Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Bioinformatics

Muscle Transcriptome Provides Insights into the Allergen Profile of Habitat-specific Mature Hilsa shad (Tenualosa ilisha)

Author(s): Sadia Noor Mou, Afsana Akter Rupa, Md. Arko Ayon Chowdhury, Md. Lifat Rahi, Abdul Baten, Amin Ahsan Ali, Haseena Khan, Md. Ashraful Amin* and Mohammad Riazul Islam*

Volume 4, Issue 3, 2024

Published on: 20 May, 2024

Page: [202 - 213] Pages: 12

DOI: 10.2174/0122102981301480240514113753

Price: $65

Abstract

Background: Hilsa shad (Tenualosa ilisha) is a popular anadromous fish in Bangladesh known to cause allergies. Despite recognized allergenicity, there is a paucity of research at the molecular level on hilsa allergen.

Methods: Muscle transcriptomes of hilsa from freshwater, brackish, and deep sea habitats were sequenced using Illumina NovaSeq 6000 and assembled. BLASTx analysis of the Allergen Online database identified potential allergens. The molecular docking study investigated parvalbumin’s interaction with human IgE.

Results: An analysis of hilsa muscle transcriptomes revealed 28 known fish allergens, including parvalbumin, tropomyosin, including parvalbumin, tropomyosin, filamin C, creatine kinase-2, aldolase A, triosephosphate isomerase B, and Glyceraldehyde-3-phosphate Dehydrogenase (G3PD). Creatine kinase showed significantly higher abundance (p < 0.05) and habitat variation (freshwater vs. brackish water). In silico analysis suggested upregulation of Sal s 2 enolase and Equ c 6 lysozyme in freshwater and brackish water compared to the deep sea. Docking studies identified a potential B-cell epitope in parvalbumin that interacts with human IgE.

Conclusion: This study has unveiled 28 potential allergens in hilsa, including habitat-specific variations. The parvalbumin-IgE interaction has been suggested as a mechanism for allergies. The findings have illuminated fish allergy in Bangladesh and paved the way for further investigation.

Graphical Abstract

[1]
Sunny, A.R.; Ahamed, G.S.; Mithun, M.H.; Islam, M.A.; Das, B.; Rahman, A.; Rahman, M.T.; Hasan, M.N.; Chowdhury, M.A. Livelihood status of the hilsa (Tenualosa ilisha) Fishers: The case of coastal fishing community of the Padma river. Bangladesh. J. Coast. Zone Manag., 2019, 22(2), 469.
[2]
Mohanty, B.P.; Paria, P.; Mahanty, A.; Behera, B.K.; Mathew, S.; Sankar, T.V.; Sharma, A.P. Fatty acid profile of Indian shad Tenualosa ilisha oil and its dietary significance. Natl. Acad. Sci. Lett., 2012, 35(4), 263-269.
[http://dx.doi.org/10.1007/s40009-012-0042-x]
[3]
Marichamy, G.; Raja, P.; Veerasingam, S.; Rajagopal, S.; Venkatachalapathy, R. Fatty acids composition of Indian mackerel Rastrilliger kanagurta under different cooking methods. Current research. J. Biol. Sci., 2009, 1(3), 109-112.
[4]
Huynh, M.D.; Kitts, D.D.; Hu, C.; Trites, A.W. Comparison of fatty acid profiles of spawning and non-spawning Pacific herring, Clupea harengus pallasi. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2007, 146(4), 504-511.
[http://dx.doi.org/10.1016/j.cbpb.2006.11.023] [PMID: 17276118]
[5]
Hossain, M.A.; Almatar, S.M.; Al-Hazza, A.A. Proximate, fatty acid and mineral composition of hilsa, Tenualosa ilisha (Hamilton 1822) from the Bay of Bengal and Arabian Gulf. Indian J. Fish., 2014, 61(2), 58-66.
[6]
Rao, B.M.; Murthy, L.N.; Mathew, S.; Asha, K.K.; Sankar, T.V.; Prasad, M.M. Changes in the nutritional profile of Godavari hilsa shad, Tenualosa ilisha (Hamilton, 1822) during its anadromous migration from Bay of Bengal to the River Godavari. Indian J. Fisheries, 2012, 55(1), 2012.
[7]
Incorvaia, C.; Rapetti, A.; Aliani, M.; Castagneto, C.; Corso, N.; Landi, M.; Lietti, D.; Murante, N.; Muratore, L.; Russello, M.; Varin, E.; Makrì, E.; Fuiano, N.; Scala, E. Food allergy as defined by component resolved diagnosis. Recent Pat. Inflamm. Allergy Drug Discov., 2014, 8(1), 59-73.
[http://dx.doi.org/10.2174/1872213X08666140130214519] [PMID: 24483212]
[8]
Gendel, S.M. Bioinformatics and food allergens. J. AOAC Int., 2004, 87(6), 1417-1422.
[http://dx.doi.org/10.1093/jaoac/87.6.1417] [PMID: 15675454]
[9]
Solanki, D.; Mandaliya, V.; Georrge, J.J. Allergen bioinformatics: Repositories and tools to predict allergic proteins. Recent Trends Sci. Technol., 2020, 2020, 162-172.
[10]
Nugraha, R.; Kamath, S.D.; Johnston, E.; Zenger, K.R.; Rolland, J.M.; O’Hehir, R.E.; Lopata, A.L. Rapid and comprehensive discovery of unreported shellfish allergens using large-scale transcriptomic and proteomic resources. J. Allergy Clin. Immunol., 2018, 141(4), 1501-1504.e8.
[http://dx.doi.org/10.1016/j.jaci.2017.11.028] [PMID: 29258834]
[11]
Karnaneedi, S.; Huerlimann, R.; Johnston, E.B.; Nugraha, R.; Ruethers, T.; Taki, A.C.; Kamath, S.D.; Wade, N.M.; Jerry, D.R.; Lopata, A.L. Novel allergen discovery through comprehensive de novo transcriptomic analyses of five shrimp species. Int. J. Mol. Sci., 2020, 22(1), 32.
[http://dx.doi.org/10.3390/ijms22010032] [PMID: 33375120]
[12]
Shaheen, N.; Najar, F.Z.; Chowdhury, U.F.; Chowdhury, M.A.A.; Reza, R.N.; Halima, O.; Foster, S.B.; Khan, H.; Islam, M.R.; Ahsan, N. Muscle proteome profile and potential allergens of premature hilsa shad (Tenualosa ilisha). J. Food Compos. Anal., 2023, 123, 105641.
[http://dx.doi.org/10.1016/j.jfca.2023.105641]
[13]
Das, A.; Ianakiev, P.; Baten, A.; Nehleen, R.; Ehsan, T.; Ahmed, O.; Islam, M.R.; Naser, M.N.; Marma, M.S.; Khan, H. Genome of Tenualosa ilisha from the river Padma, Bangladesh. BMC Res. Notes, 2018, 11(1), 921.
[http://dx.doi.org/10.1186/s13104-018-4028-8] [PMID: 30577879]
[14]
Divya, B.K.; Mohindra, V.; Singh, R.K.; Yadav, P.; Masih, P.; Jena, J.K. Muscle transcriptome resource for growth, lipid metabolism and immune system in Hilsa shad, Tenualosa ilisha. Genes Genomics, 2019, 41(1), 1-15.
[http://dx.doi.org/10.1007/s13258-018-0732-y] [PMID: 30196475]
[15]
Chowdhury, L.M.; Maurya, R.K.; Singh, R.K.; Mishra, S.; Chauhan, N.; Jena, J.K.; Mohindra, V. Discovery of alternatively spliced isoforms and long non-coding RNA in full length brain transcriptomes of anadromous Hilsa shad, Tenualosa ilisha (Hamilton, 1822). Mol. Biol. Rep., 2021, 48(11), 7333-7342.
[http://dx.doi.org/10.1007/s11033-021-06735-w] [PMID: 34643921]
[16]
Mohindra, V.; Dangi, T.; Chowdhury, L.M.; Jena, J.K. Tissue specific alpha-2-Macroglobulin (A2M) splice isoform diversity in Hilsa shad, Tenualosa ilisha (Hamilton, 1822). PLoS One, 2019, 14(7), e0216144.
[http://dx.doi.org/10.1371/journal.pone.0216144] [PMID: 31335900]
[17]
Chowdhury, M.A.A.; Islam, M.R.; Amin, A.; Mou, S.N.; Ullah, K.N.; Baten, A.; Shoyaib, M.; Ali, A.A.; Chowdhury, F.T.; Rahi, M.L.; Khan, H.; Amin, M.A.; Islam, M.R. Integrated transcriptome catalog of Tenualosa ilisha as a resource for gene discovery and expression profiling. Sci. Data, 2023, 10(1), 214.
[http://dx.doi.org/10.1038/s41597-023-02132-z] [PMID: 37062771]
[18]
Simms, D.; Cizdziel, P.E.; Chomczynski, P. TRIzol: A new reagent for optimal single-step isolation of RNA. Focus, 1993, 15(4), 532-535.
[19]
Andrews, S.; Krueger, F.; Segonds-Pichon, A.; Biggins, L.; Krueger, C.; Wingett, S. FastQC. A quality control tool for high throughput sequence data. 2010. Available From: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
[20]
Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M.; Multi, Q.C. Summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 2016, 32(19), 3047-3048.
[http://dx.doi.org/10.1093/bioinformatics/btw354] [PMID: 27312411]
[21]
Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; Chen, Z. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol., 2011, 29(7), 644.
[http://dx.doi.org/10.1038/nbt.1883] [PMID: 21572440]
[22]
Li, W.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 2006, 22(13), 1658-1659.
[http://dx.doi.org/10.1093/bioinformatics/btl158] [PMID: 16731699]
[23]
Smith-Unna, R.; Boursnell, C.; Patro, R.; Hibberd, J.M.; Kelly, S. TransRate: Reference-free quality assessment of de novo transcriptome assemblies. Genome Res., 2016, 26(8), 1134-1144.
[http://dx.doi.org/10.1101/gr.196469.115] [PMID: 27252236]
[24]
Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 2015, 31(19), 3210-3212.
[http://dx.doi.org/10.1093/bioinformatics/btv351] [PMID: 26059717]
[25]
Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; MacManes, M.D.; Ott, M.; Orvis, J.; Pochet, N.; Strozzi, F.; Weeks, N.; Westerman, R.; William, T.; Dewey, C.N.; Henschel, R.; LeDuc, R.D.; Friedman, N.; Regev, A. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc., 2013, 8(8), 1494-1512.
[http://dx.doi.org/10.1038/nprot.2013.084] [PMID: 23845962]
[26]
Goodman, R.E.; Ebisawa, M.; Ferreira, F.; Sampson, H.A.; van Ree, R.; Vieths, S.; Baumert, J.L.; Bohle, B.; Lalithambika, S.; Wise, J.; Taylor, S.L. AllergenOnline: A peer‐reviewed, curated allergen database to assess novel food proteins for potential cross‐reactivity. Mol. Nutr. Food Res., 2016, 60(5), 1183-1198.
[http://dx.doi.org/10.1002/mnfr.201500769] [PMID: 26887584]
[27]
McGinnis, S.; Madden, T.L. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res., 2004, 32(Web Server)(Suppl. 2), W20-W25.
[http://dx.doi.org/10.1093/nar/gkh435] [PMID: 15215342]
[28]
Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinformatics, 2009, 10(1), 421.
[http://dx.doi.org/10.1186/1471-2105-10-421] [PMID: 20003500]
[29]
Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods, 2017, 14(4), 417-419.
[http://dx.doi.org/10.1038/nmeth.4197] [PMID: 28263959]
[30]
Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 2014, 15(12), 550.
[http://dx.doi.org/10.1186/s13059-014-0550-8] [PMID: 25516281]
[31]
Vita, R.; Mahajan, S.; Overton, J.A.; Dhanda, S.K.; Martini, S.; Cantrell, J.R.; Wheeler, D.K.; Sette, A.; Peters, B. The immune epitope database (IEDB): 2018 update. Nucleic Acids Res., 2019, 47(D1), D339-D343.
[http://dx.doi.org/10.1093/nar/gky1006] [PMID: 30357391]
[32]
Kunik, V.; Ashkenazi, S.; Ofran, Y. Paratome: An online tool for systematic identification of antigen-binding regions in antibodies based on sequence or structure. Nucleic Acids Res., 2012, 40(W1), W521-W524.
[http://dx.doi.org/10.1093/nar/gks480] [PMID: 22675071]
[33]
Eswar, N.; Webb, B.; Marti-Renom, M.A.; Madhusudhan, M.S.; Eramian, D.; Shen, M.Y.; Pieper, U.; Sali, A. Current protocols in protein science. Curr. Protoc. Protein Sci., 2007, 50, 2-9.
[34]
Brenke, R.; Hall, D.R.; Chuang, G.Y.; Comeau, S.R.; Bohnuud, T.; Beglov, D.; Schueler-Furman, O.; Vajda, S.; Kozakov, D. Application of asymmetric statistical potentials to antibody–protein docking. Bioinformatics, 2012, 28(20), 2608-2614.
[http://dx.doi.org/10.1093/bioinformatics/bts493] [PMID: 23053206]
[35]
Das, A.; Chakraborti, P.; Chatterjee, U.; Mondal, G.; Chatterjee, B.P. Identification of allergens in Indian fishes: Hilsa and pomfret exemplified by ELISA and immunoblotting. Indian J. Exp. Biol., 2005, 43(12), 1170-1175.
[36]
Chatterjee, U.; Mondal, G.; Chakraborti, P.; Patra, H.K.; Chatterjee, B.P. Changes in the allergenicity during different preparations of Pomfret, Hilsa, Bhetki and mackerel fish as illustrated by enzyme-linked immunosorbent assay and immunoblotting. Int. Arch. Allergy Immunol., 2006, 141(1), 1-10.
[http://dx.doi.org/10.1159/000094176] [PMID: 16804323]
[37]
Baten, A.; Ngangbam, A.; Waters, D.; Benkendorff, K. Transcriptome of the Australian mollusc Dicathais orbita provides insights into the biosynthesis of indoles and choline esters. Mar. Drugs, 2016, 14(7), 135.
[http://dx.doi.org/10.3390/md14070135] [PMID: 27447649]
[38]
Tan, N.H.; Mukai, Y.; Okawa, R.; Anraku, K. Visual pigments and spectral sensitivity of juvenile sutchi catfish (Pangasianodon hypophthalmus Sauvage 1878). J. Appl. Ichthyology, 2018, 34(6), 1314-1319.
[http://dx.doi.org/10.1111/jai.13792]
[39]
Jonsson, N.; Jonsson, B. Energy allocation among developmental stages, age groups, and types of Atlantic salmon (Salmo salar) spawners. Can. J. Fish. Aquat. Sci., 2003, 60(5), 506-516.
[http://dx.doi.org/10.1139/f03-042]
[40]
Sudharson, S.; Kalic, T.; Hafner, C.; Breiteneder, H. Newly defined allergens in the WHO/IUIS Allergen Nomenclature Database during 01/2019‐03/2021. Allergy, 2021, 76(11), 3359-3373.
[http://dx.doi.org/10.1111/all.15021] [PMID: 34310736]
[41]
Ruethers, T.; Taki, A.C.; Karnaneedi, S.; Nie, S.; Kalic, T.; Dai, D.; Daduang, S.; Leeming, M.; Williamson, N.A.; Breiteneder, H.; Mehr, S.S.; Kamath, S.D.; Campbell, D.E.; Lopata, A.L. Expanding the allergen repertoire of salmon and catfish. Allergy, 2021, 76(5), 1443-1453.
[http://dx.doi.org/10.1111/all.14574] [PMID: 32860256]
[42]
Lopata, A.L.; Kamath, S. Shellfish allergy diagnosis-gaps and needs. Curr. Allergy Clin. Immunol., 2012, 25(2), 60-66.
[43]
Kuehn, A.; Swoboda, I.; Arumugam, K.; Hilger, C.; Hentges, F. Fish allergens at a glance: Variable allergenicity of parvalbumins, the major fish allergens. Front. Immunol., 2014, 5, 179.
[http://dx.doi.org/10.3389/fimmu.2014.00179] [PMID: 24795722]
[44]
Avilán, L.; Gualdrón-López, M.; Quiñones, W.; González-González, L.; Hannaert, V.; Michels, P.A.; Concepción, J.L. Enolase: A key player in the metabolism and a probable virulence factor of trypanosomatid parasites-perspectives for its use as a therapeutic target. Enzyme Res., 2011, 2011, 932549.
[45]
Leber, Y.; Ruparelia, A.A.; Kirfel, G.; van der Ven, P.F.M.; Hoffmann, B.; Merkel, R.; Bryson-Richardson, R.J.; Fürst, D.O. Filamin C is a highly dynamic protein associated with fast repair of myofibrillar microdamage. Hum. Mol. Genet., 2016, 25(13), ddw135.
[http://dx.doi.org/10.1093/hmg/ddw135] [PMID: 27206985]
[46]
Marshall, W.S. Osmoregulation in estuarine and intertidal fishes. Fish Physiol., 2012, 32, 395-434.
[http://dx.doi.org/10.1016/B978-0-12-396951-4.00008-6]
[47]
Pérez-Tavarez, R.; Carrera, M.; Pedrosa, M.; Quirce, S.; Rodríguez-Pérez, R.; Gasset, M. Reconstruction of fish allergenicity from the content and structural traits of the component β-parvalbumin isoforms. Sci. Rep., 2019, 9(1), 16298.
[http://dx.doi.org/10.1038/s41598-019-52801-6] [PMID: 31704988]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy