Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Serum MicroRNAs as Predictors of Diagnosis and Drug-resistance in Temporal Lobe Epilepsy: A Preliminary Study

Author(s): Gloria Bertoli*, Francesco Fortunato, Claudia Cava, Ida Manna*, Francesca Gallivanone, Angelo Labate, Antonella Panio, Danilo Porro and Antonio Gambardella*

Volume 22, Issue 14, 2024

Published on: 25 June, 2024

Page: [2422 - 2432] Pages: 11

DOI: 10.2174/1570159X22666240516145823

Price: $65

Abstract

Objective: Temporal lobe epilepsy (TLE) is the most common form of refractory focal epilepsy, and the current clinical diagnosis is based on EEG, clinical neurological history and neuroimaging findings.

Methods: So far, there are no blood-based molecular biomarkers of TLE to support clinical diagnosis, despite the pathogenic mechanisms underlying TLE involving defects in the regulation of gene expression. MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of gene expression.

Results: Recent studies show the feasibility of detecting miRNAs in body fluids; circulating miRNAs have emerged as potential clinical biomarkers in epilepsy, although the TLE miRNA profile needs to be addressed. Here, we analysed the diagnostic potential of 8 circulating miRNAs in sera of 52 TLE patients and 40 age- and sex-matched donor controls by RT-qPCR analyses.

Conclusion: We found that miR-34a-5p, -106b-5p, -130a-3p, -146a-5p, and -19a-3p are differently expressed in TLE compared to control subjects, suggesting a diagnostic role. Furthermore, we found that miR-34a-5p, -106b-5p, -146a-5p and miR-451a could become prognostic biomarkers, being differentially expressed between drug-resistant and drug-responsive TLE subjects. Therefore, serum miRNAs are diagnostic and drug-resistance predictive molecules of TLE.

[1]
Perucca, E.; French, J.; Bialer, M. Development of new antiepileptic drugs: Challenges, incentives, and recent advances. Lancet Neurol., 2007, 6(9), 793-804.
[http://dx.doi.org/10.1016/S1474-4422(07)70215-6] [PMID: 17706563]
[2]
Brennan, G.P.; Henshall, D.C. MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nat. Rev. Neurol., 2020, 16(9), 506-519.
[http://dx.doi.org/10.1038/s41582-020-0369-8] [PMID: 32546757]
[3]
Cava, C.; Manna, I.; Gambardella, A.; Bertoli, G.; Castiglioni, I. Potential role of miRNAs as theranostic biomarkers of epilepsy. Mol. Ther. Nucleic Acids, 2018, 13, 275-290.
[http://dx.doi.org/10.1016/j.omtn.2018.09.008] [PMID: 30321815]
[4]
Aravin, A.; Tuschl, T. Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett., 2005, 579(26), 5830-5840.
[http://dx.doi.org/10.1016/j.febslet.2005.08.009] [PMID: 16153643]
[5]
Pfeifer, A.; Lehmann, H. Pharmacological potential of RNAi — Focus on miRNA. Pharmacol. Ther., 2010, 126(3), 217-227.
[http://dx.doi.org/10.1016/j.pharmthera.2010.03.006] [PMID: 20388525]
[6]
Henshall, D.C. MicroRNAs in the pathophysiology and treatment of status epilepticus. Front. Mol. Neurosci., 2013, 6, 37.
[http://dx.doi.org/10.3389/fnmol.2013.00037] [PMID: 24282394]
[7]
Enright, N.; Simonato, M.; Henshall, D.C. Discovery and validation of blood micro RNA s as molecular biomarkers of epilepsy: Ways to close current knowledge gaps. Epilepsia Open, 2018, 3(4), 427-436.
[http://dx.doi.org/10.1002/epi4.12275] [PMID: 30525113]
[8]
Reschke, C.R.; Henshall, D.C. microRNA and epilepsy. Adv. Exp. Med. Biol., 2015, 888, 41-70.
[http://dx.doi.org/10.1007/978-3-319-22671-2_4] [PMID: 26663178]
[9]
Hu, K.; Xie, Y.Y.; Zhang, C.; Ouyang, D.S.; Long, H.Y.; Sun, D.N.; Long, L.L.; Feng, L.; Li, Y.; Xiao, B. MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus. BMC Neurosci., 2012, 13(1), 115.
[http://dx.doi.org/10.1186/1471-2202-13-115] [PMID: 22998082]
[10]
Kan, A.A.; van Erp, S.; Derijck, A.A.H.A.; de Wit, M.; Hessel, E.V.S.; O’Duibhir, E.; de Jager, W.; Van Rijen, P.C.; Gosselaar, P.H.; de Graan, P.N.E.; Pasterkamp, R.J. Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. Cell. Mol. Life Sci., 2012, 69(18), 3127-3145.
[http://dx.doi.org/10.1007/s00018-012-0992-7] [PMID: 22535415]
[11]
Bot, A.M.; Dębski, K.J.; Lukasiuk, K. Alterations in miRNA levels in the dentate gyrus in epileptic rats. PLoS One, 2013, 8(10), e76051.
[http://dx.doi.org/10.1371/journal.pone.0076051] [PMID: 24146813]
[12]
Gorter, J.A.; Iyer, A.; White, I.; Colzi, A.; van Vliet, E.A.; Sisodiya, S.; Aronica, E. Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. Neurobiol. Dis., 2014, 62, 508-520.
[http://dx.doi.org/10.1016/j.nbd.2013.10.026] [PMID: 24184920]
[13]
Zhu, X.; Zhang, A.; Dong, J.; Yao, Y.; Zhu, M.; Xu, K.; Al Hamda, M.H. MicroRNA-23a contributes to hippocampal neuronal injuries and spatial memory impairment in an experimental model of temporal lobe epilepsy. Brain Res. Bull., 2019, 152, 175-183.
[http://dx.doi.org/10.1016/j.brainresbull.2019.07.021] [PMID: 31336125]
[14]
Simonato, M.; Agoston, D.V.; Brooks-Kayal, A.; Dulla, C.; Fureman, B.; Henshall, D.C.; Pitkänen, A.; Theodore, W.H.; Twyman, R.E.; Kobeissy, F.H.; Wang, K.K.; Whittemore, V.; Wilcox, K.S. Identification of clinically relevant biomarkers of epileptogenesis — A strategic roadmap. Nat. Rev. Neurol., 2021, 17(4), 231-242.
[http://dx.doi.org/10.1038/s41582-021-00461-4] [PMID: 33594276]
[15]
Wang, J.; Zhao, J. MicroRNA dysregulation in epilepsy: From pathogenetic involvement to diagnostic biomarker and therapeutic agent development. Front. Mol. Neurosci., 2021, 14, 650372.
[http://dx.doi.org/10.3389/fnmol.2021.650372] [PMID: 33776649]
[16]
Gandhi, R.; Healy, B.; Gholipour, T.; Egorova, S.; Musallam, A.; Hussain, M.S.; Nejad, P.; Patel, B.; Hei, H.; Khoury, S.; Quintana, F.; Kivisakk, P.; Chitnis, T.; Weiner, H.L. Circulating MicroRNAs as biomarkers for disease staging in multiple sclerosis. Ann. Neurol., 2013, 73(6), 729-740.
[http://dx.doi.org/10.1002/ana.23880] [PMID: 23494648]
[17]
Liu, D.Z.; Tian, Y.; Ander, B.P.; Xu, H.; Stamova, B.S.; Zhan, X.; Turner, R.J.; Jickling, G.; Sharp, F.R. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J. Cereb. Blood Flow Metab., 2010, 30(1), 92-101.
[http://dx.doi.org/10.1038/jcbfm.2009.186] [PMID: 19724284]
[18]
Brennan, G.P.; Henshall, D.C. microRNAs in the pathophysiology of epilepsy. Neurosci. Lett., 2018, 667, 47-52.
[http://dx.doi.org/10.1016/j.neulet.2017.01.017] [PMID: 28104433]
[19]
Riney, K.; Bogacz, A.; Somerville, E.; Hirsch, E.; Nabbout, R.; Scheffer, I.E.; Zuberi, S.M.; Alsaadi, T.; Jain, S.; French, J.; Specchio, N.; Trinka, E.; Wiebe, S.; Auvin, S.; Cabral-Lim, L.; Naidoo, A.; Perucca, E.; Moshé, S.L.; Wirrell, E.C.; Tinuper, P. International league against epilepsy classification and definition of epilepsy syndromes with onset at a variable age: Position statement by the ILAE task force on nosology and definitions. Epilepsia, 2022, 63(6), 1443-1474.
[http://dx.doi.org/10.1111/epi.17240] [PMID: 35503725]
[20]
Bernasconi, A.; Cendes, F.; Theodore, W.H.; Gill, R.S.; Koepp, M.J.; Hogan, R.E.; Jackson, G.D.; Federico, P.; Labate, A.; Vaudano, A.E.; Blümcke, I.; Ryvlin, P.; Bernasconi, N. Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: A consensus report from the international league against epilepsy neuroimaging task force. Epilepsia, 2019, 60(6), 1054-1068.
[http://dx.doi.org/10.1111/epi.15612] [PMID: 31135062]
[21]
Jobst, B.C. Consensus over individualism: Validation of the ILAE definition for drug resistant epilepsy. Epilepsy Curr., 2015, 15(4), 172-173.
[http://dx.doi.org/10.5698/1535-7511-15.4.172] [PMID: 26316858]
[22]
Kok, M.G.M.; de Ronde, M.W.J.; Moerland, P.D.; Ruijter, J.M.; Creemers, E.E.; Pinto-Sietsma, S.J. Small sample sizes in high-throughput miRNA screens: A common pitfall for the identification of miRNA biomarkers. Biomol Detect. Quantif., 2018, 15, 1-5.
[http://dx.doi.org/10.1016/j.bdq.2017.11.002] [PMID: 29276692]
[23]
Wang, J.; Yu, J.T.; Tan, L.; Tian, Y.; Ma, J.; Tan, C.C.; Wang, H.F.; Liu, Y.; Tan, M.S.; Jiang, T.; Tan, L. Genome-wide circulating microRNA expression profiling indicates biomarkers for epilepsy. Sci. Rep., 2015, 5(1), 9522.
[http://dx.doi.org/10.1038/srep09522] [PMID: 25825351]
[24]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[25]
Meyer, D.D.E. Misc functions of the department of statistics. TU Wien Conference Proceedings, 2008, (e1071), 5-24.
[26]
Cava, C.; Colaprico, A.; Bertoli, G.; Bontempi, G.; Mauri, G.; Castiglioni, I. How interacting pathways are regulated by miRNAs in breast cancer subtypes. BMC Bioinformatics, 2016, 17(S12), 348.
[http://dx.doi.org/10.1186/s12859-016-1196-1] [PMID: 28185585]
[27]
Raoof, R.; Bauer, S.; El Naggar, H.; Connolly, N.M.C.; Brennan, G.P.; Brindley, E.; Hill, T.; McArdle, H.; Spain, E.; Forster, R.J.; Prehn, J.H.M.; Hamer, H.; Delanty, N.; Rosenow, F.; Mooney, C.; Henshall, D.C. Dual-center, dual-platform microRNA profiling identifies potential plasma biomarkers of adult temporal lobe epilepsy. EBioMedicine, 2018, 38, 127-141.
[http://dx.doi.org/10.1016/j.ebiom.2018.10.068] [PMID: 30396857]
[28]
Cava, C.; Colaprico, A.; Bertoli, G.; Graudenzi, A.; Silva, T.; Olsen, C.; Noushmehr, H.; Bontempi, G.; Mauri, G.; Castiglioni, I. SpidermiR: An R/bioconductor package for integrative analysis with miRNA data. Int. J. Mol. Sci., 2017, 18(2), 274.
[http://dx.doi.org/10.3390/ijms18020274] [PMID: 28134831]
[29]
Maragkakis, M.; Vergoulis, T.; Alexiou, P.; Reczko, M.; Plomaritou, K.; Gousis, M.; Kourtis, K.; Koziris, N.; Dalamagas, T.; Hatzigeorgiou, A.G. DIANA-microT web server upgrade supports fly and worm miRNA target prediction and bibliographic miRNA to disease association. Nucleic Acids Res., 2011, 39, W145-W148.
[http://dx.doi.org/10.1093/nar/gkr294]
[30]
Enright, A.J.; John, B.; Gaul, U.; Tuschl, T.; Sander, C.; Marks, D.S. MicroRNA targets in Drosophila. Genome Biol., 2003, 5(1), R1.
[http://dx.doi.org/10.1186/gb-2003-5-1-r1] [PMID: 14709173]
[31]
Krek, A.; Grün, D.; Poy, M.N.; Wolf, R.; Rosenberg, L.; Epstein, E.J.; MacMenamin, P.; da Piedade, I.; Gunsalus, K.C.; Stoffel, M.; Rajewsky, N. Combinatorial microRNA target predictions. Nat. Genet., 2005, 37(5), 495-500.
[http://dx.doi.org/10.1038/ng1536] [PMID: 15806104]
[32]
Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[33]
Wang, X. miRDB: A microRNA target prediction and functional annotation database with a wiki interface. RNA, 2008, 14(6), 1012-1017.
[http://dx.doi.org/10.1261/rna.965408] [PMID: 18426918]
[34]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[35]
De Benedittis, S.; Fortunato, F.; Cava, C.; Gallivanone, F.; Iaccino, E.; Caligiuri, M.E.; Castiglioni, I.; Bertoli, G.; Manna, I.; Labate, A.; Gambardella, A. Circulating microRNAs as potential novel diagnostic biomarkers to predict drug resistance in temporal lobe epilepsy: A pilot study. Int. J. Mol. Sci., 2021, 22(2), 702.
[http://dx.doi.org/10.3390/ijms22020702] [PMID: 33445780]
[36]
Juźwik, C.A.; S Drake, S.; Zhang, Y.; Paradis-Isler, N.; Sylvester, A.; Amar-Zifkin, A.; Douglas, C.; Morquette, B.; Moore, C.S.; Fournier, A.E. microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog. Neurobiol., 2019, 182, 101664.
[http://dx.doi.org/10.1016/j.pneurobio.2019.101664] [PMID: 31356849]
[37]
Yakimov, A.M.; Timechko, E.E.; Areshkina, I.G.; Usoltseva, A.A.; Yakovleva, K.D.; Kantimirova, E.A.; Utyashev, N.; Ivin, N.; Dmitrenko, D.V. MicroRNAs as biomarkers of surgical outcome in mesial temporal lobe epilepsy: A systematic review. Int. J. Mol. Sci., 2023, 24(6), 5694.
[http://dx.doi.org/10.3390/ijms24065694] [PMID: 36982768]
[38]
Gattás, D.; Neto, F.S.L.; Freitas-Lima, P.; Bonfim-Silva, R.; Malaquias de Almeida, S.; de Assis Cirino, M.L.; Guimarães Tiezzi, D.; Tirapelli, L.F.; Velasco, T.R.; Sakamoto, A.C.; Matias, C.M.; Carlotti, C.G., Jr; Tirapelli, D.P.C. MicroRNAs miR-629-3p, miR-1202 and miR-1225-5p as potential diagnostic and surgery outcome biomarkers for mesial temporal lobe epilepsy with hippocampal sclerosis. Neurochirurgie, 2022, 68(6), 583-588.
[http://dx.doi.org/10.1016/j.neuchi.2022.06.002] [PMID: 35700789]
[39]
Yao, N.; She, Y.; Tang, S.; Liu, H.; Liu, F. MRI features and significance of serum miRNAs and inflammatory cytokines in patients with temporal lobe epilepsy. Concepts Magn. Reson. Part A Bridg. Educ. Res., 2022, 2022, 1-7.
[http://dx.doi.org/10.1155/2022/3401838]
[40]
Su, Z.; Li, Y.; Chen, S.; Liu, X.; Zhao, K.; Peng, Y.; Zhou, L. Identification of ion channel-related genes and mirna-mrna networks in mesial temporal lobe epilepsy. Front. Genet., 2022, 13, 853529.
[http://dx.doi.org/10.3389/fgene.2022.853529] [PMID: 35422840]
[41]
Li, R.; Hu, J.; Cao, S. The clinical significance of mir-135b-5p and its role in the proliferation and apoptosis of hippocampus neurons in children with temporal lobe epilepsy. Dev. Neurosci., 2020, 42(5-6), 187-194.
[http://dx.doi.org/10.1159/000512949] [PMID: 33596573]
[42]
Wu, Y.; Zhang, Y.; Zhu, S.; Tian, C.; Zhang, Y. MiRNA-29a serves as a promising diagnostic biomarker in children with temporal lobe epilepsy and regulates seizure-induced cell death and inflammation in hippocampal neurons. Epileptic Disord., 2021, 23(6), 823-832.
[http://dx.doi.org/10.1684/epd.2021.1331] [PMID: 34609285]
[43]
Yu, Y.; Du, L.; Zhang, J. Febrile seizure-related miR-148a-3p exerts neuroprotection by promoting the proliferation of hippocampal neurons in children with temporal lobe epilepsy. Dev. Neurosci., 2021, 43(5), 312-320.
[http://dx.doi.org/10.1159/000518352] [PMID: 34348296]
[44]
Huen, K.; Lizarraga, D.; Kogut, K.; Eskenazi, B.; Holland, N. Age-related differences in miRNA expression in mexican-american newborns and children. Int. J. Environ. Res. Public Health, 2019, 16(4), 524.
[http://dx.doi.org/10.3390/ijerph16040524] [PMID: 30781749]
[45]
Wang, Z.B.; Qu, J.; Yang, Z.Y.; Liu, D.Y.; Jiang, S.L.; Zhang, Y.; Yang, Z.Q.; Mao, X.Y.; Liu, Z.Q. Integrated analysis of expression profile and potential pathogenic mechanism of temporal lobe epilepsy with hippocampal sclerosis. Front. Neurosci., 2022, 16(892022), 892022.
[http://dx.doi.org/10.3389/fnins.2022.892022] [PMID: 35784838]
[46]
Yu, S.; Gu, Y.; Wang, T.; Mu, L.; Wang, H.; Yan, S.; Wang, A.; Wang, J.; Liu, L.; Shen, H.; Na, M.; Lin, Z. Study of neuronal apoptosis cerna network in hippocampal sclerosis of human temporal lobe epilepsy by RNA-seq. Front. Neurosci., 2021, 15, 770627.
[http://dx.doi.org/10.3389/fnins.2021.770627] [PMID: 34867172]
[47]
Li, X.; Han, Y.; Li, D.; Yuan, H.; Huang, S.; Chen, X.; Qin, Y. Identification and validation of a dysregulated miRNA-associated mRNA network in temporal lobe epilepsy. BioMed Res. Int., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/4118216] [PMID: 34722763]
[48]
Iyer, A.; Zurolo, E.; Prabowo, A.; Fluiter, K.; Spliet, W.G.M.; van Rijen, P.C.; Gorter, J.A.; Aronica, E. MicroRNA-146a: A key regulator of astrocyte-mediated inflammatory response. PLoS One, 2012, 7(9), e44789.
[http://dx.doi.org/10.1371/journal.pone.0044789] [PMID: 23028621]
[49]
Zhang, K.; Lindsberg, P.J.; Tatlisumak, T.; Kaste, M.; Olsen, H.S.; Andersson, L.C. Stanniocalcin: A molecular guard of neurons during cerebral ischemia. Proc. Natl. Acad. Sci. USA, 2000, 97(7), 3637-3642.
[http://dx.doi.org/10.1073/pnas.97.7.3637] [PMID: 10725397]
[50]
Meyer, F.B.; Morita, A.; Puumala, M.R.; Nichols, D.A. Medical and surgical management of intracranial aneurysms. Mayo Clin. Proc., 1995, 70(2), 153-172.
[http://dx.doi.org/10.4065/70.2.153] [PMID: 7845041]
[51]
Han, J.; Gage, F.H. A role for miR-19 in the migration of adult-born neurons and schizophrenia. Neurogenesis , 2016, 3(1), e1251873.
[http://dx.doi.org/10.1080/23262133.2016.1251873] [PMID: 28405585]
[52]
Bielefeld, P.; Mooney, C.; Henshall, D.C.; Fitzsimons, C.P. miRNA-mediated regulation of adult hippocampal neurogenesis; Implications for epilepsy. Brain Plast., 2017, 3(1), 43-59.
[http://dx.doi.org/10.3233/BPL-160036] [PMID: 29765859]
[53]
Mathern, G.W.; Pretorius, J.K.; Babb, T.L. Quantified patterns of mossy fiber sprouting and neuron densities in hippocampal and lesional seizures. J. Neurosurg., 1995, 82(2), 211-219.
[http://dx.doi.org/10.3171/jns.1995.82.2.0211] [PMID: 7815148]
[54]
Proper, E.A.; Oestreicher, A.B.; Jansen, G.H.; Veelen, C.W.M.; van Rijen, P.C.; Gispen, W.H.; de Graan, P.N.E. Immunohistochemical characterization of mossy fibre sprouting in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain, 2000, 123(1), 19-30.
[http://dx.doi.org/10.1093/brain/123.1.19] [PMID: 10611117]
[55]
Meng, X.F.; Yu, J.T.; Song, J.H.; Chi, S.; Tan, L. Role of the mTOR signaling pathway in epilepsy. J. Neurol. Sci., 2013, 332(1-2), 4-15.
[http://dx.doi.org/10.1016/j.jns.2013.05.029] [PMID: 23773767]
[56]
Zattoni, M.; Mura, M.L.; Deprez, F.; Schwendener, R.A.; Engelhardt, B.; Frei, K.; Fritschy, J.M. Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobe epilepsy. J. Neurosci., 2011, 31(11), 4037-4050.
[http://dx.doi.org/10.1523/JNEUROSCI.6210-10.2011] [PMID: 21411646]
[57]
McCormick, D.A.; Contreras, D. On the cellular and network bases of epileptic seizures. Annu. Rev. Physiol., 2001, 63(1), 815-846.
[http://dx.doi.org/10.1146/annurev.physiol.63.1.815] [PMID: 11181977]
[58]
Giorgi, F.S.; Biagioni, F.; Lenzi, P.; Frati, A.; Fornai, F. The role of autophagy in epileptogenesis and in epilepsy-induced neuronal alterations. J. Neural Transm. , 2015, 122(6), 849-862.
[http://dx.doi.org/10.1007/s00702-014-1312-1] [PMID: 25217966]
[59]
Masino, S.A.; Kawamura, M., Jr; Ruskin, D.N.; Gawryluk, J.; Chen, X.; Geiger, J.D. Purines and the anti-epileptic actions of ketogenic diets. Open Neurosci. J., 2010, 4(1), 58-63.
[http://dx.doi.org/10.2174/1874082001004010058] [PMID: 22064941]
[60]
Greene, R.W.; Haas, H.L. The electrophysiology of adenosine in the mammalian central nervous system. Prog. Neurobiol., 1991, 36(4), 329-341.
[http://dx.doi.org/10.1016/0301-0082(91)90005-L] [PMID: 1678539]
[61]
Organista-Juárez, D.; Jiménez, A.; Rocha, L.; Alonso-Vanegas, M.; Guevara-Guzmán, R. Differential expression of miR-34a, 451, 1260, 1275 and 1298 in the neocortex of patients with mesial temporal lobe epilepsy. Epilepsy Res., 2019, 157, 106188.
[http://dx.doi.org/10.1016/j.eplepsyres.2019.106188] [PMID: 31470144]
[62]
Zhang, H.L.; Lin, Y.H.; Qu, Y.; Chen, Q. The effect of miR-146a gene silencing on drug-resistance and expression of protein of P-gp and MRP1 in epilepsy. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(8), 2372-2379.
[PMID: 29762840]
[63]
Löscher, W.; Gillard, M.; Sands, Z.A.; Kaminski, R.M.; Klitgaard, H. Synaptic vesicle glycoprotein 2A ligands in the treatment of epilepsy and beyond. CNS Drugs, 2016, 30(11), 1055-1077.
[http://dx.doi.org/10.1007/s40263-016-0384-x] [PMID: 27752944]
[64]
Li, Y.C.; Kavalali, E.T. Synaptic vesicle-recycling machinery components as potential therapeutic targets. Pharmacol. Rev., 2017, 69(2), 141-160.
[http://dx.doi.org/10.1124/pr.116.013342] [PMID: 28265000]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy