Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Review Article Section: Bioinformatics

Recent Advances in Machine Learning Methods for LncRNA-Cancer Associations Prediction

Author(s): Ruobing Wang, Lingyu Meng and Jianjun Tan*

Volume 4, Issue 3, 2024

Published on: 01 April, 2024

Page: [181 - 201] Pages: 21

DOI: 10.2174/0122102981299289240324072639

Price: $65

Abstract

In recent years, long non-coding RNAs (lncRNAs) have played important roles in various biological processes. Mutations and regulation of lncRNAs are closely associated with many human cancers. Predicting potential lncRNA-cancer associations helps to understand cancer's pathogenesis and provides new ideas and approaches for cancer prevention, treatment and diagnosis. Predicting lncRNA-cancer associations based on computational methods helps systematic biological studies. In particular, machine learning methods have received much attention and are commonly used to solve these problems. Therefore, many machine learning computational models have been proposed to improve the prediction performance and achieve accurate diagnosis and effective treatment of cancer. This review provides an overview of existing models for predicting lncRNA-cancer associations by machine learning methods. The evaluation metrics of each model are briefly described, analyzed the advantages and limitations of these models are analyzed. We also provide a case study summary of the two cancers listed. Finally, the challenges and future trends of predicting lncRNA-cancer associations with machine learning methods are discussed.

Graphical Abstract

[1]
Ulitsky, I. Interactions between short and long noncoding RNAs. FEBS Lett., 2018, 592(17), 2874-2883.
[http://dx.doi.org/10.1002/1873-3468.13085] [PMID: 29749606]
[2]
Xu, L.; Jiao, S.; Zhang, D.; Wu, S.; Zhang, H.; Gao, B. Identification of long noncoding RNAs with machine learning methods: A review. Brief. Funct. Genomics, 2021, 20(3), 174-180.
[http://dx.doi.org/10.1093/bfgp/elab017] [PMID: 33758917]
[3]
Iyer, M.K.; Niknafs, Y.S.; Malik, R.; Singhal, U.; Sahu, A.; Hosono, Y.; Barrette, T.R.; Prensner, J.R.; Evans, J.R.; Zhao, S.; Poliakov, A.; Cao, X.; Dhanasekaran, S.M.; Wu, Y.M.; Robinson, D.R.; Beer, D.G.; Feng, F.Y.; Iyer, H.K.; Chinnaiyan, A.M. The landscape of long noncoding RNAs in the human transcriptome. Nat. Genet., 2015, 47(3), 199-208.
[http://dx.doi.org/10.1038/ng.3192] [PMID: 25599403]
[4]
Liu, S.J.; Lim, D.A. Modulating the expression of long non‐coding RNA s for functional studies. EMBO Rep., 2018, 19(12), e46955.
[http://dx.doi.org/10.15252/embr.201846955] [PMID: 30467236]
[5]
Rinn, J.L.; Chang, H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem., 2012, 81(1), 145-166.
[http://dx.doi.org/10.1146/annurev-biochem-051410-092902] [PMID: 22663078]
[6]
Signal, B.; Gloss, B.S.; Dinger, M.E. Computational approaches for functional prediction and characterisation of long noncoding RNAs. Trends Genet., 2016, 32(10), 620-637.
[http://dx.doi.org/10.1016/j.tig.2016.08.004] [PMID: 27592414]
[7]
Gong, Y.; Zhu, W.; Sun, M.; Shi, L. Bioinformatics analysis of long non-coding rna and related diseases: An overview. Front. Genet., 2021, 12, 813873.
[http://dx.doi.org/10.3389/fgene.2021.813873] [PMID: 34956340]
[8]
Zhang, D.; Xiong, M.; Xu, C.; Xiang, P.; Zhong, X. Long noncoding RNAs: An overview. Methods Mol. Biol., 2016, 1402, 287-295.
[http://dx.doi.org/10.1007/978-1-4939-3378-5_22] [PMID: 26721499]
[9]
Morlando, M.; Fatica, A. Alteration of epigenetic regulation by long noncoding RNAs in cancer. Int. J. Mol. Sci., 2018, 19(2), 570.
[http://dx.doi.org/10.3390/ijms19020570] [PMID: 29443889]
[10]
Barrios, R.N.; Legascue, M.F.; Benhamed, M.; Ariel, F.; Crespi, M. Splicing regulation by long noncoding RNAs. Nucleic Acids Res., 2018, 46(5), 2169-2184.
[http://dx.doi.org/10.1093/nar/gky095] [PMID: 29425321]
[11]
Wang, J.; Zhao, Y.; Gong, W.; Liu, Y.; Wang, M.; Huang, X.; Tan, J. EDLMFC: An ensemble deep learning framework with multi-scale features combination for ncRNA–protein interaction prediction. BMC Bioinformatics, 2021, 22(1), 133.
[http://dx.doi.org/10.1186/s12859-021-04069-9] [PMID: 33740884]
[12]
Li, X.; Qu, W.; Yan, J.; Tan, J. RPI-EDLCN: An ensemble deep learning framework based on capsule network for ncrna–protein interaction prediction. J. Chem. Inf. Model., 2023, acs.jcim.3c00377.
[http://dx.doi.org/10.1021/acs.jcim.3c00377] [PMID: 37158609]
[13]
Huang, X.; Shi, Y.; Yan, J.; Qu, W.; Li, X.; Tan, J. LPI-CSFFR: Combining serial fusion with feature reuse for predicting LncRNA-protein interactions. Comput. Biol. Chem., 2022, 99, 107718.
[http://dx.doi.org/10.1016/j.compbiolchem.2022.107718] [PMID: 35785626]
[14]
Zhong, L.; Zhen, M.; Sun, J.; Zhao, Q. Recent advances on the machine learning methods in predicting ncRNA-protein interactions. Mol. Genet. Genomics, 2021, 296(2), 243-258.
[http://dx.doi.org/10.1007/s00438-020-01727-0] [PMID: 33006667]
[15]
Zhao, T.; Zhang, Y.; Wang, Y.; Wang, Z.; Xie, M.; Jin, Z.; Zhao, T. Long noncoding RNA and its role in virus infection and pathogenesis. Front. Biosci., 2019, 24(4), 777-789.
[http://dx.doi.org/10.2741/4750] [PMID: 30844712]
[16]
Chen, L.; Zhang, S. Long noncoding RNAs in cell differentiation and pluripotency. Cell Tissue Res., 2016, 366(3), 509-521.
[http://dx.doi.org/10.1007/s00441-016-2451-5] [PMID: 27365087]
[17]
Tüncel, Ö.; Kara, M.; Yaylak, B.; Erdoğan, İ.; Akgül, B. Noncoding RNAs in apoptosis: Identification and function. Turk. J. Biol., 2021, 46(1), 1-40.
[http://dx.doi.org/10.3906/biy-2109-35] [PMID: 37533667]
[18]
Pandey, A.; Ajgaonkar, S.; Jadhav, N.; Saha, P.; Gurav, P.; Panda, S.; Mehta, D.; Nair, S. Current insights into mirna and lncrna dysregulation in diabetes: Signal transduction, clinical trials and biomarker discovery. Pharmaceuticals, 2022, 15(10), 1269.
[http://dx.doi.org/10.3390/ph15101269] [PMID: 36297381]
[19]
Hombach, S.; Kretz, M. Non-coding RNAs: Classification, biology and functioning. Adv. Exp. Med. Biol., 2016, 937, 3-17.
[http://dx.doi.org/10.1007/978-3-319-42059-2_1] [PMID: 27573892]
[20]
Chen, J.; Ao, L.; Yang, J. Long non-coding RNAs in diseases related to inflammation and immunity. Ann. Transl. Med., 2019, 7(18), 494.
[http://dx.doi.org/10.21037/atm.2019.08.37] [PMID: 31700930]
[21]
Han, P.; Chang, C.P. Long non-coding RNA and chromatin remodeling. RNA Biol., 2015, 12(10), 1094-1098.
[http://dx.doi.org/10.1080/15476286.2015.1063770] [PMID: 26177256]
[22]
Rao, A.K.D.M.; Rajkumar, T.; Mani, S. Perspectives of long non-coding RNAs in cancer. Mol. Biol. Rep., 2017, 44(2), 203-218.
[http://dx.doi.org/10.1007/s11033-017-4103-6] [PMID: 28391434]
[23]
Zhao, W.; Luo, J.; Jiao, S. Comprehensive characterization of cancer subtype associated long non-coding RNAs and their clinical implications. Sci. Rep., 2014, 4(1), 6591.
[http://dx.doi.org/10.1038/srep06591] [PMID: 25307233]
[24]
Xu, Y.J.; Du, Y.; Fan, Y. Long noncoding RNAs in lung cancer: What we know in 2015. Clin. Transl. Oncol., 2016, 18(7), 660-665.
[http://dx.doi.org/10.1007/s12094-015-1448-y] [PMID: 26680632]
[25]
Done, J.Z.; Fang, S.H. Young-onset colorectal cancer: A review. World J. Gastrointest. Oncol., 2021, 13(8), 856-866.
[http://dx.doi.org/10.4251/wjgo.v13.i8.856] [PMID: 34457191]
[26]
Yan, X.; Lei, L.; Li, H.; Cao, M.; Yang, F.; He, S.; Zhang, S.; Teng, Y.; Li, Q.; Xia, C.; Chen, W. Stomach cancer burden in China: Epidemiology and prevention. Chin. J. Cancer Res., 2023, 35(2), 81-91.
[http://dx.doi.org/10.21147/j.issn.1000-9604.2023.02.01] [PMID: 37180831]
[27]
Uhlenhopp, D.J.; Then, E.O.; Sunkara, T.; Gaduputi, V. Epidemiology of esophageal cancer: Update in global trends, etiology and risk factors. Clin. J. Gastroenterol., 2020, 13(6), 1010-1021.
[http://dx.doi.org/10.1007/s12328-020-01237-x] [PMID: 32965635]
[28]
Wolf, I.; Gratzke, C.; Wolf, P. Prostate cancer stem cells: Clinical aspects and targeted therapies. Front. Oncol., 2022, 12, 935715.
[http://dx.doi.org/10.3389/fonc.2022.935715] [PMID: 35875084]
[29]
Kessler, T.A. Cervical cancer: Prevention and early detection. Semin. Oncol. Nurs., 2017, 33(2), 172-183.
[http://dx.doi.org/10.1016/j.soncn.2017.02.005] [PMID: 28343836]
[30]
Ji, J.; Dai, X.; Yeung, S.C.J.; He, X. The role of long non-coding RNA GAS5 in cancers. Cancer Manag. Res., 2019, 11, 2729-2737.
[http://dx.doi.org/10.2147/CMAR.S189052] [PMID: 31114330]
[31]
Du, Z.; Wang, B.; Tan, F.; Wu, Y.; Chen, J.; Zhao, F.; Liu, M.; Zhou, G.; Yuan, C. The regulatory role of LncRNA HCG18 in various cancers. J. Mol. Med., 2023, 101(4), 351-360.
[http://dx.doi.org/10.1007/s00109-023-02297-5] [PMID: 36872315]
[32]
Shi, Y.; Men, J.; Sun, H.; Tan, J. The identification and analysis of micrornas combined biomarkers for hepatocellular carcinoma diagnosis. Med. Chem., 2022, 18(10), 1073-1085.
[http://dx.doi.org/10.2174/1573406418666220404084532] [PMID: 35379158]
[33]
Shi, Y.; Huang, X.; Du, Z.; Tan, J. Analysis of single-cell RNA-sequencing data identifies a hypoxic tumor subpopulation associated with poor prognosis in triple-negative breast cancer. Math. Biosci. Eng., 2022, 19(6), 5793-5812.
[http://dx.doi.org/10.3934/mbe.2022271] [PMID: 35603379]
[34]
Men, J.R.; Tan, J.J.; Sun, H.L. The identification and analysis of a miRNA risk score model for hepatocellular carcinoma prognosis. Prog Biochem Biophys, 2020, 47(4), 344-360.
[http://dx.doi.org/10.16476/j.pibb.2019.0286]
[35]
Tan, J.; Li, X.; Zhang, L.; Du, Z. Recent advances in machine learning methods for predicting LncRNA and disease associations. Front. Cell. Infect. Microbiol., 2022, 12, 1071972.
[http://dx.doi.org/10.3389/fcimb.2022.1071972] [PMID: 36530425]
[36]
Yan, J.; Wang, R.; Tan, J. Recent advances in predicting lncRNA–disease associations based on computational methods. Drug Discov. Today, 2023, 28(2), 103432.
[http://dx.doi.org/10.1016/j.drudis.2022.103432] [PMID: 36370992]
[37]
Chen, X.; Yan, C.C.; Zhang, X.; You, Z.H. Long non-coding RNAs and complex diseases: From experimental results to computational models. Brief. Bioinform., 2016, 18(4), bbw060.
[http://dx.doi.org/10.1093/bib/bbw060] [PMID: 27345524]
[38]
Lei, X.; Mudiyanselage, T.B.; Zhang, Y.; Bian, C.; Lan, W.; Yu, N.; Pan, Y. A comprehensive survey on computational methods of non-coding RNA and disease association prediction. Brief. Bioinform., 2021, 22(4), bbaa350.
[http://dx.doi.org/10.1093/bib/bbaa350] [PMID: 33341893]
[39]
Bang, D.; Gu, J.; Park, J.; Jeong, D.; Koo, B.; Yi, J.; Shin, J.; Jung, I.; Kim, S.; Lee, S. A survey on computational methods for investigation on ncRNA-disease association through the mode of action perspective. Int. J. Mol. Sci., 2022, 23(19), 11498.
[http://dx.doi.org/10.3390/ijms231911498] [PMID: 36232792]
[40]
Sheng, N.; Huang, L.; Lu, Y.; Wang, H.; Yang, L.; Gao, L.; Xie, X.; Fu, Y.; Wang, Y. Data resources and computational methods for lncRNA-disease association prediction. Comput. Biol. Med., 2023, 153, 106527.
[http://dx.doi.org/10.1016/j.compbiomed.2022.106527] [PMID: 36610216]
[41]
Chen, X.; Ishwaran, H. Random forests for genomic data analysis. Genomics, 2012, 99(6), 323-329.
[http://dx.doi.org/10.1016/j.ygeno.2012.04.003] [PMID: 22546560]
[42]
Yao, D.; Zhan, X.; Zhan, X.; Kwoh, C.K.; Li, P.; Wang, J. A random forest based computational model for predicting novel lncRNA-disease associations. BMC Bioinformatics, 2020, 21(1), 126.
[http://dx.doi.org/10.1186/s12859-020-3458-1] [PMID: 32216744]
[43]
Gil, J.M.; González, A.Á.; Rodríguez, J.J.; Nozal, L.C.; Osorio, G.C. Rotation forest for big data. Inf. Fusion, 2021, 74, 39-49.
[http://dx.doi.org/10.1016/j.inffus.2021.03.007]
[44]
Guo, Z.H.; You, Z.H.; Wang, Y.B.; Yi, H.C.; Chen, Z.H. A learning-based method for lncrna-disease association identification combing similarity information and rotation forest. iScience, 2019, 19, 786-795.
[http://dx.doi.org/10.1016/j.isci.2019.08.030] [PMID: 31494494]
[45]
Biau, G.; Cadre, B.; Rouvière, L. Accelerated gradient boosting. Mach. Learn., 2019, 108(6), 971-992.
[http://dx.doi.org/10.1007/s10994-019-05787-1]
[46]
Chen, T.; Guestrin, C. assoc comp, m. XGBoost: A scalable tree boosting system. KDD, 2016, 16, 785-794.
[http://dx.doi.org/10.1145/2939672.2939785]
[47]
Bartlett, P.L.; Traskin, M. AdaBoost is consistent. J. Mach. Learn. Res., 2007, 8, 2347-2368.
[http://dx.doi.org/10.5555/1314498.1314574]
[48]
He, Z.; Lin, D.; Lau, T.; Wu, M. Gradient boosting machine: A survey arXiv, 2019, 1908, 06951.
[49]
Zhang, Y.; Ye, F.; Xiong, D.; Gao, X. LDNFSGB: Prediction of long non-coding RNA and disease association using network feature similarity and gradient boosting. BMC Bioinformatics, 2020, 21(1), 377.
[http://dx.doi.org/10.1186/s12859-020-03721-0] [PMID: 32883200]
[50]
Chen, G.; Wang, Z.; Wang, D.; Qiu, C.; Liu, M.; Chen, X.; Zhang, Q.; Yan, G.; Cui, Q. LncRNA Disease: A database for long-non-coding RNA-associated diseases. Nucleic Acids Res., 2012, 41(D1), D983-D986.
[http://dx.doi.org/10.1093/nar/gks1099] [PMID: 23175614]
[51]
Tang, X.; Li, M.L.; Zhang, W.; Xia, J.F. acm. predicting lncrna-disease association based on extreme gradient boosting. 10th International Conference on Bioscience, Biochemistry and Bioinformatics (ICBBB), Kyoto, JapanJanuary 19-22, 2020, pp. 69-73.
[http://dx.doi.org/10.1145/3386052.3386056]
[52]
Friedman, N.; Geiger, D.; Goldszmidt, M. Bayesian network classifiers. Mach. Learn., 1997, 29(2/3), 131-163.
[http://dx.doi.org/10.1023/A:1007465528199]
[53]
Sugahara, S.; Ueno, M. Exact learning augmented naive bayes classifier. Entropy, 2021, 23(12), 1703.
[http://dx.doi.org/10.3390/e23121703] [PMID: 34946009]
[54]
Yu, J.; Ping, P.; Wang, L.; Kuang, L.; Li, X.; Wu, Z. A novel probability model for LncRNA–disease association prediction based on the naïve bayesian classifier. Genes, 2018, 9(7), 345.
[http://dx.doi.org/10.3390/genes9070345] [PMID: 29986541]
[55]
Yu, J.; Xuan, Z.; Feng, X.; Zou, Q.; Wang, L. A novel collaborative filtering model for LncRNA-disease association prediction based on the Naïve Bayesian classifier. BMC Bioinformatics, 2019, 20(1), 396.
[http://dx.doi.org/10.1186/s12859-019-2985-0] [PMID: 31315558]
[56]
Liu, C.; Wang, W.; Wang, M.; Lv, F.; Konan, M. An efficient instance selection algorithm to reconstruct training set for support vector machine. Knowl. Base. Syst., 2017, 116, 58-73.
[http://dx.doi.org/10.1016/j.knosys.2016.10.031]
[57]
Chen, Q.; Lai, D.; Lan, W.; Wu, X.; Chen, B.; Liu, J.; Chen, Y.P.P.; Wang, J. ILDMSF: Inferring associations between long non-coding rna and disease based on multi-similarity fusion. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2021, 18(3), 1106-1112.
[http://dx.doi.org/10.1109/TCBB.2019.2936476] [PMID: 31443046]
[58]
Khalid, R.; Naveed, H.; Khalid, Z. Computational prediction of disease related lncRNAs using machine learning. Sci. Rep., 2023, 13(1), 806.
[http://dx.doi.org/10.1038/s41598-023-27680-7] [PMID: 36646775]
[59]
Ning, S.; Zhang, J.; Wang, P.; Zhi, H.; Wang, J.; Liu, Y.; Gao, Y.; Guo, M.; Yue, M.; Wang, L.; Li, X. Lnc2Cancer: A manually curated database of experimentally supported lncRNAs associated with various human cancers. Nucleic Acids Res., 2016, 44(D1), D980-D985.
[http://dx.doi.org/10.1093/nar/gkv1094] [PMID: 26481356]
[60]
Zhu, R.; Wang, Y.; Liu, J.X.; Dai, L.Y. IPCARF: Improving lncRNA-disease association prediction using incremental principal component analysis feature selection and a random forest classifier. BMC Bioinformatics, 2021, 22(1), 175.
[http://dx.doi.org/10.1186/s12859-021-04104-9] [PMID: 33794766]
[61]
Zhao, Y.; Hu, B.; Wang, Y.; Yin, X.; Jiang, Y.; Zhu, X. Identification of gastric cancer with convolutional neural networks: A systematic review. Multimedia Tools Appl., 2022, 81(8), 11717-11736.
[http://dx.doi.org/10.1007/s11042-022-12258-8] [PMID: 35221775]
[62]
Xuan, P.; Cao, Y.; Zhang, T.; Kong, R.; Zhang, Z. Dual convolutional neural networks with attention mechanisms based method for predicting disease-related lncrna genes. Front. Genet., 2019, 10, 416.
[http://dx.doi.org/10.3389/fgene.2019.00416] [PMID: 31130990]
[63]
Xuan, P.; Jia, L.; Zhang, T.; Sheng, N.; Li, X.; Li, J. LDAPred: A method based on information flow propagation and a convolutional neural network for the prediction of disease-associated lncRNAs. Int. J. Mol. Sci., 2019, 20(18), 4458.
[http://dx.doi.org/10.3390/ijms20184458] [PMID: 31510011]
[64]
Xu, X.; Zhao, X.; Wei, M.; Li, Z. A comprehensive review of graph convolutional networks: Approaches and applications. Elect. Res. Arch., 2023, 31(7), 4185-4215.
[http://dx.doi.org/10.3934/era.2023213]
[65]
Fan, Y.; Chen, M.; Pan, X. GCRFLDA: Scoring lncRNA-disease associations using graph convolution matrix completion with conditional random field. Brief. Bioinform., 2022, 23(1), bbab361.
[http://dx.doi.org/10.1093/bib/bbab361] [PMID: 34486019]
[66]
Lin, M.; Wen, K.; Zhu, X.; Zhao, H.; Sun, X. Graph autoencoder with preserving node attribute similarity. Entropy, 2023, 25(4), 567.
[http://dx.doi.org/10.3390/e25040567] [PMID: 37190356]
[67]
Shi, Z.; Zhang, H.; Jin, C.; Quan, X.; Yin, Y. A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations. BMC Bioinformatics, 2021, 22(1), 136.
[http://dx.doi.org/10.1186/s12859-021-04073-z] [PMID: 33745450]
[68]
Veličković, P.; Casanova, A.; Liò, P.; Cucurull, G.; Romero, A.; Bengio, Y. Graph attention networks. ICLR arXiv, 2017, 1710, 10903.
[http://dx.doi.org/10.17863/CAM.48429]
[69]
Lan, W.; Wu, X.; Chen, Q.; Peng, W.; Wang, J.; Chen, Y.P. GANLDA: Graph attention network for lncRNA-disease associations prediction. Neurocomputing, 2022, 469, 384-393.
[http://dx.doi.org/10.1016/j.neucom.2020.09.094]
[70]
Hinton, G. Deep belief networks. Scholarpedia J., 2009, 4(5), 5947.
[http://dx.doi.org/10.4249/scholarpedia.5947]
[71]
Madhavan, M.; Gopakumar, G. DBNLDA: Deep belief network based representation learning for lncrna-disease association prediction. Appl. Intell., 2022, 52(5), 5342-5352.
[http://dx.doi.org/10.1007/s10489-021-02675-x]
[72]
Zhou, Z.H.; Feng, J. Deep forest. Natl. Sci. Rev., 2019, 6(1), 74-86.
[http://dx.doi.org/10.1093/nsr/nwy108] [PMID: 34691833]
[73]
Wang, W.; Dai, Q.; Li, F.; Xiong, Y.; Wei, D.Q. MLCDForest: Multi-label classification with deep forest in disease prediction for long non-coding RNAs. Brief. Bioinform., 2021, 22(3), bbaa104.
[http://dx.doi.org/10.1093/bib/bbaa104] [PMID: 32520339]
[74]
Bergsma, W. A bias-correction for Cramér’s and Tschuprow’s. J. Korean Stat. Soc., 2013, 42(3), 323-328.
[http://dx.doi.org/10.1016/j.jkss.2012.10.002]
[75]
Charte, F.; Rivera, A.; del Jesus, M.J.; Herrera, F. Concurrence among imbalanced labels and its influence on multilabel resampling algorithms. Lect. Notes Comput. Sci., 2014, 8480, 110-121.
[http://dx.doi.org/10.1007/978-3-319-07617-1_10]
[76]
Charte, F.; Charte, D. Working with multilabel datasets in R: The mldr package. R J., 2015, 7(2), 149.
[http://dx.doi.org/10.32614/RJ-2015-027]
[77]
Zhang, Z.; Xu, J.; Wu, Y.; Liu, N.; Wang, Y.; Liang, Y. CapsNet-LDA: Predicting lncRNA-disease associations using attention mechanism and capsule network based on multi-view data. Brief. Bioinform., 2023, 24(1), bbac531.
[http://dx.doi.org/10.1093/bib/bbac531] [PMID: 36511221]
[78]
Xuan, P.; Sheng, N.; Zhang, T.; Liu, Y.; Guo, Y. CNNDLP: A method based on convolutional autoencoder and convolutional neural network with adjacent edge attention for predicting lncrna–disease associations. Int. J. Mol. Sci., 2019, 20(17), 4260.
[http://dx.doi.org/10.3390/ijms20174260] [PMID: 31480319]
[79]
Silva, A.B.O.V.; Spinosa, E.J. Graph convolutional auto-encoders for predicting novel lncrna-disease associations. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2022, 19(4), 2264-2271.
[http://dx.doi.org/10.1109/TCBB.2021.3070910] [PMID: 33819159]
[80]
Liu, C.; Bai, B.; Skogerbø, G.; Cai, L.; Deng, W.; Zhang, Y.; Bu, D.; Zhao, Y.; Chen, R. NONCODE: An integrated knowledge database of non-coding RNAs. Nucleic Acids Res., 2004, 33(Database issue), D112-D115.
[http://dx.doi.org/10.1093/nar/gki041] [PMID: 15608158]
[81]
Boyadjiev, S.; Jabs, E. Online mendelian inheritance in man (omim) as a knowledgebase for human developmental disorders. Clin. Genet., 2000, 57(4), 253-266.
[http://dx.doi.org/10.1034/j.1399-0004.2000.570403.x] [PMID: 10845565]
[82]
Cui, T.; Zhang, L.; Huang, Y.; Yi, Y.; Tan, P.; Zhao, Y.; Hu, Y.; Xu, L.; Li, E.; Wang, D. MNDR v2.0: An updated resource of ncRNA–disease associations in mammals. Nucleic Acids Res., 2017, 46(D1), D371-D374.
[http://dx.doi.org/10.1093/nar/gkx1025] [PMID: 29106639]
[83]
Xuan, P.; Pan, S.; Zhang, T.; Liu, Y.; Sun, H. Graph convolutional network and convolutional neural network based method for predicting lncrna-disease associations. Cells, 2019, 8(9), 1012.
[http://dx.doi.org/10.3390/cells8091012] [PMID: 31480350]
[84]
Li, J.; Kong, M.; Wang, D.; Yang, Z.; Hao, X. Prediction of lncrna–disease associations via closest node weight graphs of the spatial neighborhood based on the edge attention graph convolutional network. Front. Genet., 2022, 12, 808962.
[http://dx.doi.org/10.3389/fgene.2021.808962] [PMID: 35058974]
[85]
Liang, Q.; Zhang, W.; Wu, H.; Liu, B. LncRNA-disease association identification using graph auto-encoder and learning to rank. Brief. Bioinform., 2023, 24(1), bbac539.
[http://dx.doi.org/10.1093/bib/bbac539] [PMID: 36545805]
[86]
Guo, Z.H.; Chen, Z.H.; You, Z.H.; Wang, Y.B.; Yi, H.C.; Wang, M.N. A learning-based method to predict LncRNA-disease associations by combining CNN and ELM. BMC Bioinformatics, 2022, 22(S5), 622.
[http://dx.doi.org/10.1186/s12859-022-04611-3] [PMID: 35317723]
[87]
Lu, C.; Xie, M. LDAEXC: Lncrna–disease associations prediction with deep autoencoder and xgboost classifier. Interdiscip. Sci., 2023, 15(3), 439-451.
[http://dx.doi.org/10.1007/s12539-023-00573-z] [PMID: 37308797]
[88]
Liang, Y.; Zhang, Z.Q.; Liu, N.N.; Wu, Y.N.; Gu, C.L.; Wang, Y.L. MAGCNSE: Predicting lncRNA-disease associations using multi-view attention graph convolutional network and stacking ensemble model. BMC Bioinformatics, 2022, 23(1), 189.
[http://dx.doi.org/10.1186/s12859-022-04715-w] [PMID: 35590258]
[89]
Wu, Q.W.; Cao, R.F.; Xia, J.; Ni, J.C.; Zheng, C.H.; Su, Y. Extra trees method for predicting lncrna-disease association based on multi-layer graph embedding aggregation. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2021, 19(6), 1.
[http://dx.doi.org/10.1109/TCBB.2021.3113122] [PMID: 34529571]
[90]
Kuipers, E.J.; Grady, W.M.; Lieberman, D.; Seufferlein, T.; Sung, J.J.; Boelens, P.G.; de Velde, V.C.J.H.; Watanabe, T. Colorectal cancer. Nat. Rev. Dis. Primers, 2015, 1(1), 15065.
[http://dx.doi.org/10.1038/nrdp.2015.65] [PMID: 27189416]
[91]
Qin, L.; Kang, A. Epigenetic research progress in colorectal cancer. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2019, 44(7), 830-836. [Med Sci]
[http://dx.doi.org/10.11817/j.issn.1672-7347.2019.190087] [PMID: 31413224]
[92]
Chen, S.W.; Zhu, J.; Ma, J.; Zhang, J.L.; Zuo, S.; Chen, G.W.; Wang, X.; Pan, Y.S.; Liu, Y.C.; Wang, P.Y. Overexpression of long non-coding RNA H19 is associated with unfavorable prognosis in patients with colorectal cancer and increased proliferation and migration in colon cancer cells. Oncol. Lett., 2017, 14(2), 2446-2452.
[http://dx.doi.org/10.3892/ol.2017.6390] [PMID: 28781681]
[93]
Han, D.; Gao, X.; Wang, M.; Qiao, Y.; Xu, Y.; Yang, J.; Dong, N.; He, J.; Sun, Q.; Lv, G.; Xu, C.; Tao, J.; Ma, N. Long noncoding RNA H19 indicates a poor prognosis of colorectal cancer and promotes tumor growth by recruiting and binding to eIF4A3. Oncotarget, 2016, 7(16), 22159-22173.
[http://dx.doi.org/10.18632/oncotarget.8063] [PMID: 26989025]
[94]
Song, H.; He, P.; Shao, T.; Li, Y.; Li, J.; Zhang, Y. Long non-coding RNA XIST functions as an oncogene in human colorectal cancer by targeting miR-132-3p. J. BUON, 2017, 22(3), 696-703.
[PMID: 28730777]
[95]
Li, Z.; Yang, M.; Tian, J.; Wang, X.; Li, Z. MALAT-1: A long non-coding RNA and its important 3′ end functional motif in colorectal cancer metastasis. Int. J. Oncol., 2011, 39(1), 169-175.
[http://dx.doi.org/10.3892/ijo.2011.1007] [PMID: 21503572]
[96]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Tieulent, L.J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[97]
Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin., 2012, 62(1), 10-29.
[http://dx.doi.org/10.3322/caac.20138] [PMID: 22237781]
[98]
Thomson, C.S.; Forman, D. Cancer survival in England and the influence of early diagnosis: What can we learn from recent EUROCARE results? Br. J. Cancer, 2009, 101(S2), S102-S109.
[http://dx.doi.org/10.1038/sj.bjc.6605399]
[99]
Shi, X.; Sun, M.; Liu, H.; Yao, Y.; Kong, R.; Chen, F.; Song, Y. A critical role for the long non‐coding RNA GAS5 in proliferation and apoptosis in non‐small‐cell lung cancer. Mol. Carcinog., 2015, 54(S1), E1-E12.
[http://dx.doi.org/10.1002/mc.22120] [PMID: 24357161]
[100]
Zeng, Z.; Zhao, G.; Rao, C.; Hua, G.; Yang, M.; Miao, X.; Ying, J.; Nie, L. Knockdown of lncRNA ZFAS1‐suppressed non–small cell lung cancer progression via targeting the miR‐150‐5p/HMGA2 signaling. J. Cell. Biochem., 2020, 121(8-9), 3814-3824.
[http://dx.doi.org/10.1002/jcb.29542] [PMID: 31692094]
[101]
Hjazi, A.; Ghaffar, E.; Asghar, W.; Khalaf, A.H.; Ullah, I.M.; Parra, M.R.R.; Hussien, B.M. alazbjee, A.A.A.; Bisht, S.Y.; Mustafa, F.Y.; Fard, R.H.S. CDKN2B-AS1 as a novel therapeutic target in cancer: Mechanism and clinical perspective. Biochem. Pharmacol., 2023, 213, 115627.
[http://dx.doi.org/10.1016/j.bcp.2023.115627] [PMID: 37257723]
[102]
Jin, S.; He, J.; Zhou, Y.; Wu, D.; Li, J.; Gao, W. LncRNA FTX activates FOXA2 expression to inhibit non–small‐cell lung cancer proliferation and metastasis. J. Cell. Mol. Med., 2020, 24(8), 4839-4849.
[http://dx.doi.org/10.1111/jcmm.15163] [PMID: 32176463]
[103]
Shi, R.; Jiao, Z.; Yu, A.; Wang, T. Long noncoding antisense RNA FAM83A‐AS1 promotes lung cancer cell progression by increasing FAM83A. J. Cell. Biochem., 2019, 120(6), 10505-10512.
[http://dx.doi.org/10.1002/jcb.28336] [PMID: 30659636]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy