Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Aerospace Sciences

Comparison of Pressure-based and Skin Friction-based Methods for the Determination of Flow Separation of a Circular Cylinder with Roundness Imperfection

Author(s): Ran Wang, Shaohong Cheng* and David S.K. Ting

Volume 4, Issue 3, 2024

Published on: 05 March, 2024

Page: [159 - 180] Pages: 22

DOI: 10.2174/0122102981289400240228182937

Price: $65

Abstract

Introduction: A delayed detached eddy simulation in Open FOAM was performed to study flow separation of a circular cylinder with roundness imperfection up to 4% of its diameter at Reynolds numbers of 100, 3900, and 104 in normal flow.

Methods: The flow was considered to be Newtonian and incompressible. The separation position was determined independently based on surface pressure distribution and skin friction.

Results: Results show that the patterns of these distributions depend on both Reynolds number and roundness imperfection level, and flow separation in an imperfectly round cylinder may be induced by either an adverse pressure gradient or a Gentle Bend (GB) introduced by the roughness. For the separation point determined by the pressure-based method, its accuracy can be affected by the characteristic of pressure distribution near the separation point at low Reynolds numbers, and, thus, its physical validity needs to be verified by flow visualization at high Reynolds numbers.

Conclusion: The skin friction-based method can accurately predict separation point for both perfectly and imperfectly round cylinders without additional information. When the roundness imperfection ratio reaches 2% and the Reynolds number reaches 3900, both approaches indicate that the flow separation point converges to the location of GB on the cylinder surface and the two sets of predicted separation points agree well.

Next »
Graphical Abstract

[1]
Zdravkovich, M.M. Flow around circular cylinders;; Oxford Science Publications, 1997, 350, pp. 375-378.
[2]
National renewable energy laboratory (U.S.). Improving fan system performance: A sourcebook for industry; Department of Energy: United States, 2003.
[3]
Lepicovsky, J.; Chima, R.V.; Jett, T.A.; Bencic, T.J.; Weiland, K.E. Investigation of flow separation in a transonic-fan linear cascade using visualization methods. Exp. Fluids, 2000, 44, 939-949.
[4]
Negi, P.; Subhash, M. Method to control flow separation over wind turbine blade: A CFD study. Mater. Today Proc., 2021, 46(20), 10960-10963.
[http://dx.doi.org/10.1016/j.matpr.2021.02.040]
[5]
Liu, J.; Zhang, F.; Song, M.; Zhu, L.; Appiah, D.; Yuan, S. Effects of unstable flow structures on energy transfer mechanism in a centrifugal pump. Proc. Inst. Mech. Eng., A J. Power Energy, 2024, 238(1), 73-89.
[http://dx.doi.org/10.1177/09576509231195222]
[6]
Kenig, E.Y. Complementary modelling of fluid separation processes. Chem. Eng. Res. Des., 2008, 86(9), 1059-1072.
[http://dx.doi.org/10.1016/j.cherd.2008.04.011]
[7]
Zhang, Z.; Wang, Z.; Gursul, I. Aerodynamics of a wing in turbulent bluff body wakes. J. Fluid Mech., 2022, 937, A37.
[http://dx.doi.org/10.1017/jfm.2022.132]
[8]
Rizzo, F.; D’Alessandro, V.; Montelpare, S.; Giammichele, L. Computational study of a bluff body aerodynamics: Impact of the laminar-to-turbulent transition modelling. Int. J. Mech. Sci., 2020, 178, 105620.
[http://dx.doi.org/10.1016/j.ijmecsci.2020.105620]
[9]
Minelli, G.; Dong, T.; Noack, B.R.; Krajnović, S. Upstream actuation for bluff-body wake control driven by a genetically inspired optimization. J. Fluid Mech., 2020, 893, A1.
[http://dx.doi.org/10.1017/jfm.2020.220]
[10]
Chang, P.K. Separation of flow. In: Books Engineering and technology; Elsevier, 2014.
[11]
Alam, M.; Sandham, N.D. Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech., 2000, 410, S0022112099008976.
[http://dx.doi.org/10.1017/S0022112099008976]
[12]
Shan, H.; Jiang, L.; Liu, C. Direct numerical simulation of flow separation around a NACA 0012 airfoil. Comput. Fluids, 2005, 34(9), 1096-1114.
[http://dx.doi.org/10.1016/j.compfluid.2004.09.003]
[13]
Gad-el Hak, M. Flow Control-Passive, Active, and Reactive Flow Management, 1st ed; Cambridge University Press: Cambridge, UK, 2000, pp. 150-203.
[http://dx.doi.org/10.1017/CBO9780511529535.010]
[14]
Genc, M.S.; Karasu, I.; Acikel, H.H.; Akpolat, M.T. Low reynolds number flows and transition: Low reynolds number aerodynamics and transition; InTech: Rijeka, Croatia, 2012, pp. 1-28.
[http://dx.doi.org/10.5772/2398]
[15]
Cheng, W.; Pullin, D.I.; Samtaney, R.; Zhang, W.; Gao, W. Large-eddy simulation of flow over a cylinder with from to: A skin-friction perspective. J. Fluid Mech., 2017, 820, 121-158.
[http://dx.doi.org/10.1017/jfm.2017.172]
[16]
Mehmood, A.; Shah, B.H.; Usman, M.; Raza, I. Analysis of laminar boundary-layer separation in retarded flow over bodies of revolution. Can. J. Phys., 2022, 100(2), 86-95.
[http://dx.doi.org/10.1139/cjp-2021-0211]
[17]
Masoudi, E.; Sims-Williams, D.; Gan, L. Flow separation from polygonal cylinders in an incident flow. Phys. Rev. Fluids, 2023, 8(1), 014701.
[http://dx.doi.org/10.1103/PhysRevFluids.8.014701]
[18]
Nishimura, H.; Taniike, Y. Aerodynamic characteristics of fluctuating forces on a circular cylinder. J. Wind Eng. Ind. Aerodyn., 2001, 89(7-9), 713-723.
[19]
Raeesi, A.; Cheng, S.; Ting, D.S.K. Spatial flow structure around a smooth circular cylinder in the critical Reynolds number regime under cross-flow condition. Wind Struct., 2008, 11(3), 221-240.
[http://dx.doi.org/10.12989/was.2008.11.3.221]
[20]
Schlichting, H.; Gersten, K. Boundary-layer theory; Springer, 2016.
[21]
Jiang, H.; Cheng, L. Flow separation around a square cylinder at low to moderate Reynolds numbers. Phys. of Fluids, 2020, 32(4), 044103.
[22]
Xu, S.J.; Zhang, W.G.; Gan, L.; Li, M.G.; Zhou, Y. Experimental study of flow around polygonal cylinders. J. Fluid Mech., 2016, 812, 251278.
[http://dx.doi.org/10.1017/jfm.2016.801]
[23]
Simpson, R.L. Review-a review of some phenomena in turbulent flow separation. J. Fluids Eng., 1981, 103(4), 520-533.
[24]
Nagata, T.; Noguchi, A.; Kusama, K.; Nonomura, T.; Komuro, A.; Ando, A.; Asai, K. Experimental investigation on compressible flow over a circular cylinder at Reynolds number of between 1000 and 5000. J. Fluid Mech., 2020, 893, A13.
[http://dx.doi.org/10.1017/jfm.2020.221]
[25]
Maryami, R.; Showkat Ali, S.A.; Azarpeyvand, M.; Afshari, A. Turbulent flow interaction with a circular cylinder. Phys. Fluids, 2020, 32(1), 015105.
[http://dx.doi.org/10.1063/1.5119967]
[26]
Jogee, S.; Prasad, B.V.S.S.S.; Anupindi, K. Large-eddy simulation of non-isothermal flow over a circular cylinder. Int. J. Heat Mass Transf., 2020, 151, 119426.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119426]
[27]
Brandao, F.L.; Bhatt, M.; Mahesh, K. Numerical study of cavitation regimes in flow over a circular cylinder. J. Fluid Mech., 2020, 885, A19.
[http://dx.doi.org/10.1017/jfm.2019.971]
[28]
Chen, W.L.; Huang, Y.; Chen, C.; Yu, H.; Gao, D. Review of active control of circular cylinder flow. Ocean Eng., 2022, 258, 111840.
[http://dx.doi.org/10.1016/j.oceaneng.2022.111840]
[29]
Jiang, H.; Cheng, L. Large-eddy simulation of flow past a circular cylinder for Reynolds numbers 400 to 3900. Phys. Fluids, 2021, 33(3), 034119.
[http://dx.doi.org/10.1063/5.0041168]
[30]
Mishra, A.; Hanzla, M.; De, A. Passive control of the onset of vortex shedding in flow past a circular cylinder using slit. Phys. Fluids, 2020, 32(1), 013602.
[http://dx.doi.org/10.1063/1.5132799]
[31]
Raeesi, A.; Cheng, S.; Ting, D.S-K. A two-degree-of-freedom aeroelastic model for the vibration of dry cylindrical body along unsteady air flow and its application to aerodynamic response of dry inclined cables. J. Wind Eng. Ind. Aerodyn., 2014, 130, 108-124.
[32]
Raeesi, A.; Cheng, S.; Ting, D.S.K. Aerodynamic damping of an inclined circular cylinder in unsteady flow and its application to the prediction of dry inclined cable galloping. J. Wind Eng. Ind. Aerodyn., 2013, 113, 12-28.
[http://dx.doi.org/10.1016/j.jweia.2012.12.003]
[33]
Raeesi, A.; Cheng, S.; Ting, D.S.K. Application of a three-dimensional aeroelastic model to study the wind-induced response of bridge stay cables in unsteady wind conditions. J. Sound Vibrat., 2016, 375, 217-236.
[http://dx.doi.org/10.1016/j.jsv.2016.04.019]
[34]
Macdonald, J.H.G.; Larose, G.L. A unified approach to aerodynamic damping and drag/lift instabilities, and its application to dry inclined cable galloping. J. Fluids Structures, 2006, 22(2), 229-252.
[http://dx.doi.org/10.1016/j.jfluidstructs.2005.10.002]
[35]
Cheng, S.; Larose, G.L.; Savage, M.G.; Tanaka, H.; Irwin, P.A. Experimental study on the wind-induced vibration of a dry inclined cable—Part I: Phenomena. J. Wind Eng. Ind. Aerodyn., 2008, 96(12), 2231-2253.
[http://dx.doi.org/10.1016/j.jweia.2008.01.008]
[36]
Matsumoto, M.; Yagi, T.; Hatsuda, H.; Shima, T.; Tanaka, M.; Naito, H. Dry galloping characteristics and its mechanism of inclined/yawed cables. J. Wind Eng. Ind. Aerodyn., 2010, 98(6-7), 317-327.
[http://dx.doi.org/10.1016/j.jweia.2009.12.001]
[37]
Cheng, S.; Larose, G.L.; Savage, M.G.; Tanaka, H. Aerodynamic behaviour of an inclined circular cylinder. Wind Struct., 2003, 6(3), 197-208.
[http://dx.doi.org/10.12989/was.2003.6.3.197]
[38]
D’Auteuil, A.; McTavish, S.; Raeesi, A.; Larose, G. An investigation of rain-wind induced vibrations on stay cables in a novel range of operating conditions. J. Wind Eng. Ind. Aerodyn., 2023, 242, 105581.
[http://dx.doi.org/10.1016/j.jweia.2023.105581]
[39]
Wang, R.; Cheng, S.; Ting, D.S.K. Effect of yaw angle on flow structure and cross-flow force around a circular cylinder. Phys. Fluids, 2019, 31(1), 014107.
[http://dx.doi.org/10.1063/1.5079750]
[40]
Wang, R.; Cheng, S.; Ting, D.S.K. Numerical study of flow characteristics around a 30° yawed circular cylinder at Re=104. Phys. Fluids, 2023, 35(10), 105134.
[http://dx.doi.org/10.1063/5.0172648]
[41]
Cheng, S.; Wang, R. Explore essential elements in the generation mechanisms of wind-induced cable vibrations: An insight offered by numerical techniques. In: Dynamics and Aerodynamics of Cables. ISDAC 2023. Lecture Notes in Civil Engineering; Gattulli, V.; Lepidi, M.; Martinelli, L., Eds.; Springer: Cham, 2024; p. 399.
[http://dx.doi.org/10.1007/978-3-031-47152-0_1]
[42]
Larose, G.L.; McTavish, S.; Bosch, H.; Stoyanoff, S.; Jakobsen, J.B.; Wang, J. Wind tunnel tests on free to respond bridge stay cable modelsInternational Symposium on the Dynamics and Aerodynamics of Cables,; , 2017, pp. 103-110.
[43]
Wang, J.; Jakobsen, J.B.; McTavish, S.; Larose, G.L. Aerodynamic performance of a grooved cylinder in flow conditions encountered by bridge stay cables in service. J. Wind Eng. Ind. Aerodyn., 2019, 188, 80-89.
[http://dx.doi.org/10.1016/j.jweia.2019.02.009]
[44]
Wang, R.; Cheng, S.; Ting, D.S.K. Numerical study of roundness effect on flow around a circular cylinder. Phys. Fluids, 2020, 32(4), 044106.
[http://dx.doi.org/10.1063/5.0002997]
[45]
Letchford, C.; Lander, D.; Case, P.; Dyson, A.; Amitay, M. Bio-mimicry inspired tall buildings: The response of cactus-like buildings to wind action at Reynolds number of 104. J. Wind Eng. Ind. Aerodyn., 2016, 150, 22-30.
[http://dx.doi.org/10.1016/j.jweia.2016.01.001]
[46]
Levy, B.; Liu, Y. The effects of cactus inspired spines on the aerodynamics of a cylinder. J. Fluids Structures, 2013, 39, 335-346.
[http://dx.doi.org/10.1016/j.jfluidstructs.2013.03.006]
[47]
El-Makdah, A.M.; Oweis, G.F. The flow past a cactus-inspired grooved cylinder. Exp. Fluids, 2013, 54(2), 1464.
[http://dx.doi.org/10.1007/s00348-013-1464-z]
[48]
Cheng, W.; Pullin, D.I.; Samtaney, R. Large-eddy simulation of flow over a grooved cylinder up to transcritical Reynolds numbers. J. Fluid Mech., 2018, 835, 327-362.
[http://dx.doi.org/10.1017/jfm.2017.767]
[49]
Yamagishi, Y.; Oki, M. Effect of the number of grooves on flow characteristics around a circular cylinder with triangular grooves. J. Vis., 2005, 8(1), 57-64.
[http://dx.doi.org/10.1007/BF03181603]
[50]
Liu, Y.Z.; Shi, L.L.; Yu, J. TR-PIV measurement of the wake behind a grooved cylinder at low Reynolds number. J. Fluids Structures, 2011, 27(3), 394-407.
[http://dx.doi.org/10.1016/j.jfluidstructs.2010.11.013]
[51]
Zhang, K.; Katsuchi, H.; Zhou, D.; Yamada, H.; Han, Z. Numerical study on the effect of shape modification to the flow around circular cylinders. J. Wind Eng. Ind. Aerodyn., 2016, 152, 23-40.
[52]
Wang, S.F.; Liu, Y.Z.; Zhang, Q.S. Measurement of flow around a cactusanalogue grooved cylinder at Re_D=5.4×104: Wall-pressure fluctuations and flow pattern. J. Flu. Struc., 2014, 50, 120-136.
[53]
Abboud, J.E.; Karaki, W.S.; Oweis, G.F. Particle image velocimetry measurements in the wake of a cactus-shaped cylinder. J. Fluids Eng., 2011, 133(9), 094502.
[http://dx.doi.org/10.1115/1.4004824]
[54]
Ni, Y.Q.; Wang, X.Y.; Chen, Z.Q.; Ko, J.M. Field observations of rain-wind-induced cable vibration in cable-stayed Dongting Lake Bridge. J. Wind Eng. Ind. Aerodyn., 2007, 95(5), 303-328.
[http://dx.doi.org/10.1016/j.jweia.2006.07.001]
[55]
Daniotti, N.; Jakobsen, J.B.; Snæbjörnsson, J.; Cheynet, E.; Wang, J. Observations of bridge stay cable vibrations in dry and wet conditions: A case study. J. Sound Vibrat., 2021, 503, 116106.
[http://dx.doi.org/10.1016/j.jsv.2021.116106]
[56]
Zuo, D.; Jones, N.P. Interpretation of field observations of wind- and rain-wind-induced stay cable vibrations. J. Wind Eng. Ind. Aerodyn., 2010, 98(2), 73-87.
[http://dx.doi.org/10.1016/j.jweia.2009.09.004]
[57]
Weller, H.G.; Tabor, G.; Jasak, H.; Fureby, C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys., 1998, 12(6), 620-631.
[http://dx.doi.org/10.1063/1.168744]
[58]
Spalart, P.R.; Deck, S.; Shur, M.L.; Squires, K.D.; Strelets, M.K.; Travin, A. A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn., 2006, 20(3), 181-195.
[http://dx.doi.org/10.1007/s00162-006-0015-0]
[59]
Spalding, D.B. A single formula for the “law of the wall”. J. Appl. Mech., 1961, 28(3), 455-458.
[http://dx.doi.org/10.1115/1.3641728]
[60]
Roshko, A. On the development of turbulent wakes from vortex streets. NACA Technical Report, 1954, 1-1191.
[61]
Thom, A. The flow past circular cylinders at low speeds. Proceedings of the Royal Society of London, 1933, 141(845), 651-669.
[62]
Rajani, B.N.; Kandasamy, A.; Majumdar, S. LES of flow past circular cylinder at Re = 3900. J. Appl. Fluid Mech., 2016, 9(3), 1421-1435.
[http://dx.doi.org/10.18869/acadpub.jafm.68.228.24178]
[63]
Jiang, H. Separation angle for flow past a circular cylinder in the subcritical regime. Phys. Fluids, 2020, 32(1), 014106.
[http://dx.doi.org/10.1063/1.5139479]
[64]
Wu, M.H.; Wen, C.Y.; Yen, R.H.; Weng, M.C.; Wang, B. Experimental and numerical study of the separation angle for flow around a circular cylinder at low Reynolds number. J. Fluid Mech., 2004, 515, 233-260.
[http://dx.doi.org/10.1017/S0022112004000436]
[65]
Ahmad, R.A. Steady-state numerical solution of the Navier-Stokes and energy equations around a horizontal cylinder at moderate Reynolds numbers from 100 to 500. Heat Transf. Eng., 1996, 17(1), 31-81.
[http://dx.doi.org/10.1080/01457639608939866]
[66]
Lin, C.L.; Pepper, D.W.; Lee, S.C. Numerical methods for separated flow solutions around a circular cylinder. AIAA J., 1976, 14(7), 900-907.
[http://dx.doi.org/10.2514/3.61431]
[67]
Jordan, S.K.; Fromm, J.E. Oscillatory drag, lift, and torque on a circular cylinder in a uniform flow. Phys. Fluids, 1972, 15(3), 371-376.
[http://dx.doi.org/10.1063/1.1693918]
[68]
Thoman, D.C.; Szewczyk, A.A. Time-dependent viscous flow over a circular cylinder. Phys. Fluids, 1969, 12(12), II-76-II-86.
[http://dx.doi.org/10.1063/1.1692472]
[69]
Kawaguti, M.; Jain, P. Numerical study of a viscous fluid flow past a circular cylinder. J. Phys. Soc. Jpn., 1966, 21(10), 2055-2062.
[http://dx.doi.org/10.1143/JPSJ.21.2055]
[70]
Dimopoulos, H.G.; Hanratty, T.J. Velocity gradients at the wall for flow around a cylinder for Reynolds numbers between 60 and 360. J. Fluid Mech., 1968, 33(2), 303-319.
[http://dx.doi.org/10.1017/S0022112068001321]
[71]
Grove, A.S.; Shair, F.H.; Petersen, E.E. An experimental investigation of the steady separated flow past a circular cylinder. J. Fluid Mech., 1964, 19(1), 60-80.
[http://dx.doi.org/10.1017/S0022112064000544]
[72]
Homann, F. Einfluß großer Zähigkeit bei Strömung um Zylinder. Forsch. Ingwes., 1936, 7(1), 1-10.
[http://dx.doi.org/10.1007/BF02578758]
[73]
Takami, H.; Keller, H.B. Steady two-dimensional viscous flow of an incompressible fluid past a circular cylinder. Phys. Fluids, 1969, 12(12), II-51-II-56.
[http://dx.doi.org/10.1063/1.1692469]
[74]
Coutanceau, M.; Bouard, R. Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow. J. Fluid Mech., 1977, 79(2), 231-256.
[http://dx.doi.org/10.1017/S0022112077000135]
[75]
Taneda, S. Experimental investigation of the wakes behind cylinders and plates at low Reynolds numbers. J. Phys. Soc. Jpn., 1956, 11(3), 302-307.
[http://dx.doi.org/10.1143/JPSJ.11.302]
[76]
Travin, A.; Shur, M.; Strelets, M.; Spalart, P. Detached-eddy simulations past a circular cylinder. Flow Turbul. Combus., 2000, 63(1/4), 293-313.
[http://dx.doi.org/10.1023/A:1009901401183]
[77]
Weidman, P.D. Wake transition and blockage effects on cylinder base pressures. 1968. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ab8e880708e9e5de01f55fb498c98f3942d77dc6
[78]
Dong, S.; Karniadakis, G.E.; Ekmekci, A.; Rockwell, D. A combined direct numerical simulation–particle image velocimetry study of the turbulent near wake. J. Fluid Mech., 2006, 569, 185-207.
[http://dx.doi.org/10.1017/S0022112006002606]
[79]
Norberg, C. LDV-measurements in the near wake of a circular cylinder. In: Conference: Advances in the Understanding of Bluff Body Wakes and Vortex-Induced Vibration; ASME Fluids Engineering Division: Washington, D.C, 1998.
[80]
Goldstein, S. Modern developments in fluid dynamics: an account of theory and experiment relating to boundary layers; Clarendon Press, 1938.
[81]
Kravchenko, A.G.; Moin, P. Numerical studies of flow over a circular cylinder at ReD=3900. Phys. Fluids, 2000, 12(2), 403-417.
[http://dx.doi.org/10.1063/1.870318]
[82]
Lysenko, D.A.; Ertesvåg, I.S.; Rian, K.E. Modeling of turbulent separated flows using OpenFOAM. Comput. Fluids, 2013, 80, 408-422.
[http://dx.doi.org/10.1016/j.compfluid.2012.01.015]
[83]
Son, J.S.; Hanratty, T.J. Velocity gradients at the wall for flow around a cylinder at Reynolds numbers from 5 × 103 to 105. J. Fluid Mech., 1969, 35(2), 353-368.
[http://dx.doi.org/10.1017/S0022112069001157]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy