes, 2020, 11(12), 584-595.
[http://dx.doi.org/10.4239/wjd.v11.i12.584] [PMID: 33384766]
[7]
Kandasamy, S.; Devarayan, K.; Bhuvanendran, N.; Zhang, B.; He, Z.; Narayanan, M.; Mathimani, T.; Ravichandran, S.; Pugazhendhi, A. Accelerating the production of bio-oil from hydrothermal liquefaction of microalgae via recycled biochar-supported catalysts. J. Environ. Chem. Eng., 2021, 9(4), 105321.
[http://dx.doi.org/10.1016/j.jece.2021.105321]
[8]
Narayanan, M.; Divya, S.; Natarajan, D.; Senthil-Nathan, S.; Kandasamy, S.; Chinnathambi, A.; Alahmadi, T.A.; Pugazhendhi, A. Green synthesis of silver nanoparticles from aqueous extract of Ctenolepis garcini L. and assess their possible biological applications. Process Biochem., 2021, 107, 91-99.
[http://dx.doi.org/10.1016/j.procbio.2021.05.008]
[9]
Hall, B.M.; Balan, V.; Gleiberman, A.S.; Strom, E.; Krasnov, P.; Virtuoso, L.P.; Rydkina, E.; Vujcic, S.; Balan, K.; Gitlin, I.; Leonova, K.; Polinsky, A.; Chernova, O.B.; Gudkov, A.V. Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging , 2016, 8(7), 1294-1315.
[http://dx.doi.org/10.18632/aging.100991] [PMID: 27391570]
[10]
Ali Dheyab, M.; Aziz, A.A.; Jameel, M.S. Recent advances in inorganic nanomaterials synthesis using sonochemistry: a comprehensive review on iron oxide, gold and iron oxide coated gold nanoparticles. Molecules, 2021, 26(9), 2453.
[http://dx.doi.org/10.3390/molecules26092453] [PMID: 33922347]
[11]
Bhuyar, P.; Rahim, M.H.; Sundararaju, S.; Maniam, G.; Govindan, N. Antioxidant and antibacterial activity of red seaweed; Kappaphycus alvarezii against pathogenic bacteria. Global J. Environ. Sci. Manage., 2020, 6(1), 47-58.
[12]
Anusha, S.; Athithan, S. Mathematical modelling co-existence of diabetes and COVID-19: Deterministic and stochastic approach., 2021. Available from : https://pdfs.semanticscholar.org/7032/7fe881e821b14489a0e7af73a6624dfba540.pdf
[13]
Hasan, S.; Shaw, S.M.; Gelling, L.H.; Kerr, C.J.; Meads, C.A. Exercise modes and their association with hypoglycemia episodes in adults with type 1 diabetes mellitus: A systematic review. BMJ Open Diabetes Res. Care, 2018, 6(1), e000578.
[http://dx.doi.org/10.1136/bmjdrc-2018-000578] [PMID: 30397494]
[14]
Giri, A.K.; Jena, B.; Biswal, B.; Pradhan, A.K.; Arakha, M.; Acharya, S.; Acharya, L. Green synthesis and characterization of silver nanoparticles using Eugenia roxburghii DC. Extract and activity against biofilm-producing bacteria. Sci. Rep., 2022, 12(1), 8383.
[http://dx.doi.org/10.1038/s41598-022-12484-y] [PMID: 35589849]
[15]
Yamamoto, K.; Imaoka, T.; Tanabe, M.; Kambe, T. New horizon of nanoparticle and cluster catalysis with dendrimers. Chem. Rev., 2019, 120, 1397-1437.
[16]
Košpić, K.; Biba, R.; Peharec Štefanić, P.; Cvjetko, P.; Tkalec, M.; Balen, B. Silver nanoparticle effects on antioxidant response in tobacco are modulated by surface coating. Plants, 2022, 11(18), 2402.
[http://dx.doi.org/10.3390/plants11182402] [PMID: 36145803]
[17]
Kurmi, U.G.; Zahir, A.; Musa, A.; Iyadunni, A.D.; Patel, P.K.; Chukwuemeka, P.O.; Tomsu, U.A. Review of nigerian medicinal plants used in the management of diabetes mellitus. J. Clin. Med. Images., 2022, 2(1), 1-5.
[http://dx.doi.org/10.55920/2771-019X/1066]
[18]
Chinnasamy, G.; Chandrasekharan, S.; Koh, T.W.; Bhatnagar, S. Synthesis, characterization, antibacterial, and wound healing efficacy of silver nanoparticles from Azadirachta indica. Front. Microbiol., 2021, 12, 611560.
[http://dx.doi.org/10.3389/fmicb.2021.611560] [PMID: 33679635]
[19]
Abdelaziz, S.M.; Lemine, F.M.M.; Tfeil, H.O.; Filali-Maltouf, A.; Boukhary, A.O.M.S. Phytochemicals, antioxidant activity and ethnobotanical uses of Balanites aegyptiaca (L.) Del. fruits from the arid zone of Mauritania, Northwest Africa. Plants, 2020, 9(3), 401.
[http://dx.doi.org/10.3390/plants9030401] [PMID: 32213817]
[20]
Hailu, H. W.; Hailu, Y.; Brahmam Pasumarthi, J. D. P. Phytochemical analysis and evaluation of in vitro antioxidant potential of ethanolic stem bark extract of Balanites aegyptiaca Del. 2023.
[21]
Sarfo-Antwi, F.; Larbie, C.; Ameade, E.P.K. Phytochemical, antioxidant, and toxicological assessment of Balanites aegyptiaca leaves extract in rats. J. Altern. Complement. Med., 2023, 9(416)
[22]
Friday, O.A.; Abraham, G.T.; Ojotu, E.M.; Oneh, A.J. Amino acid and antioxidant properties of functional Ogi derived from (Balanites aegyptiaca Del) defatted meal, concentrate, and hydrolysate. In: Food Chemistry Advances; Elsevier, 2023; p. 100540.
[23]
Farag, M.A.; Baky, M.H.; Morgan, I.; Khalifa, M.R.; Rennert, R.; Mohamed, O.G.; El-Sayed, M.M.; Porzel, A.; Wessjohann, L.A.; Ramadan, N.S. Comparison of Balanites aegyptiaca parts: metabolome providing insights into plant health benefits and valorization purposes as analyzed using multiplex GC-MS, LC-MS, NMR-based metabolomics, and molecular networking. RSC Advances, 2023, 13(31), 21471-21493.
[http://dx.doi.org/10.1039/D3RA03141A] [PMID: 37485437]
[24]
Helal, E.G.E.; Abd El-Wahab, S.M.; El Refaey, H.; El Refaey, H.; Mohammad, A.A. Antidiabetic and antihyperlipidemic effect of Balanites aegyptiaca seeds (aqueous extract) on diabetic rats. Egypt. J. Hosp. Med., 2013, 52(52), 725-739.
[http://dx.doi.org/10.12816/0000610]
[25]
Murthy, H.N.; Bapat, V.A. Importance of underutilized fruits and nuts. In: Bioactive Compounds in Underutilized Fruits and Nuts; Springer, 2020; pp. 3-19.
[http://dx.doi.org/10.1007/978-3-030-30182-8_1]
[26]
Hassan, L.E.A.; Dahham, S.S.; Saghir, S.A.M.; Mohammed, A.M.A.; Eltayeb, N.M.; Majid, A.M.S.A.; Majid, A.S.A. Chemotherapeutic potentials of the stem bark of Balanite aegyptiaca (L.) Delile: an antiangiogenic, antitumor and antioxidant agent. BMC Complement. Altern. Med., 2016, 16(1), 396.
[http://dx.doi.org/10.1186/s12906-016-1369-5] [PMID: 27760539]
[27]
Ibrahim, O.H.M.; Al-Qurashi, A.D.; Asiry, K.A.; Mousa, M.A.A.; Alhakamy, N.A.; Abo-Elyousr, K.A.M. Investigation of potential in vitro anticancer and antimicrobial activities of balanites aegyptiaca (l.) delile fruit extract and its phytochemical components. Plants, 2022, 11(19), 2621.
[http://dx.doi.org/10.3390/plants11192621] [PMID: 36235487]
[28]
Zaahkouk, S.A.; Aboul-Ela, E.I.; Ramadan, M.A.; Bakry, S.; Ahmed, B.M.; Mhany, S. Anti carcinogenic activity of methanolic extract of Balanites aegyptiaca against breast, colon, and liver cancer cells. Int. J. Adv. Res. , 2015, 3(6), 255-266.
[29]
Teklu, B.; Kadiri, S.K.; Vidavalur, S. Green synthesis of copper oxide nanoparticles using Balanites aegyptiaca stem bark extract and investigation of antibacterial activity. Results in Chemistry, 2023, 6, 101152.
[http://dx.doi.org/10.1016/j.rechem.2023.101152]
[30]
Umar, A. Evaluation of antimicrobial activity and phytochemical analysis of ethanolic leaf extract of Balanites aegyptiaca. Intern. Res. J. Inno. Eng. Techno., 2023, 7(7), 178.
[31]
Anani, K.; Adjrah, Y.; Ameyapoh, Y.; Karou, S.D.; Agbonon, A.; de Souza, C.; Gbeassor, M. Effects of hydroethanolic extracts of Balanites aegyptiaca (L.) Delile (Balanitaceae) on some resistant pathogens bacteria isolated from wounds. J. Ethnopharmacol., 2015, 164, 16-21.
[http://dx.doi.org/10.1016/j.jep.2015.01.051] [PMID: 25666430]
[32]
Biu, A.A.; Abdulkadir, M.; Onyiche, T.E.; Muhammad, Z.A.; Musa, J. Anthelmintic effects of aqueous extract Balanites aegyptiaca stem bark on strongyle larvae and the earthworm Pheretima posthuma. Sokoto J. Vet. Sci., 2023, 21(2), 51-57.
[http://dx.doi.org/10.4314/sokjvs.v21i2.1]
[33]
Abdullahi, A.M.; Malgwi, K.D.; Onyiche, E.T.; Bukar, K.B.; Kassu, M.; Muhammad, S.; Daniel, N. Trypanocidal effects of Balanites aegyptiaca Del. (Zygophyllaceae) leaf extract and Suramin on Trypanosoma evansi experimental infection in albino rat. Sahel J. Veter. Sci., 2023, 20(1), 35-43.
[http://dx.doi.org/10.54058/saheljvs.v20i1.371]
[34]
Pahimi, A.L.; Temoa, C.W.B.; Wandjoumbe, P.; Soukbo, C.; Salihou, A.; Iya, S.B.; Zogo, Y.P.M. Amino acid and antioxidant properties of functional Ogi derived from (Balanites aegyptiaca Del) defatted meal, concentrate, and hydrolysate. Drug Discovery, 2023, 17, 1-24.
[35]
Gunathilake, T.; Akanbi, T.O.; Suleria, H.A.R.; Nalder, T.D.; Francis, D.S.; Barrow, C.J. Seaweed phenolics as natural antioxidants, aquafeed additives, veterinary treatments and cross-linkers for microencapsulation. Mar. Drugs, 2022, 20(7), 445.
[http://dx.doi.org/10.3390/md20070445] [PMID: 35877738]
[36]
Balčiūnaitienė, A.; Liaudanskas, M.; Puzerytė, V.; Viškelis, J.; Janulis, V.; Viškelis, P.; Griškonis, E.; Jankauskaitė, V. Eucalyptus globulus and salvia officinalis extracts mediated green synthesis of silver nanoparticles and their application as an antioxidant and antimicrobial agent. Plants, 2022, 11(8), 1085.
[http://dx.doi.org/10.3390/plants11081085] [PMID: 35448813]
[37]
Soman, S.; Suresh, K.; Muthusamy, R. Chemically defined medium for the production of phytase by Hanseniaspora guilliermondii S1, Pichia fermentans S2 and its secondary structure prediction of 16S rRNA. Biointerface Res. Appl. Chem., 2020, 10(5), 61196127.
[38]
Vishveshvar, K.; Aravind Krishnan, M.V.; Haribabu, K.; Vishnuprasad, S. Green synthesis of copper oxide nanoparticles using Ixiro coccinea plant leaves and its characterization. Bionanoscience, 2018, 8(2), 554-558.
[http://dx.doi.org/10.1007/s12668-018-0508-5]
[39]
Khatua, A.; Prasad, A.; Priyadarshini, E.; Patel, A.K.; Naik, A.; Saravanan, M.; Barabadi, H.; Ghosh,; Paul, B.; Paulraj, R.; Meena, R. Emerging antineoplastic plant-based gold nanoparticle synthesis: A mechanistic exploration of their anticancer activity toward cervical cancer cells. J. Cluster Sci., 2020, 31(6), 1329-1340.
[http://dx.doi.org/10.1007/s10876-019-01742-1]
[40]
Vongsak, B.; Sithisarn, P.; Mangmool, S.; Thongpraditchote, S.; Wongkrajang, Y.; Gritsanapan, W. Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Ind. Crops Prod., 2013, 44, 566-571.
[http://dx.doi.org/10.1016/j.indcrop.2012.09.021]
[41]
Zaky, A.S.; Kandeil, M.; Abdel-Gabbar, M.; Fahmy, E.M.; Almehmadi, M.M.; Ali, T.M.; Ahmed, O.M. The antidiabetic effects and modes of action of the balanites aegyptiaca fruit and seed aqueous extracts in na/stz-induced diabetic rats. Pharmaceutics, 2022, 14(2), 263.
[http://dx.doi.org/10.3390/pharmaceutics14020263] [PMID: 35213996]
[42]
Bar, H.; Bhui, D.K.; Sahoo, G.P.; Sarkar, P.; Pyne, S.; Misra, A. Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf. A Physicochem. Eng. Asp., 2009, 348(1-3), 212-216.
[http://dx.doi.org/10.1016/j.colsurfa.2009.07.021]
[43]
Badmus, J.A.; Oyemomi, S.A.; Adedosu, O.T.; Yekeen, T.A.; Azeez, M.A.; Adebayo, E.A.; Lateef, A.; Badeggi, U.M.; Botha, S.; Hussein, A.A.; Marnewick, J.L. Photo-assisted bio-fabrication of silver nanoparticles using Annona muricata leaf extract: Exploring the antioxidant, anti-diabetic, antimicrobial, and cytotoxic activities. Heliyon, 2020, 6(11), e05413.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05413] [PMID: 33195844]
[44]
Nickavar, B.; Yousefian, N. Evaluation of α-amylase inhibitory activities of selected antidiabetic medicinal plants. J. Verbraucherschutz Lebensmsicherh., 2011, 6(2), 191-195.
[http://dx.doi.org/10.1007/s00003-010-0627-6]
[45]
Balfour, J.A.; McTavish, D. Acarbose. Drugs, 1993, 46(6), 1025-1054.
[http://dx.doi.org/10.2165/00003495-199346060-00007] [PMID: 7510610]
[46]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[47]
Maitra, B.; Halima Khatun, M.; Ahmed, F.; Ahmed, N.; Jahan Kadri, H.; Zia Uddin Rasel, M.; Kanti Saha. B.; Hakim, M.; Kabir, S.R.; Habib, M.R.; Rabbi, M.A. Biosynthesis of Bixa orellana seed extract mediated silver nanoparticles with moderate antioxidant, antibacterial and antiproliferative activity. Arab. J. Chem., 2023, 16(5), 104675.
[http://dx.doi.org/10.1016/j.arabjc.2023.104675]
[48]
Zahid, M.; Segar, A.S.M.; Al-Majmaie, S.; Shather, A.H.; Khan, M.F.; Alguno, A.C.; Capangpangan, R.Y.; Ismail, A. Elettaria cardamomum seed extract synthesized silver nanoparticles for efficient catalytic reduction of toxic dyes. Environ. Nanotechnol. Monit. Manag., 2023, 20, 100809.
[http://dx.doi.org/10.1016/j.enmm.2023.100809]
[49]
Awad, M.A.; El Dib, R.A.; Almusayeib, N.; Al-Massarani, S.; Ortashi, K.M.; Hendi, A.A. Novel Balanites aegyptiaca mesocarp synthesized silver nanoparticles: formation, characterization, antimicrobial, cytotoxicity and antiviral effects. Dig. J. Nanomater. Biostruct., 2013, 8(4)
[50]
Mehrdel, B.; Yehya, A.H.S.; Dheyab, M.A.; Jameel, M.S.; Aziz, A.A.; Nikbakht, A.; Khaniabadi, P.M.; Alrosan, M.; Rabeea, M.A.; Kareem, A.A. The antibacterial and toxicological studies of mycosynthesis silver nanoparticles by isolated phenols from agaricus bisporus. Phys. Scr., 2023, 98(12), 125007.
[http://dx.doi.org/10.1088/1402-4896/ad080f]
[51]
Alzubaidi, A.K.; Al-Kaabi, W.J.; Ali, A.A.; Albukhaty, S.; Al-Karagoly, H.; Sulaiman, G.M.; Asiri, M.; Khane, Y. Green synthesis and characterization of silver nanoparticles using flaxseed extract and evaluation of their antibacterial and antioxidant activities. Appl. Sci. , 2023, 13(4), 2182.
[http://dx.doi.org/10.3390/app13042182]
[52]
Chirumamilla, P.; Dharavath, S.B.; Taduri, S. Eco-friendly green synthesis of silver nanoparticles from leaf extract of *Solanum khasianum*: optical properties and biological applications. Appl. Biochem. Biotechnol., 2023, 195(1), 353-368.
[http://dx.doi.org/10.1007/s12010-022-04156-4] [PMID: 36083433]
[53]
Perumalsamy, R.; Krishnadhas, L. Anti-diabetic activity of silver nanoparticles synthesized from the hydroethanolic extract of *Myristica fragrans* seeds. Appl. Biochem. Biotechnol., 2022, 194(3), 1136-1148.
[http://dx.doi.org/10.1007/s12010-022-03825-8] [PMID: 35091876]
[54]
Dheyab, M.A.; Aziz, A.A.; Oladzadabbasabadi, N.; Alsaedi, A.; Braim, F.S.; Jameel, M.S.; Ramizy, A.; Alrosan, M.; Almajwal, A.M. Comparative analysis of stable gold nanoparticles synthesized using sonochemical and reduction methods for antibacterial activity. Molecules, 2023, 28(9), 3931.
[http://dx.doi.org/10.3390/molecules28093931] [PMID: 37175341]
[55]
Jameel, M.S.; Aziz, A.A.; Dheyab, M.A.; Mehrdel, B.; Khaniabadi, P.M. Rapid sonochemically-assisted green synthesis of highly stable and biocompatible platinum nanoparticles. Surf. Interfaces, 2020, 20, 100635.
[http://dx.doi.org/10.1016/j.surfin.2020.100635]
[56]
Owaid, M.N.; Rabeea, M.A.; Abdul Aziz, A.; Jameel, M.S.; Dheyab, M.A. Mycogenic fabrication of silver nanoparticles using Picoa, Pezizales, characterization and their antifungal activity. Environ. Nanotechnol. Monit. Manag., 2022, 17, 100612.
[http://dx.doi.org/10.1016/j.enmm.2021.100612]
[57]
Ali, I.A.M.; Ahmed, A.B.; Al-Ahmed, H.I. Green synthesis and characterization of silver nanoparticles for reducing the damage to sperm parameters in diabetic compared to metformin. Sci. Rep., 2023, 13(1), 2256.
[http://dx.doi.org/10.1038/s41598-023-29412-3] [PMID: 36755090]
[58]
Dheyab, M.A.; Aziz, A.A.; Jameel, M.S.; Noqta, O.A.; Khaniabadi, P.M.; Mehrdel, B. Excellent relaxivity and X-ray attenuation combo properties of Fe3O4@Au CSNPs produced via Rapid sonochemical synthesis for MRI and CT imaging. Mater. Today Commun., 2020, 25, 101368.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101368]
[59]
Jameel, M.S.; Aziz, A.A.; Dheyab, M.A.; Khaniabadi, P.M.; Kareem, A.A.; Alrosan, M.; Ali, A.T.; Rabeea, M.A.; Mehrdel, B. Mycosynthesis of ultrasonically-assisted uniform cubic silver nanoparticles by isolated phenols from Agaricus bisporus and its antibacterial activity. Surf. Interfaces, 2022, 29, 101774.
[http://dx.doi.org/10.1016/j.surfin.2022.101774]
[60]
Essghaier, B.; Dridi, R.; Mottola, F.; Rocco, L.; Zid, M.F.; Hannachi, H. Biosynthesis and characterization of silver nanoparticles from the extremophile plant Aeonium haworthii and their antioxidant, antimicrobial and anti-diabetic capacities. Nanomaterials, 2022, 13(1), 100.
[http://dx.doi.org/10.3390/nano13010100] [PMID: 36616010]
[61]
Singh, S.; Kumar, A.; Srivastava, M. Chemical profiling and in vitro α-amylase inhibitory activity of Sesbania sesban and Sesbania grandiflora seeds. Int. J. Food Prop., 2023, 26(1), 428-436.
[http://dx.doi.org/10.1080/10942912.2023.2166950]
[62]
Murthy, H.N.; Yadav, G.G.; Dewir, Y.H.; Ibrahim, A. Phytochemicals and biological activity of desert date (Balanites aegyptiaca (L.) Delile). Plants, 2020, 10(1), 32.
[http://dx.doi.org/10.3390/plants10010032] [PMID: 33375570]
[63]
Fei, Q.; Gao, Y.; Zhang, X.; Sun, Y.; Hu, B.; Zhou, L.; Jabbar, S.; Zeng, X. Effects of Oolong tea polyphenols, EGCG, and EGCG3″Me on pancreatic α-amylase activity in vitro. J. Agric. Food Chem., 2014, 62(39), 9507-9514.
[http://dx.doi.org/10.1021/jf5032907] [PMID: 25222598]
[64]
Hiromi, K.; Ohnishi, M.; Kanaya, K.; Matsumoto, T. The pH jump study of enzyme proteins. I. Liquefying α-amylase from Bacillus subtilis. J. Biochem., 1975, 77(5), 957-963.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a130820] [PMID: 239936]
[65]
Soares, S.; Mateus, N.; de Freitas, V. Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary α-amylase (HSA) by fluorescence quenching. J. Agric. Food Chem., 2007, 55(16), 6726-6735.
[http://dx.doi.org/10.1021/jf070905x] [PMID: 17636939]
[66]
Zheng, Y.; Tian, J.; Yang, W.; Chen, S.; Liu, D.; Fang, H.; Zhang, H.; Ye, X. Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase. Food Chem., 2020, 317, 126346.
[http://dx.doi.org/10.1016/j.foodchem.2020.126346] [PMID: 32070843]
[67]
Sun, L.; Wang, Y.; Miao, M. Inhibition of α-amylase by polyphenolic compounds: Substrate digestion, binding interactions and nutritional intervention. Trends Food Sci. Technol., 2020, 104, 190-207.
[http://dx.doi.org/10.1016/j.tifs.2020.08.003]
[68]
Sun, L.; Gidley, M.J.; Warren, F.J. The mechanism of interactions between tea polyphenols and porcine pancreatic alpha-amylase: Analysis by inhibition kinetics, fluorescence quenching, differential scanning calorimetry and isothermal titration calorimetry. Mol. Nutr. Food Res., 2017, 61(10), 1700324.
[http://dx.doi.org/10.1002/mnfr.201700324] [PMID: 28618113]
[69]
Cueto, M.; Dorta, M.J.; Munguía, O.; Llabrés, M. New approach to stability assessment of protein solution formulations by differential scanning calorimetry. Int. J. Pharm., 2003, 252(1-2), 159-166.
[http://dx.doi.org/10.1016/S0378-5173(02)00627-0] [PMID: 12550791]
[70]
Goyal, M.; Chaudhuri, T.K.; Kuwajima, K. Irreversible denaturation of maltodextrin glucosidase studied by differential scanning calorimetry, circular dichroism, and turbidity measurements. PLoS One, 2014, 9(12), e115877.
[http://dx.doi.org/10.1371/journal.pone.0115877] [PMID: 25548918]
[71]
Mazurenko, S.; Kunka, A.; Beerens, K.; Johnson, C.M.; Damborsky, J.; Prokop, Z. Exploration of protein unfolding by modelling calorimetry data from reheating. Sci. Rep., 2017, 7(1), 16321.
[http://dx.doi.org/10.1038/s41598-017-16360-y] [PMID: 29176711]
[72]
Ibrahim, E.E. Phytochemical, antioxidant activity and cytotoxicity of methanolic extract of Balanites aegyptiaca (L.) DELILE. Pharm. Glob., 2018, 7(1), 1.
[73]
Kabbashi, A.S. Antigiardial, antiamoebic, antimicrobial, antioxidant activity, cytotoxicity and phytochemical of ethanolic fruits extract of Balanites aegyptiaca (L.) Del. from Sudan. World J. Pharm. Res., 2015, 4, 1-02.
[74]
Jameel, M.S.; Aziz, A.A.; Dheyab, M.A.; Mehrdel, B.; Khaniabadi, P.M.; Khaniabadi, B.M. Green sonochemical synthesis platinum nanoparticles as a novel contrast agent for computed tomography. Mater. Today Commun., 2021, 27, 102480.
[http://dx.doi.org/10.1016/j.mtcomm.2021.102480]
[75]
Ali Dheyab, M.; Abdul Aziz, A.; Moradi Khaniabadi, P.; Jameel, M.S.; Ahmed, N.M.; Taha Ali, A. Distinct advantages of using sonochemical over laser ablation methods for a rapid-high quality gold nanoparticles production. Mater. Res. Express, 2021, 8(1), 015009.
[http://dx.doi.org/10.1088/2053-1591/abd5a4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy