Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Reduced Serum Brain-Derived Neurotrophic Factor in Infants Affected by Severe Bronchiolitis

Author(s): Raffaella Nenna, Carla Petrella, Enea Bonci, Paola Papoff, Margherita di Jorgi, Laura Petrarca, Maria Giulia Conti, Christian Barbato, Alessandra Pietrangeli, Marco Fiore*, Fabio Midulla* and BROME Group

Volume 22, Issue 14, 2024

Published on: 04 March, 2024

Page: [2433 - 2442] Pages: 10

DOI: 10.2174/1570159X22999240223153901

Price: $65

Abstract

Background: Bronchiolitis is an acute viral infection of the lower respiratory tract, typical of infants in their first year of life and causing hypoxia in the most serious cases. Bronchiolitis recognizes various demographic risk factors that are associated with greater clinical severity; however, no laboratory factors are yet able to correlate with the clinical severity. Neurotrophins as Brain-Derived Neurotrophic Factor (BDNF) are mediators of neuronal plasticity. BDNF is constitutively expressed in smooth muscle cells and epithelium of the lower respiratory tract, and as it is released during inflammatory conditions, serum levels may have a relevant role in the prognosis of infants with bronchiolitis.

Objective: In the present pilot study, we aimed to disclose the presence of serum BDNF in infants hospitalized with bronchiolitis at discharge as a disease severity indicator.

Methods and Results: Serum BDNF, measured at hospital discharge, was significantly lower in severe bronchiolitis (expressed as O2-supplemented infants). Furthermore, no changes were disclosed for the Tropomyosin receptor kinase B, the main BDNF receptor and neurofilament light chain, a biomarker of neuronal degeneration.

Conclusion: Low serum BDNF in infants with severe bronchiolitis could be associated with a higher utilization by lung cells or with an altered production by lung cells. Therefore, further research is required to study if a decreased production or increased consumption of this biomarker is at the base of the above-mentioned findings.

[1]
Midulla, F.; Petrarca, L.; Frassanito, A.; Di Mattia, G.; Zicari, A.M.; Nenna, R. Bronchiolitis clinics and medical treatment. Minerva Pediatr., 2018, 70(6), 600-611.
[http://dx.doi.org/10.23736/S0026-4946.18.05334-3] [PMID: 30334624]
[2]
Shi, T.; McAllister, D.A.; O’Brien, K.L.; Simoes, E.A.F.; Madhi, S.A.; Gessner, B.D.; Polack, F.P.; Balsells, E.; Acacio, S.; Aguayo, C.; Alassani, I.; Ali, A.; Antonio, M.; Awasthi, S.; Awori, J.O.; Azziz-Baumgartner, E.; Baggett, H.C.; Baillie, V.L.; Balmaseda, A.; Barahona, A.; Basnet, S.; Bassat, Q.; Basualdo, W.; Bigogo, G.; Bont, L.; Breiman, R.F.; Brooks, W.A.; Broor, S.; Bruce, N.; Bruden, D.; Buchy, P.; Campbell, S.; Carosone-Link, P.; Chadha, M.; Chipeta, J.; Chou, M.; Clara, W.; Cohen, C.; de Cuellar, E.; Dang, D.A.; Dash-yandag, B.; Deloria-Knoll, M.; Dherani, M.; Eap, T.; Ebruke, B.E.; Echavarria, M.; de Freitas, L.E.C.C.; Fasce, R.A.; Feikin, D.R.; Feng, L.; Gentile, A.; Gordon, A.; Goswami, D.; Goyet, S.; Groome, M.; Halasa, N.; Hirve, S.; Homaira, N.; Howie, S.R.C.; Jara, J.; Jroundi, I.; Kartasasmita, C.B.; Khuri-Bulos, N.; Kotloff, K.L.; Krishnan, A.; Libster, R.; Lopez, O.; Lucero, M.G.; Lucion, F.; Lupisan, S.P.; Marcone, D.N.; McCracken, J.P.; Mejia, M.; Moisi, J.C.; Montgomery, J.M.; Moore, D.P.; Moraleda, C.; Moyes, J.; Munywoki, P.; Mutyara, K.; Nicol, M.P.; Nokes, D.J.; Nymadawa, P.; da Costa Oliveira, M.T.; Oshitani, H.; Pandey, N.; Paranhos-Baccalà, G.; Phillips, L.N.; Picot, V.S.; Rahman, M.; Rakoto-Andrianarivelo, M.; Rasmussen, Z.A.; Rath, B.A.; Robinson, A.; Romero, C.; Russomando, G.; Salimi, V.; Sawatwong, P.; Scheltema, N.; Schweiger, B.; Scott, J.A.G.; Seidenberg, P.; Shen, K.; Singleton, R.; Sotomayor, V.; Strand, T.A.; Sutanto, A.; Sylla, M.; Tapia, M.D.; Thamthitiwat, S.; Thomas, E.D.; Tokarz, R.; Turner, C.; Venter, M.; Waicharoen, S.; Wang, J.; Watthanaworawit, W.; Yoshida, L.M.; Yu, H.; Zar, H.J.; Campbell, H.; Nair, H. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: A systematic review and modelling study. Lancet, 2017, 390(10098), 946-958.
[http://dx.doi.org/10.1016/S0140-6736(17)30938-8] [PMID: 28689664]
[3]
Manti, S.; Staiano, A.; Orfeo, L.; Midulla, F.; Marseglia, G.L.; Ghizzi, C.; Zampogna, S.; Carnielli, V.P.; Favilli, S.; Ruggieri, M.; Perri, D.; Di Mauro, G.; Gattinara, G.C.; D’Avino, A.; Becherucci, P.; Prete, A.; Zampino, G.; Lanari, M.; Biban, P.; Manzoni, P.; Esposito, S.; Corsello, G.; Baraldi, E. UPDATE - 2022 Italian guidelines on the management of bronchiolitis in infants. Ital. J. Pediatr., 2023, 49(1), 19.
[http://dx.doi.org/10.1186/s13052-022-01392-6] [PMID: 36765418]
[4]
Øymar, K.; Skjerven, H.O.; Mikalsen, I.B. Acute bronchiolitis in infants, a review. Scand. J. Trauma Resusc. Emerg. Med., 2014, 22(1), 23.
[http://dx.doi.org/10.1186/1757-7241-22-23] [PMID: 24694087]
[5]
Bukiya, A.N. Fetal cerebral artery mitochondrion as target of prenatal alcohol exposure. Int. J. Environ. Res. Public Health, 2019, 16(9), 1586.
[http://dx.doi.org/10.3390/ijerph16091586] [PMID: 31067632]
[6]
de Sonnaville, E.S.V.; Oosterlaan, J.; Ghiassi, S.A.; van Leijden, O.; van Ewijk, H.; Knoester, H.; van Woensel, J.B.M.; Kӧnigs, M. Long-term neurocognitive outcomes after pediatric intensive care: Exploring the role of drug exposure. Pediatr. Res., 2023, 94(2), 603-610.
[http://dx.doi.org/10.1038/s41390-022-02460-7] [PMID: 36694029]
[7]
Shein, S.L.; Slain, K.N.; Clayton, J.A.; McKee, B.; Rotta, A.T.; Wilson-Costello, D. Neurologic and functional morbidity in critically ill children with bronchiolitis. Pediatr. Crit. Care Med., 2017, 18(12), 1106-1113.
[http://dx.doi.org/10.1097/PCC.0000000000001337] [PMID: 28930814]
[8]
Andrade, C.A.; Kalergis, A.M.; Bohmwald, K. Potential neurocognitive symptoms due to respiratory syncytial virus infection. Pathogens, 2021, 11(1), 47.
[http://dx.doi.org/10.3390/pathogens11010047] [PMID: 35055995]
[9]
Nenna, R.; Cutrera, R.; Frassanito, A.; Alessandroni, C.; Nicolai, A.; Cangiano, G.; Petrarca, L.; Arima, S.; Caggiano, S.; Ullmann, N.; Papoff, P.; Bonci, E.; Moretti, C.; Midulla, F. Modifiable risk factors associated with bronchiolitis. Ther. Adv. Respir. Dis., 2017, 11(10), 393-401.
[http://dx.doi.org/10.1177/1753465817725722] [PMID: 28812472]
[10]
Di Mattia, G.; Nenna, R.; Mancino, E.; Rizzo, V.; Pierangeli, A.; Villani, A.; Midulla, F. During the COVID‐19 pandemic where has respiratory syncytial virus gone? Pediatr. Pulmonol., 2021, 56(10), 3106-3109.
[http://dx.doi.org/10.1002/ppul.25582] [PMID: 34273135]
[11]
Nenna, R.; Evangelisti, M.; Frassanito, A.; Scagnolari, C.; Pierangeli, A.; Antonelli, G.; Nicolai, A.; Arima, S.; Moretti, C.; Papoff, P.; Villa, M.P.; Midulla, F. Respiratory syncytial virus bronchiolitis, weather conditions and air pollution in an Italian urban area: An observational study. Environ. Res., 2017, 158, 188-193.
[http://dx.doi.org/10.1016/j.envres.2017.06.014] [PMID: 28647513]
[12]
Panickar, J.R.; Dodd, S.R.; Smyth, R.L.; Couriel, J.M. Trends in deaths from respiratory illness in children in England and Wales from 1968 to 2000. Thorax, 2005, 60(12), 1035-1038.
[http://dx.doi.org/10.1136/thx.2005.044750] [PMID: 16143582]
[13]
Be’er, M.; Bushmitz, S.; Cahal, M.; Sadot, E.; Yochpaz, S.; Besor, O.; Amirav, I.; Lavie, M. Asthma risk after a pediatric intensive care unit admission for respiratory syncytial virus bronchiolitis. Pediatr. Pulmonol., 2022, 57(7), 1677-1683.
[http://dx.doi.org/10.1002/ppul.25953] [PMID: 35579122]
[14]
Jartti, T.; Mäkelä, M.J.; Vanto, T.; Ruuskanen, O. The link between bronchiolitis and asthma. Infect. Dis. Clin. North Am., 2005, 19(3), 667-689.
[http://dx.doi.org/10.1016/j.idc.2005.05.010] [PMID: 16102655]
[15]
Nenna, R.; Ferrara, M.; Nicolai, A.; Pierangeli, A.; Scagnolari, C.; Papoff, P.; Antonelli, G.; Moretti, C.; Midulla, F. Viral load in infants hospitalized for respiratory syncytial virus bronchiolitis correlates with recurrent wheezing at thirty-six-month follow-up. Pediatr. Infect. Dis. J., 2015, 34(10), 1131-1132.
[http://dx.doi.org/10.1097/INF.0000000000000825] [PMID: 26132826]
[16]
Kneyber, M.C.J.; Steyerberg, E.W.; de Groot, R.; Moll, H.A. Long‐term effects of respiratory syncytial virus (RSV) bronchiolitis in infants and young children: A quantitative review. Acta Paediatr., 2000, 89(6), 654-660.
[http://dx.doi.org/10.1111/j.1651-2227.2000.tb00359.x] [PMID: 10914957]
[17]
Vanker, A.; Gie, R.P.; Zar, H.J. The association between environmental tobacco smoke exposure and childhood respiratory disease: A review. Expert Rev. Respir. Med., 2017, 11(8), 661-673.
[http://dx.doi.org/10.1080/17476348.2017.1338949] [PMID: 28580865]
[18]
Frassanito, A.; Nenna, R.; Arima, S.; Petrarca, L.; Pierangeli, A.; Scagnolari, C.; Di Mattia, G.; Mancino, E.; Matera, L.; Porta, D.; Rusconi, F.; Midulla, F. Modifiable environmental factors predispose term infants to bronchiolitis but bronchiolitis itself predisposes to respiratory sequelae. Pediatr. Pulmonol., 2022, 57(3), 640-647.
[http://dx.doi.org/10.1002/ppul.25794] [PMID: 34918490]
[19]
Brown, P.M.; Schneeberger, D.L.; Piedimonte, G. Biomarkers of respiratory syncytial virus (RSV) infection: specific neutrophil and cytokine levels provide increased accuracy in predicting disease severity. Paediatr. Respir. Rev., 2015, 16(4), 232-240.
[http://dx.doi.org/10.1016/j.prrv.2015.05.005] [PMID: 26074450]
[20]
Fiore, M.; Triaca, V.; Amendola, T.; Tirassa, P.; Aloe, L. Brain NGF and EGF administration improves passive avoidance response and stimulates brain precursor cells in aged male mice. Physiol. Behav., 2002, 77(2-3), 437-443.
[http://dx.doi.org/10.1016/S0031-9384(02)00875-2] [PMID: 12419420]
[21]
Carito, V.; Ceccanti, M.; Ferraguti, G.; Coccurello, R.; Ciafrè, S.; Tirassa, P.; Fiore, M. NGF and BDNF alterations by prenatal alcohol exposure. Curr. Neuropharmacol., 2019, 17(4), 308-317.
[http://dx.doi.org/10.2174/1570159X15666170825101308] [PMID: 28847297]
[22]
Ricci, A.; Felici, L.; Mariotta, S.; Mannino, F.; Schmid, G.; Terzano, C.; Cardillo, G.; Amenta, F.; Bronzetti, E. Neurotrophin and neurotrophin receptor protein expression in the human lung. Am. J. Respir. Cell Mol. Biol., 2004, 30(1), 12-19.
[http://dx.doi.org/10.1165/rcmb.2002-0110OC] [PMID: 12791675]
[23]
Ricci, A.; Graziano, P.; Bronzetti, E.; Saltini, C.; Sciacchitano, S.; Cherubini, E.; Renzoni, E.; Du Bois, R.M.; Grutters, J.C.; Mariotta, S. Increased pulmonary neurotrophin protein expression in idiopathic interstitial pneumonias. Sarcoidosis Vasc. Diffuse Lung Dis., 2007, 24(1), 13-23.
[PMID: 18069415]
[24]
Stoll, P.; Wuertemberger, U.; Bratke, K.; Zingler, C.; Virchow, C.J.; Lommatzsch, M. Stage-dependent association of BDNF and TGF-β1 with lung function in stable COPD. Respir. Res., 2012, 13(1), 116.
[http://dx.doi.org/10.1186/1465-9921-13-116] [PMID: 23245944]
[25]
Braun, A.; Lommatzsch, M.; Neuhaus-Steinmetz, U.; Quarcoo, D.; Glaab, T.; McGregor, G.P.; Fischer, A.; Renz, H. Brain‐derived neurotrophic factor (BDNF) contributes to neuronal dysfunction in a model of allergic airway inflammation. Br. J. Pharmacol., 2004, 141(3), 431-440.
[http://dx.doi.org/10.1038/sj.bjp.0705638] [PMID: 14718253]
[26]
Rochlitzer, S.; Nassenstein, C.; Braun, A. The contribution of neurotrophins to the pathogenesis of allergic asthma. Biochem. Soc. Trans., 2006, 34(4), 594-599.
[http://dx.doi.org/10.1042/BST0340594] [PMID: 16856870]
[27]
Joachim, R.A.; Noga, O.; Sagach, V.; Hanf, G.; Fliege, H.; Kocalevent, R.D.; Peters, E.M.; Klapp, B.F. Correlation between immune and neuronal parameters and stress perception in allergic asthmatics. Clin. Exp. Allergy, 2008, 38(2), 283-290.
[http://dx.doi.org/10.1111/j.1365-2222.2007.02899.x] [PMID: 18070153]
[28]
Lommatzsch, M.; Niewerth, A.; Klotz, J.; Schulte-Herbrüggen, O.; Zingler, C.; Schuff-Werner, P.; Virchow, J.C. Platelet and plasma BDNF in lower respiratory tract infections of the adult. Respir. Med., 2007, 101(7), 1493-1499.
[http://dx.doi.org/10.1016/j.rmed.2007.01.003] [PMID: 17317133]
[29]
Tortorolo, L.; Langer, A.; Polidori, G.; Vento, G.; Stampachiacchere, B.; Aloe, L.; Piedimonte, G. Neurotrophin overexpression in lower airways of infants with respiratory syncytial virus infection. Am. J. Respir. Crit. Care Med., 2005, 172(2), 233-237.
[http://dx.doi.org/10.1164/rccm.200412-1693OC] [PMID: 15879412]
[30]
Chmielewska, N.; Szyndler, J.; Makowska, K.; Wojtyna, D.; Maciejak, P.; Płaźnik, A. Looking for novel, brain-derived, peripheral biomarkers of neurological disorders. Neurol. Neurochir. Pol., 2018, 52(3), 318-325.
[http://dx.doi.org/10.1016/j.pjnns.2018.02.002] [PMID: 29478670]
[31]
Giovannoni, G. Peripheral blood neurofilament light chain levels: The neurologist’s C-reactive protein? Brain, 2018, 141(8), 2235-2237.
[http://dx.doi.org/10.1093/brain/awy200] [PMID: 30060019]
[32]
Nayani, K.; Naeem, R.; Munir, O.; Naseer, N.; Feroze, A.; Brown, N.; Mian, A.I. The clinical respiratory score predicts paediatric critical care disposition in children with respiratory distress presenting to the emergency department. BMC Pediatr., 2018, 18(1), 339.
[http://dx.doi.org/10.1186/s12887-018-1317-2] [PMID: 30376827]
[33]
Destino, L.; Weisgerber, M.C.; Soung, P.; Bakalarski, D.; Yan, K.; Rehborg, R.; Wagner, D.R.; Gorelick, M.H.; Simpson, P. Validity of respiratory scores in bronchiolitis. Hosp. Pediatr., 2012, 2(4), 202-209.
[http://dx.doi.org/10.1542/hpeds.2012-0013] [PMID: 24313026]
[34]
Nenna, R.; Fedele, G.; Frassanito, A.; Petrarca, L.; Di Mattia, G.; Pierangeli, A.; Scagnolari, C.; Papoff, P.; Schiavoni, I.; Leone, P.; Moretti, C.; Midulla, F. Increased T-helper Cell 2 response in infants with respiratory syncytial virus bronchiolitis hospitalized outside epidemic peak. Pediatr. Infect. Dis. J., 2020, 39(1), 61-67.
[http://dx.doi.org/10.1097/INF.0000000000002505] [PMID: 31815840]
[35]
Tore, F.; Tonchev, A.; Fiore, M.; Tuncel, N.; Atanassova, P.; Aloe, L.; Chaldakov, G. From adipose tissue protein secretion to adipopharmacology of disease. Immunol. Endocr. Metab. Agents Med. Chem., 2007, 7(2), 149-155.
[http://dx.doi.org/10.2174/187152207780363712]
[36]
Yano, H.; Chao, M.V. Neurotrophin receptor structure and interactions. Pharm. Acta Helv., 2000, 74(2-3), 253-260.
[http://dx.doi.org/10.1016/S0031-6865(99)00036-9] [PMID: 10812966]
[37]
Pramanik, S.; Sulistio, Y.A.; Heese, K. Neurotrophin signaling and stem cells—implications for neurodegenerative diseases and stem cell therapy. Mol. Neurobiol., 2017, 54(9), 7401-7459.
[http://dx.doi.org/10.1007/s12035-016-0214-7] [PMID: 27815842]
[38]
Ebadi, M.; Bashir, R.M.; Heidrick, M.L.; Hamada, F.M.; El Refaey, E.; Hamed, A.; Helal, G.; Baxi, M.D.; Cerutis, D.R.; Lassi, N.K. Neurotrophins and their receptors in nerve injury and repair. Neurochem. Int., 1997, 30(4-5), 347-374.
[http://dx.doi.org/10.1016/S0197-0186(96)00071-X] [PMID: 9106250]
[39]
Prakash, Y.S.; Martin, R.J. Brain-derived neurotrophic factor in the airways. Pharmacol. Ther., 2014, 143(1), 74-86.
[http://dx.doi.org/10.1016/j.pharmthera.2014.02.006] [PMID: 24560686]
[40]
Zingaropoli, M.A.; Pasculli, P.; Barbato, C.; Petrella, C.; Fiore, M.; Dominelli, F.; Latronico, T.; Ciccone, F.; Antonacci, M.; Liuzzi, G.M.; Talarico, G.; Bruno, G.; Galardo, G.; Pugliese, F.; Lichtner, M.; Mastroianni, C.M.; Minni, A.; Ciardi, M.R. Biomarkers of neurological damage: From acute stage to post-acute sequelae of COVID-19. Cells, 2023, 12(18), 2270.
[http://dx.doi.org/10.3390/cells12182270] [PMID: 37759493]
[41]
Petrella, C.; Nenna, R.; Petrarca, L.; Tarani, F.; Paparella, R.; Mancino, E.; Di Mattia, G.; Conti, M.G.; Matera, L.; Bonci, E.; Ceci, F.M.; Ferraguti, G.; Gabanella, F.; Barbato, C.; Di Certo, M.G.; Cavalcanti, L.; Minni, A.; Midulla, F.; Tarani, L.; Fiore, M. Serum NGF and BDNF in Long-COVID-19 adolescents: A pilot study. Diagnostics, 2022, 12(5), 1162.
[http://dx.doi.org/10.3390/diagnostics12051162] [PMID: 35626317]
[42]
Petrella, C.; Zingaropoli, M.A.; Ceci, F.M.; Pasculli, P.; Latronico, T.; Liuzzi, G.M.; Ciardi, M.R.; Angeloni, A.; Ettorre, E.; Menghi, M.; Barbato, C.; Ferraguti, G.; Minni, A.; Fiore, M. COVID-19 affects serum brain-derived neurotrophic factor and neurofilament light chain in aged men: Implications for morbidity and mortality. Cells, 2023, 12(4), 655.
[http://dx.doi.org/10.3390/cells12040655] [PMID: 36831321]
[43]
Serafim Junior, V.; Fernandes, G.M.M.; Oliveira-Cucolo, J.G.; Pavarino, E.C.; Goloni-Bertollo, E.M. Role of Tropomyosin-related kinase B receptor and brain-derived neurotrophic factor in cancer. Cytokine, 2020, 136, 155270.
[http://dx.doi.org/10.1016/j.cyto.2020.155270]
[44]
Hang, P.Z.; Ge, F.Q.; Li, P.F.; Liu, J.; Zhu, H.; Zhao, J. The regulatory role of the BDNF/TrkB pathway in organ and tissue fibrosis. Histol. Histopathol., 2021, 36(11), 1133-1143.
[http://dx.doi.org/10.14670/HH-18-368] [PMID: 34327702]
[45]
Matera, L.; Nenna, R.; Frassanito, A.; Petrarca, L.; Mancino, E.; Rizzo, V.; Di Mattia, G.; La Regina, D.P.; Pierangeli, A.; Midulla, F. Low lymphocyte count: A clinical severity marker in infants with bronchiolitis. Pediatr. Pulmonol., 2022, 57(7), 1770-1775.
[http://dx.doi.org/10.1002/ppul.25919] [PMID: 35411598]
[46]
Binns, E.; Tuckerman, J.; Licciardi, P.V.; Wurzel, D. Respiratory syncytial virus, recurrent wheeze and asthma: A narrative review of pathophysiology, prevention and future directions. J. Paediatr. Child Health, 2022, 58(10), 1741-1746.
[http://dx.doi.org/10.1111/jpc.16197] [PMID: 36073299]
[47]
Nievas-Soriano, B.J.; Martín-Latorre, M.M.; Martín-González, M.; Manzano-Agugliaro, F.; Castro-Luna, G. Worldwide research trends on bronchiolitis in pediatrics. Pediatr. Pulmonol., 2023, 58(8), 2189-2203.
[http://dx.doi.org/10.1002/ppul.26453] [PMID: 37154529]
[48]
Zang, N.; Li, S.; Li, W.; Xie, X.; Ren, L.; Long, X.; Xie, J.; Deng, Y.; Fu, Z.; Xu, F.; Liu, E. Resveratrol suppresses persistent airway inflammation and hyperresponsivess might partially via nerve growth factor in respiratory syncytial virus-infected mice. Int. Immunopharmacol., 2015, 28(1), 121-128.
[http://dx.doi.org/10.1016/j.intimp.2015.05.031] [PMID: 26044349]
[49]
Kyo, M.; Zhu, Z.; Nanishi, M.; Shibata, R.; Ooka, T.; Freishtat, R.J.; Mansbach, J.M.; Camargo, C.A., Jr; Hasegawa, K. Association of nasopharyngeal and serum glutathione metabolism with bronchiolitis severity and asthma risk: A prospective multicenter cohort study. Metabolites, 2022, 12(8), 674.
[http://dx.doi.org/10.3390/metabo12080674] [PMID: 35893241]
[50]
Zhu, Y.; Fan, Q.; Cheng, L.; Chen, B. Diagnostic errors in initial misdiagnosis of foreign body aspiration in children: A retrospective observational study in a tertiary care hospital in China. Front Pediatr., 2021, 9, 694211.
[http://dx.doi.org/10.3389/fped.2021.694211] [PMID: 34722414]
[51]
Zhu, Z.; Camargo, C.A., Jr; Raita, Y.; Fujiogi, M.; Liang, L.; Rhee, E.P.; Woodruff, P.G.; Hasegawa, K. Metabolome subtyping of severe bronchiolitis in infancy and risk of childhood asthma. J. Allergy Clin. Immunol., 2022, 149(1), 102-112.
[http://dx.doi.org/10.1016/j.jaci.2021.05.036] [PMID: 34119532]
[52]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[53]
Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775.
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]
[54]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J. Vitagenes, cellular stress response, and acetylcarnitine: Relevance to hormesis. Biofactors, 2009, 35(2), 146-160.
[http://dx.doi.org/10.1002/biof.22] [PMID: 19449442]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy