Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Ginkgo biloba for Tardive Dyskinesia and Plasma MnSOD Activity: Association with MnSOD Ala-9Val Variant: A Randomized, Double-blind Trial

Author(s): Dongmei Wang, Yang Tian, Jiajing Chen, Rongrong Zhu, Jiaxin Li, Huixia Zhou, Dachun Chen, Li Wang, Thomas R. Kosten and Xiang-Yang Zhang*

Volume 22, Issue 14, 2024

Published on: 24 June, 2024

Page: [2443 - 2452] Pages: 10

DOI: 10.2174/1570159X22666240530095721

Price: $65

Abstract

Background: Excessive free radicals are implicated in the pathophysiology of tardive dyskinesia (TD), and Ginkgo biloba extract (EGb761) scavenges free radicals, thereby enhancing antioxidant enzymes such as mitochondrial manganese superoxide dismutase (MnSOD). This study examined whether EGb761 treatment would improve TD symptoms and increase MnSOD activity, particularly in TD patients with specific MnSOD Val-9Ala genotype.

Methods: An EGb761 (240 mg/day) 12-week double-blind clinical trial with 157 TD patients was randomized. The severity of TD was measured by the Abnormal Involuntary Movement Scale (AIMS) and plasma MnSOD activity was assayed before and after 12 weeks of treatment. Further, in an expanded sample, we compared MnSOD activity in 159 TD, 227 non-TD and 280 healthy controls, as well as the allele frequencies and genotypes for the MnSOD Ala-9Val polymorphism in 352 TD, 486 non-TD and 1150 healthy controls.

Results: EGb761 significantly reduced TD symptoms and increased MnSOD activity in TD patients compared to placebo (both p < 0.01). Moreover, we found an interaction between genotype and treatment response (p < 0.001). Furthermore, in the EGb761 group, patients carrying the Ala allele displayed a significantly lower AIMS total score than patients with the Val/Val genotype. In addition, MnSOD activity was significantly lower at baseline in TD patients compared with healthy controls or non-TD patients.

Conclusion: EGb761 treatment enhanced low MnSOD activity in TD patients and produced greater improvement in TD symptoms in patients with the Ala allele of the MnSOD Ala-9Val polymorphism.

[1]
Carbon, M.; Kane, J.M.; Leucht, S.; Correll, C.U. Tardive dyskinesia risk with first‐ and second‐generation antipsychotics in comparative randomized controlled trials: A meta‐analysis. World Psychiatry, 2018, 17(3), 330-340.
[http://dx.doi.org/10.1002/wps.20579] [PMID: 30192088]
[2]
Lohr, J.B.; Kuczenski, R.; Niculescu, A.B. Oxidative mechanisms and tardive dyskinesia. CNS Drugs, 2003, 17(1), 47-62.
[http://dx.doi.org/10.2165/00023210-200317010-00004] [PMID: 12467492]
[3]
Cho, C.H.; Lee, H.J. Oxidative stress and tardive dyskinesia: Pharmacogenetic evidence. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 46, 207-213.
[http://dx.doi.org/10.1016/j.pnpbp.2012.10.018] [PMID: 23123399]
[4]
Bishnoi, M.; Boparai, R.K. An animal model to study the molecular basis of tardive dyskinesia. Methods Mol. Biol., 2012, 829, 193-201.
[http://dx.doi.org/10.1007/978-1-61779-458-2_12] [PMID: 22231815]
[5]
Zhang, X.Y.; Chen, D.C.; Xiu, M.H.; Yang, F.D.; Tan, Y.; Luo, X.; Zuo, L.; Kosten, T.A.; Kosten, T.R. Cognitive function, plasma MnSOD activity, and MnSOD Ala-9Val polymorphism in patients with schizophrenia and normal controls. Schizophr. Bull., 2014, 40(3), 592-601.
[http://dx.doi.org/10.1093/schbul/sbt045] [PMID: 23588476]
[6]
Zhang, X.Y.; Tan, Y.L.; Zhou, D.F.; Cao, L.Y.; Wu, G.Y.; Haile, C.N.; Kosten, T.A.; Kosten, T.R. Disrupted antioxidant enzyme activity and elevated lipid peroxidation products in schizophrenic patients with tardive dyskinesia. J. Clin. Psychiatry, 2007, 68(5), 754-760.
[http://dx.doi.org/10.4088/JCP.v68n0513] [PMID: 17503985]
[7]
Factor, S.A. Management of Tardive Syndrome: Medications and surgical treatments. Neurotherapeutics, 2020, 17(4), 1694-1712.
[http://dx.doi.org/10.1007/s13311-020-00898-3] [PMID: 32720245]
[8]
Soares-Weiser, K.; Maayan, N.; Bergman, H. Vitamin E for antipsychotic-induced tardive dyskinesia. Cochrane Database Syst. Rev., 2018, 1(1), CD000209.
[PMID: 29341067]
[9]
Fedota, J.R.; Matous, A.L.; Salmeron, B.J.; Gu, H.; Ross, T.J.; Stein, E.A. Insula demonstrates a non-linear response to varying demand for cognitive control and weaker resting connectivity with the executive control network in smokers. Neuropsychopharmacology, 2016, 41(10), 2557-2565.
[http://dx.doi.org/10.1038/npp.2016.62] [PMID: 27112116]
[10]
Loonen, A.J.M.; Ivanova, S.A. New insights into the mechanism of drug-induced dyskinesia. CNS Spectr., 2013, 18(1), 15-20.
[http://dx.doi.org/10.1017/S1092852912000752] [PMID: 23593652]
[11]
Mahmoudi, S.; Lévesque, D.; Blanchet, P.J. Upregulation of dopamine D3, not D2, receptors correlates with tardive dyskinesia in a primate model. Mov. Disord., 2014, 29(9), 1125-1133.
[http://dx.doi.org/10.1002/mds.25909] [PMID: 24838395]
[12]
Mahadik, S.P.; Mukherjee, S. Free radical pathology and antioxidant defense in Schizophrenia: A review. Schizophr. Res., 1996, 19(1), 1-17.
[http://dx.doi.org/10.1016/0920-9964(95)00049-6] [PMID: 9147491]
[13]
Sakamoto, T.; Imai, H. Hydrogen peroxide produced by superoxide dismutase SOD-2 activates sperm in Caenorhabditis elegans. J. Biol. Chem., 2017, 292(36), 14804-14813.
[http://dx.doi.org/10.1074/jbc.M117.788901] [PMID: 28724632]
[14]
Tsai, G.; Goff, D.C.; Chang, R.W.; Flood, J.; Baer, L.; Coyle, J.T. Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia. Am. J. Psychiatry, 1998, 155(9), 1207-1213.
[http://dx.doi.org/10.1176/ajp.155.9.1207] [PMID: 9734544]
[15]
Lindholm, E.; Ekholm, B.; Shaw, S.; Jalonen, P.; Johansson, G.; Pettersson, U.; Sherrington, R.; Adolfsson, R.; Jazin, E. A schizophrenia-susceptibility locus at 6q25, in one of the world’s largest reported pedigrees. Am. J. Hum. Genet., 2001, 69(1), 96-105.
[http://dx.doi.org/10.1086/321288] [PMID: 11389481]
[16]
Shimoda-Matsubayashi, S.; Matsumine, H.; Kobayashi, T.; Nakagawa-Hattori, Y.; Shimizu, Y.; Mizuno, Y. Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson’s disease. Biochem. Biophys. Res. Commun., 1996, 226(2), 561-565.
[http://dx.doi.org/10.1006/bbrc.1996.1394] [PMID: 8806673]
[17]
Rosenblum, J.S.; Gilula, N.B.; Lerner, R.A. On signal sequence polymorphisms and diseases of distribution. Proc. Natl. Acad. Sci. , 1996, 93(9), 4471-4473.
[http://dx.doi.org/10.1073/pnas.93.9.4471] [PMID: 8633092]
[18]
Hori, H.; Ohmori, O.; Shinkai, T.; Kojima, H.; Okano, C.; Suzuki, T.; Nakamura, J. Manganese superoxide dismutase gene polymorphism and schizophrenia: Relation to tardive dyskinesia. Neuropsychopharmacology, 2000, 23(2), 170-177.
[http://dx.doi.org/10.1016/S0893-133X(99)00156-6] [PMID: 10882843]
[19]
Gałecki, P.; Pietras, T.; Szemraj, J. Manganese superoxide dismutase gene (MnSOD) polimorphism in schizophrenics with tardive dyskinesia from central Poland. Psychiatr. Pol., 2006, 40(5), 937-948.
[PMID: 17217237]
[20]
Zhang, Z.; Zhang, X.; Hou, G.; Sha, W.; Reynolds, G.P. The increased activity of plasma manganese superoxide dismutase in tardive dyskinesia is unrelated to the Ala-9Val polymorphism. J. Psychiatr. Res., 2002, 36(5), 317-324.
[http://dx.doi.org/10.1016/S0022-3956(02)00007-9] [PMID: 12127599]
[21]
Akyol, O.; Yanik, M.; Elyas, H.; Namli, M.; Canatan, H.; Akin, H.; Yuce, H.; Yilmaz, H.R.; Tutkun, H.; Sogut, S.; Herken, H.; Özyurt, H.; Savas, H.A.; Zoroglu, S.S. Association between Ala-9Val polymorphism of Mn-SOD gene and schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2005, 29(1), 123-131.
[http://dx.doi.org/10.1016/j.pnpbp.2004.10.014] [PMID: 15610954]
[22]
Pae, C.U.; Kim, T.S.; Patkar, A.A.; Kim, J.J.; Lee, C.U.; Lee, S.J.; Jun, T.Y.; Lee, C.; Paik, I.H. Manganese superoxide dismutase (MnSOD: Ala-9Val) gene polymorphism may not be associated with schizophrenia and tardive dyskinesia. Psychiatry Res., 2007, 153(1), 77-81.
[http://dx.doi.org/10.1016/j.psychres.2006.04.011] [PMID: 17582511]
[23]
Hitzeroth, A.; Niehaus, D.J.H.; Koen, L.; Botes, W.C.; Deleuze, J.F.; Warnich, L. Association between the MnSOD Ala-9Val polymorphism and development of schizophrenia and abnormal involuntary movements in the Xhosa population. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2007, 31(3), 664-672.
[http://dx.doi.org/10.1016/j.pnpbp.2006.12.019] [PMID: 17291655]
[24]
Kang, S.G.; Choi, J.E.; An, H.; Park, Y.M.; Lee, H.J.; Han, C.; Kim, Y.K.; Kim, S.H.; Cho, S.N.; Joe, S.H.; Jung, I.K.; Kim, L.; Lee, M.S. Manganese superoxide dismutase gene Ala-9Val polymorphism might be related to the severity of abnormal involuntary movements in Korean schizophrenic patients. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32(8), 1844-1847.
[http://dx.doi.org/10.1016/j.pnpbp.2008.08.013] [PMID: 18790709]
[25]
Thelma, B.K.; Tiwari, A.K.; Deshpande, S.N.; Lerer, B.; Nimgaonkar, V.L. Genetic susceptibility to Tardive Dyskinesia in chronic schizophrenia subjects: Role of oxidative stress pathway genes. Schizophr. Res., 2007, 92(1-3), 278-279.
[http://dx.doi.org/10.1016/j.schres.2006.12.019] [PMID: 17317105]
[26]
Bakker, P.R.; van Harten, P.N.; van Os, J. Antipsychotic-induced tardive dyskinesia and polymorphic variations in COMT, DRD2, CYP1A2 and MnSOD genes: A meta-analysis of pharmacogenetic interactions. Mol. Psychiatry, 2008, 13(5), 544-556.
[http://dx.doi.org/10.1038/sj.mp.4002142] [PMID: 18180754]
[27]
Wang, D.F.; Cao, B.; Xu, M.Y.; Liu, Y.Q.; Yan, L.L.; Liu, R.; Wang, J.Y.; Lu, Q.B. Meta-analyses of manganese superoxide dismutase activity, gene Ala-9Val polymorphism, and the risk of schizophrenia. Medicine , 2015, 94(36), e1507.
[http://dx.doi.org/10.1097/MD.0000000000001507] [PMID: 26356721]
[28]
Zhang, Z.J.; Zhang, X.B.; Hou, G.; Yao, H.; Reynolds, G.P. Interaction between polymorphisms of the dopamine D3 receptor and manganese superoxide dismutase genes in susceptibility to tardive dyskinesia. Psychiatr. Genet., 2003, 13(3), 187-192.
[http://dx.doi.org/10.1097/00041444-200309000-00010] [PMID: 12960753]
[29]
Liu, H.; Wang, C.; Chen, P.H.; Zhang, B.S.; Zheng, Y.L.; Zhang, C.X.; Meng, H.Q.; Wang, Y.; Chen, D.C.; Xiu, M.H.; Kosten, T.R.; Zhang, X.Y. Association of the manganese superoxide dismutase gene Ala-9Val polymorphism with clinical phenotypes and tardive dyskinesia in schizophrenic patients. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2010, 34(4), 692-696.
[http://dx.doi.org/10.1016/j.pnpbp.2010.03.026] [PMID: 20346996]
[30]
Ponto, L.B.; Schultz, S. Ginkgo biloba extract: Review of CNS effects. Ann. Clin. Psychiatry, 2003, 15(2), 109-119.
[http://dx.doi.org/10.3109/10401230309085676] [PMID: 12938868]
[31]
DeFeudis, F.; Drieu, K. Ginkgo biloba extract (EGb 761) and CNS functions: Basic studies and clinical applications. Curr. Drug Targets, 2000, 1(1), 25-58.
[http://dx.doi.org/10.2174/1389450003349380] [PMID: 11475535]
[32]
Zhang, W.F.; Tan, Y.L.; Zhang, X.Y.; Chan, R.C.K.; Wu, H.R.; Zhou, D.F. Extract of Ginkgo biloba treatment for tardive dyskinesia in schizophrenia: A randomized, double-blind, placebo-controlled trial. J. Clin. Psychiatry, 2011, 72(5), 615-621.
[http://dx.doi.org/10.4088/JCP.09m05125yel] [PMID: 20868638]
[33]
Montes, P.; Ruiz-Sanchez, E.; Rojas, C.; Rojas, P. Ginkgo biloba extract 761: A review of basic studies and potential clinical use in psychiatric disorders. CNS Neurol. Disord. Drug Targets, 2015, 14(1), 132-149.
[http://dx.doi.org/10.2174/1871527314666150202151440] [PMID: 25642989]
[34]
Ihl, R. Effects of Ginkgo biloba extract EGb761® in dementia with neuropsychiatric features: Review of recently completed randomised, controlled trials. Int. J. Psychiatry Clin. Pract., 2013, 17(S1), 8-14.
[http://dx.doi.org/10.3109/13651501.2013.814796] [PMID: 23808613]
[35]
Gauthier, S.; Schlaefke, S. Efficacy and tolerability of Ginkgo biloba extract EGb761® in dementia: A systematic review and meta-analysis of randomized placebo-controlled trials. Clin. Interv. Aging, 2014, 9, 2065-2077.
[http://dx.doi.org/10.2147/CIA.S72728] [PMID: 25506211]
[36]
Tan, M.S.; Yu, J.T.; Tan, C.C.; Wang, H.F.; Meng, X.F.; Wang, C.; Jiang, T.; Zhu, X.C.; Tan, L. Efficacy and adverse effects of ginkgo biloba for cognitive impairment and dementia: A systematic review and meta-analysis. J. Alzheimers Dis., 2014, 43(2), 589-603.
[http://dx.doi.org/10.3233/JAD-140837] [PMID: 25114079]
[37]
Ji, H.; Zhou, X.; Wei, W.; Wu, W.; Yao, S. Ginkgol Biloba extract as an adjunctive treatment for ischemic stroke. Medicine , 2020, 99(2), e18568.
[http://dx.doi.org/10.1097/MD.0000000000018568] [PMID: 31914035]
[38]
Diamond, B.J.; Bailey, M.R. Ginkgo biloba. Psychiatr. Clin. North Am., 2013, 36(1), 73-83.
[http://dx.doi.org/10.1016/j.psc.2012.12.006] [PMID: 23538078]
[39]
Zheng, W.; Xiang, Y.Q.; Ng, C.; Ungvari, G.; Chiu, H.; Xiang, Y.T. Extract of Ginkgo biloba for Tardive Dyskinesia: Meta-analysis of randomized controlled trials. Pharmacopsychiatry, 2016, 49(3), 107-111.
[http://dx.doi.org/10.1055/s-0042-102884] [PMID: 26979525]
[40]
Kam, I.W.; Chung, W.S.D.; Liu, S.; Fong, S. The Chinese-bilingual SCID-I/P project: Stage 1 - Reliability for mood disorders and schizophrenia. Hong Kong J. Psychiatry, 2003, 13(1)
[41]
Kane, J.M.; Kane, J.M. Research diagnoses for tardive dyskinesia. Arch. Gen. Psychiatry, 1982, 39(4), 486-487.
[http://dx.doi.org/10.1001/archpsyc.1982.04290040080014] [PMID: 6121550]
[42]
Fan, B. The Chinese version of the Abnormal Involuntary Movement Scale (AIMS). 1984, 2, 80-81.
[43]
SI T.; Yang, J.; Shu, L. The reliability, validity of PANSS and its implication. Chinese Mental Health Journal, 1992, 1992(12)
[44]
Ōyanagui, Y. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal. Biochem., 1984, 142(2), 290-296.
[http://dx.doi.org/10.1016/0003-2697(84)90467-6] [PMID: 6099057]
[45]
Wu, J.Q.; Kosten, T.R.; Zhang, X.Y. Free radicals, antioxidant defense systems, and schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 46, 200-206.
[http://dx.doi.org/10.1016/j.pnpbp.2013.02.015] [PMID: 23470289]
[46]
Mahadevan, S.; Park, Y. Multifaceted therapeutic benefits of Ginkgo biloba L.: Chemistry, efficacy, safety, and uses. J. Food Sci., 2008, 73(1), R14-R19.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00597.x] [PMID: 18211362]
[47]
Loonen, A.J.M.; van Praag, H.M. Measuring movement disorders in antipsychotic drug trials: The need to define a new standard. J. Clin. Psychopharmacol., 2007, 27(5), 423-430.
[http://dx.doi.org/10.1097/jcp.0b013e31814f1105] [PMID: 17873670]
[48]
Kane, J.M.; Correll, C.U.; Nierenberg, A.A.; Caroff, S.N.; Sajatovic, M. Revisiting the abnormal involuntary movement scale. J. Clin. Psychiatry, 2018, 79(3), 17cs11959.
[http://dx.doi.org/10.4088/JCP.17cs11959 ] [PMID: 29742330]
[49]
Shimoda-Matsubayashi, S.; Hattori, T.; Matsumine, H.; Shinohara, A.; Yoritaka, A.; Mori, H.; Kondo, T.; Chiba, M.; Mizuno, Y. Mn SOD activity and protein in a patient with chromosome 6-linked autosomal recessive parkinsonism in comparison with Parkinson’s disease and control. Neurology, 1997, 49(5), 1257-1262.
[http://dx.doi.org/10.1212/WNL.49.5.1257] [PMID: 9371904]
[50]
Bresciani, G.; Cruz, I.B.M.; de Paz, J.A.; Cuevas, M.J.; González-Gallego, J. The MnSOD Ala16Val SNP: Relevance to human diseases and interaction with environmental factors. Free Radic. Res., 2013, 47(10), 781-792.
[http://dx.doi.org/10.3109/10715762.2013.836275] [PMID: 23952573]
[51]
Zeng, K.; Li, M.; Hu, J.; Mahaman, Y.A.R.; Bao, J.; Huang, F.; Xia, Y.; Liu, X.; Wang, Q.; Wang, J.Z.; Yang, Y.; Liu, R.; Wang, X. Ginkgo biloba extract EGb761 attenuates hyperhomocysteinemia-induced AD like Tau hyperphosphorylation and cognitive impairment in rats. Curr. Alzheimer Res., 2017, 15(1), 89-99.
[http://dx.doi.org/10.2174/1567205014666170829102135] [PMID: 28847282]
[52]
Kwon, K.J.; Lee, E.J.; Cho, K.S.; Cho, D.H.; Shin, C.Y.; Han, S.H. Ginkgo biloba extract (Egb761) attenuates zinc-induced tau phosphorylation at Ser262 by regulating GSK3β activity in rat primary cortical neurons. Food Funct., 2015, 6(6), 2058-2067.
[http://dx.doi.org/10.1039/C5FO00219B] [PMID: 26032477]
[53]
Loonen, A.J.M.; Doorschot, C.H.; van Hemert, D.A.; Oostelbos, M.C.J.M.; Sijben, A.E.S. The schedule for the assessment of drug-induced movement disorders (SADIMoD): Inter-rater reliability and construct validity. Int. J. Neuropsychopharmacol., 2001, 4(4), 347-360.
[http://dx.doi.org/10.1017/S1461145701002589] [PMID: 11806860]
[54]
Loonen, A.J.M.; Doorschot, C.H.; van Hemert, D.A.; Oostelbos, M.C.J.M.; Sijben, A.E.S. The Schedule for the Assessment of Drug-Induced Movement Disorders (SADIMoD): Test-retest reliability and concurrent validity. Int. J. Neuropsychopharmacol., 2000, 3(4), 285-296.
[http://dx.doi.org/10.1017/S1461145700002066] [PMID: 11343606]
[55]
Stacy, M.; Sajatovic, M.; Kane, J.M.; Cutler, A.J.; Liang, G.S.; O’Brien, C.F.; Correll, C.U. Abnormal involuntary movement scale in tardive dyskinesia: Minimal clinically important difference. Mov. Disord., 2019, 34(8), 1203-1209.
[http://dx.doi.org/10.1002/mds.27769] [PMID: 31234240]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy