Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Therapeutic Voyage of Graphene-based Biosensor

Author(s): Rama Sharma*

Volume 21, Issue 10, 2024

Published on: 31 January, 2024

Page: [1662 - 1674] Pages: 13

DOI: 10.2174/0115701808291102240130113741

Price: $65

Abstract

The study of carbon-based materials and nanoparticles is currently an exciting field of study in the domain of material science. One of the most prominent of these materials is graphene, along with its related components graphene oxide and reduced graphene oxide. A single-layer, twodimensional nanomaterial called graphene (GN) is employed in many different industries, such as electronics and biology. Graphene is a remarkable two-dimensional substance that has earned the title of "wonder material." Its remarkable electrical, optical, thermal, and mechanical qualities have attracted significant attention. Graphene's intriguing characteristics have led to its integration into numerous biosensing applications. Graphene possesses remarkable chemical, electrical, and physical qualities. The distinctive properties of graphene, particularly its electrical conductivity, large surface area, and significant electron mobility, are focusing more attention on applications in biomedicine that facilitate easier health monitoring. Biosensors with high sensitivity and precision can enhance patient care, and offer an opportunity for an early illness diagnosis and clinical pathogen identification. Additionally, a wide range of biological molecules, including glucose, hydrogen peroxide, cholesterol, dopamine, etc., can be detected using graphene-based biosensors. This study evaluates contemporary developments regarding graphene-based biosensors and their prospects and difficulties in this rapidly developing profession in the coming era. Graphene-based nanomaterials are appropriate to be employed in various biological and sensory contexts, including medicine and gene transfer, because of their unusual topologies and extraordinary properties. Graphene's outstanding characteristics enable biosensing applications to obtain the appropriate sensitivity, selectivity, and repeatability for a range of targets.

[1]
Morales-Narváez, E.; Baptista-Pires, L.; Zamora-Gálvez, A.; Merkoçi, A. Graphene‐based biosensors: Going simple. Adv. Mater., 2017, 29(7), 1604905.
[http://dx.doi.org/10.1002/adma.201604905] [PMID: 27896856]
[2]
Chauhan, N.; Maekawa, T.; Kumar, D.N.S. Graphene based biosensors-Accelerating medical diagnostics to new-dimensions. J. Mater. Res., 2017, 32(15), 2860-2882.
[http://dx.doi.org/10.1557/jmr.2017.91]
[3]
Wang, Y.; Li, Z.; Wang, J.; Li, J.; Lin, Y. Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol., 2011, 29(5), 205-212.
[http://dx.doi.org/10.1016/j.tibtech.2011.01.008] [PMID: 21397350]
[4]
Liu, J.; Tang, J.; Gooding, J.J. Strategies for chemical modification of graphene and applications of chemically modified graphene. J. Mater. Chem., 2012, 22(25), 12435-12452.
[http://dx.doi.org/10.1039/c2jm31218b]
[5]
Umapathi, R.; Rani, G.M.; Kim, E.; Park, S.Y.; Cho, Y.; Huh, Y.S. Sowing kernels for food safety: Importance of rapid on‐site detction of pesticide residues in agricultural foods. Food Front., 2022, 3(4), 666-676.
[http://dx.doi.org/10.1002/fft2.166]
[6]
Alhammadi, M.; Aliya, S.; Umapathi, R.; Oh, M.H.; Huh, Y.S. A simultaneous qualitative and quantitative lateral flow immunoassay for on-site and rapid detection of streptomycin in pig blood serum and urine. Microchem. J., 2023, 195, 109427.
[http://dx.doi.org/10.1016/j.microc.2023.109427]
[7]
Venkateswara Raju, C.; Hwan Cho, C.; Mohana Rani, G.; Manju, V.; Umapathi, R.; Suk Huh, Y.; Pil Park, J. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coord. Chem. Rev., 2023, 476, 214920.
[http://dx.doi.org/10.1016/j.ccr.2022.214920]
[8]
Umapathi, R.; Venkateswara Raju, C.; Majid Ghoreishian, S.; Mohana Rani, G.; Kumar, K.; Oh, M.H.; Pil Park, J.; Suk Huh, Y. Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord. Chem. Rev., 2022, 470, 214708.
[http://dx.doi.org/10.1016/j.ccr.2022.214708]
[9]
Atta, N.F.; Galal, A.; El-Ads, E.H. Graphene-A platform for sensor and biosensor applications. In: Biosensors - Micro and Nanoscale Applications; ; Intechopen, 2015; pp. 37-84.
[http://dx.doi.org/10.5772/60676]
[10]
Ambrosi, A.; Chua, C.K.; Latiff, N.M.; Loo, A.H.; Wong, C.H.A.; Eng, A.Y.S.; Bonanni, A.; Pumera, M. Graphene and its electrochemistry - An update. Chem. Soc. Rev., 2016, 45(9), 2458-2493.
[http://dx.doi.org/10.1039/C6CS00136J] [PMID: 27052352]
[11]
Chin, C.D.; Linder, V.; Sia, S.K. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip, 2012, 12(12), 2118-2134.
[http://dx.doi.org/10.1039/c2lc21204h] [PMID: 22344520]
[12]
Gurkan, U.A.; Moon, S.; Geckil, H.; Xu, F.; Wang, S.; Lu, T.J.; Demirci, U. Miniaturized lensless imaging systems for cell and microorganism visualization in point‐of‐care testing. Biotechnol. J., 2011, 6(2), 138-149.
[http://dx.doi.org/10.1002/biot.201000427] [PMID: 21298800]
[13]
Ohno, Y.; Maehashi, K.; Matsumoto, K. Label-free biosensors based on aptamer-modified graphene field-effect transistors. J. Am. Chem. Soc., 2010, 132(51), 18012-18013.
[http://dx.doi.org/10.1021/ja108127r] [PMID: 21128665]
[14]
Nakatsuka, N.; Yang, K-A.; Abendroth, J.M.; Cheung, K.M.; Xu, X.; Yang, H.; Zhao, C.; Zhu, B.; Rim, Y.S.; Yang, Y. Aptamer--field-effect transistors overcome debye length limitations for small-molecule sensing. Science, 2018, 362(6412), 319-324.
[15]
Kwong Hong Tsang, D.; Lieberthal, T.J.; Watts, C.; Dunlop, I.E.; Ramadan, S.; del Rio Hernandez, A.E.; Klein, N. Chemically functionalised graphene FET biosensor for the label-free sensing of exosomes. Sci. Rep., 2019, 9(1), 13946.
[http://dx.doi.org/10.1038/s41598-019-50412-9] [PMID: 31558796]
[16]
Soltan, M.A.; Tsai, Y.L.; Lee, P.Y.A.; Tsai, C.F.; Chang, H.F.G.; Wang, H.T.T.; Wilkes, R.P. Comparison of electron microscopy, ELISA, real time RT-PCR and insulated isothermal RT-PCR for the detection of Rotavirus group A (RVA) in feces of different animal species. J. Virol. Methods, 2016, 235, 99-104.
[http://dx.doi.org/10.1016/j.jviromet.2016.05.006] [PMID: 27180038]
[17]
Peña-Bahamonde, J.; Nguyen, H.N.; Fanourakis, S.K.; Rodrigues, D.F. Recent advances in graphene-based biosensor technology with applications in life sciences. J. Nanobiotechnology, 2018, 16(1), 75.
[http://dx.doi.org/10.1186/s12951-018-0400-z] [PMID: 30243292]
[18]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191.
[http://dx.doi.org/10.1038/nmat1849] [PMID: 17330084]
[19]
Suvarnaphaet, P.; Pechprasarn, S. Graphene-based materials for biosensors: A review. Sensors, 2017, 17(10), 2161.
[http://dx.doi.org/10.3390/s17102161] [PMID: 28934118]
[20]
Ngoepe, M.; Choonara, Y.; Tyagi, C.; Tomar, L.; du Toit, L.; Kumar, P.; Ndesendo, V.; Pillay, V. Integration of biosensors and drug delivery technologies for early detection and chronic management of illness. Sensors, 2013, 13(6), 7680-7713.
[http://dx.doi.org/10.3390/s130607680] [PMID: 23771157]
[21]
Wang, C.; Cui, X.; Li, Y.; Li, H.; Huang, L.; Bi, J.; Luo, J.; Ma, L.Q.; Zhou, W.; Cao, Y. A label-free and portable graphene FET aptasensor for children blood lead detection. Sci. Rep., 2016, 6(1), 1-8.
[PMID: 28442746]
[22]
Peng, W.K.; Paesani, D. Omics meeting onics: Towards the next generation of spectroscopic-based technologies in personalized medicine. J. Pers. Med., 2019, 39.
[23]
Tao, Y.; Lin, Y.; Ren, J.; Qu, X. Self-assembled, functionalized graphene and DNA as a universal platform for colorimetric assays. Biomaterials, 2013, 34(20), 4810-4817.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.039] [PMID: 23548641]
[24]
Li, D. Application of graphene oxide to the construction of electrochemical biosensor for environmental monitoring. In: TMS 2013 142nd Annual Meeting and Exhibition, Annual Meeting; John Wiley & Sons, Ltd, 2013; p. 25.
[25]
Tian, T.; Li, Z.; Lee, E.C. Sequence-specific detection of DNA using functionalized graphene as an additive. Biosens. Bioelectron., 2014, 53, 336-339.
[http://dx.doi.org/10.1016/j.bios.2013.09.076] [PMID: 24176969]
[26]
Kakatkar, A.; Abhilash, T.S.; Alba, R.D.; Parpia, J.M.; Craighead, H.G. Detection of DNA and poly-l-lysine using CVD graphene-channel FET biosensors. Nanotechnology, 2015, 26(12), 125502.
[http://dx.doi.org/10.1088/0957-4484/26/12/125502] [PMID: 25741743]
[27]
Lin, L.; Liu, Y.; Tang, L.; Li, J. Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy. Analyst, 2011, 136(22), 4732-4737.
[http://dx.doi.org/10.1039/c1an15610a] [PMID: 21952074]
[28]
Bonanni, A.; Chua, C.K.; Zhao, G.; Sofer, Z.; Pumera, M. Inherently electroactive graphene oxide nanoplatelets as labels for single nucleotide polymorphism detection. ACS Nano, 2012, 6(10), 8546-8551.
[http://dx.doi.org/10.1021/nn301359y] [PMID: 22992186]
[29]
Akhavan, O.; Ghaderi, E.; Rahighi, R. Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano, 2012, 6(4), 2904-2916.
[http://dx.doi.org/10.1021/nn300261t] [PMID: 22385391]
[30]
Liu, B.; Sun, Z.; Zhang, X.; Liu, J. Mechanisms of DNA sensing on graphene oxide. Anal. Chem., 2013, 85(16), 7987-7993.
[http://dx.doi.org/10.1021/ac401845p] [PMID: 23875867]
[31]
Chen, J.R. Biosens. Bioelectron., 2014, 60, 64-70.
[32]
Tiwari, A.; Syväjärvi, M. Graphene Materials: Fundamentals and Emerging Applications; Wiley, 2015.
[33]
Du, D.; Zou, Z.; Shin, Y.; Wang, J.; Wu, H.; Engelhard, M.H.; Liu, J.; Aksay, I.A.; Lin, Y. Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Anal. Chem., 2010, 82(7), 2989-2995.
[http://dx.doi.org/10.1021/ac100036p] [PMID: 20201502]
[34]
Jia, X.; Liu, Z.; Liu, N.; Ma, Z. A label-free immunosensor based on graphene nanocomposites for simultaneous multiplexed electrochemical determination of tumor markers. Biosens. Bioelectron., 2014, 53, 160-166.
[http://dx.doi.org/10.1016/j.bios.2013.09.050] [PMID: 24140831]
[35]
Jang, H.D.; Kim, S.K.; Chang, H.; Choi, J.W. 3D label-free Prostate Specific Antigen (PSA) immunosensor based on graphene-gold composites. Biosens. Bioelectron., 2015, 63, 546-551.
[http://dx.doi.org/10.1016/j.bios.2014.08.008] [PMID: 25150936]
[36]
Thangamuthu, M.; Hsieh, K.Y.; Kumar, P.V.; Chen, G.Y. Graphene- and graphene oxide-based nanocomposite platforms for electrochemical biosensing applications. Int. J. Mol. Sci., 2019, 20(12), 2975.
[http://dx.doi.org/10.3390/ijms20122975] [PMID: 31216691]
[37]
Fiorillo, M.; Verre, A.F.; Iliut, M.; Peiris-Pagés, M.; Ozsvari, B.; Gandara, R.; Cappello, A.R.; Sotgia, F.; Vijayaraghavan, A.; Lisanti, M.P. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via “differentiation-based nano-therapy”. Oncotarget, 2015, 6(6), 3553-3562.
[http://dx.doi.org/10.18632/oncotarget.3348] [PMID: 25708684]
[38]
Huang, J.; Tian, J.; Zhao, Y.; Zhao, S. Ag/Au nanoparticles coated graphene electrochemical sensor for ultrasensitive analysis of carcinoembryonic antigen in clinical immunoassay. Sens. Actuators B Chem., 2015, 206, 570-576.
[http://dx.doi.org/10.1016/j.snb.2014.09.119]
[39]
Zhu, Q.; Chai, Y.; Zhuo, Y.; Yuan, R. Ultrasensitive simultaneous detection of four biomarkers based on hybridization chain reaction and biotin-streptavidin signal amplification strategy. Biosens. Bioelectron., 2015, 68, 42-48.
[http://dx.doi.org/10.1016/j.bios.2014.12.023] [PMID: 25562732]
[40]
Mao, K.; Wu, D.; Li, Y.; Ma, H.; Ni, Z.; Yu, H.; Luo, C.; Wei, Q.; Du, B. Label-free electrochemical immunosensor based on graphene/methylene blue nanocomposite. Anal. Biochem., 2012, 422(1), 22-27.
[http://dx.doi.org/10.1016/j.ab.2011.12.047] [PMID: 22266207]
[41]
Su, C.W.; Tian, J.H.; Ye, J.J.; Chang, H.W.; Tsai, Y.C. Construction of a label-free electrochemical immunosensor based on Zn-Co-S/graphene nanocomposites for carbohydrate antigen 19-9 detection. Nanomaterials, 2021, 11(6), 1475.
[http://dx.doi.org/10.3390/nano11061475] [PMID: 34199490]
[42]
Chen, S.L.; Chen, C.Y.; Hsieh, J.C.H.; Yu, Z.Y.; Cheng, S.J.; Hsieh, K.Y.; Yang, J.W.; Kumar, P.V.; Lin, S.F.; Chen, G.Y. Graphene oxide-based biosensors for liquid biopsies in cancer diagnosis. Nanomaterials, 2019, 9(12), 1725.
[http://dx.doi.org/10.3390/nano9121725] [PMID: 31816919]
[43]
Bollella, P.; Fusco, G.; Tortolini, C.; Sanzò, G.; Favero, G.; Gorton, L.; Antiochia, R. Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection. Biosens. Bioelectron., 2017, 89(Pt 1), 152-166.
[http://dx.doi.org/10.1016/j.bios.2016.03.068] [PMID: 27132999]
[44]
He, L.; Wang, Q.; Mandler, D.; Li, M.; Boukherroub, R.; Szunerits, S. Detection of folic acid protein in human serum using reduced graphene oxide electrodes modified by folic-acid. Biosens. Bioelectron., 2016, 75, 389-395.
[http://dx.doi.org/10.1016/j.bios.2015.08.060] [PMID: 26342582]
[45]
Kim, D.J.; Sohn, I.Y.; Jung, J.H.; Yoon, O.J.; Lee, N.E.; Park, J.S. Reduced graphene oxide field-effect transistor for label-free femtomolar protein detection. Biosens. Bioelectron., 2013, 41, 621-626.
[http://dx.doi.org/10.1016/j.bios.2012.09.040] [PMID: 23107386]
[46]
Demeritte, T.; Viraka Nellore, B.P.; Kanchanapally, R.; Sinha, S.S.; Pramanik, A.; Chavva, S.R.; Ray, P.C. Hybrid graphene oxide based plasmonic-magnetic multifunctional nanoplatform for selective separation and label-free identification of alzheimer’s disease biomarkers. ACS Appl. Mater. Interfaces, 2015, 7(24), 13693-13700.
[47]
Karki, N.; Rana, A.; Tiwari, H.; Negi, P.; Sahoo, N.G. Theranostics application of graphene-based materials in cancer imaging, targeting and treatment. In: Tumor Progression and Metastasis; IntechOpen, 2020.
[http://dx.doi.org/10.5772/intechopen.91331]
[48]
Syama, S.; Mohanan, P.V. Comprehensive application of graphene: Emphasis on biomedical concerns. Nano-Micro Lett., 2019, 11(1), 6.
[http://dx.doi.org/10.1007/s40820-019-0237-5] [PMID: 34137957]
[49]
Arancibia-Miranda, N.; Baltazar, S.E.; García, A.; Muñoz-Lira, D.; Sepúlveda, P.; Rubio, M.A.; Altbir, D. Nanoscale zero valent supported by Zeolite and Montmorillonite: Template effect of the removal of lead ion from an aqueous solution. J. Hazard. Mater., 2016, 301, 371-380.
[http://dx.doi.org/10.1016/j.jhazmat.2015.09.007] [PMID: 26384998]
[50]
Reina, G.; González-Domínguez, J.M.; Criado, A.; Vázquez, E.; Bianco, A.; Prato, M. Promises, facts and challenges for graphene in biomedical applications. Chem. Soc. Rev., 2017, 46(15), 4400-4416.
[http://dx.doi.org/10.1039/C7CS00363C] [PMID: 28722038]
[51]
Huang, P.; Xu, C.; Lin, J.; Wang, C.; Wang, X.; Zhang, C.; Zhou, X.; Guo, S.; Cui, D. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics, 2011, 1, 240-250.
[http://dx.doi.org/10.7150/thno/v01p0240] [PMID: 21562631]
[52]
Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett., 2010, 10(9), 3318-3323.
[http://dx.doi.org/10.1021/nl100996u] [PMID: 20684528]
[53]
Baraneedharan, P. Graphene based biosensors for detection of neurotransmitters. J. Nanomed. Res., 2016, 3, 66.
[54]
Khan, M.; Tahir, M.N.; Adil, S.F.; Khan, H.U.; Siddiqui, M.R.H.; Al-warthan, A.A.; Tremel, W. Graphene based metal and metal oxide nanocomposites: Synthesis, properties and their applications. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(37), 18753-18808.
[http://dx.doi.org/10.1039/C5TA02240A]
[55]
Sajid, M.; Nazal, M.K.; Mansha, M.; Alsharaa, A.; Jillani, S.M.S.; Basheer, C. Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review. Trends Analyt. Chem., 2016, 76, 15-29.
[http://dx.doi.org/10.1016/j.trac.2015.09.006]
[56]
Wang, Q.; Wang, Q.; Li, M.; Szunerits, S.; Boukherroub, R. Preparation of reduced graphene oxide/Cu nanoparticle composites through electrophoretic deposition: Application for nonenzymatic glucose sensing. RSC Advances, 2015, 5(21), 15861-15869.
[http://dx.doi.org/10.1039/C4RA14132F]
[57]
Guy, O.J.; Walker, K-A.D. Graphene functionalization for biosensor applications. In: Silicon Carbide Biotechnology; Elsevier, 2016; pp. 85-141.
[58]
Cinti, S.; Scognamiglio, V.; Moscone, D.; Arduini, F. Efforts, challenges, and future perspectives of graphene-based (Bio) sensors for biomedical applications. In: Graphene bioelectronics; Elsevier, 2018; pp. 133-150.
[http://dx.doi.org/10.1016/B978-0-12-813349-1.00006-8]
[59]
Huang, H.; Su, S.; Wu, N.; Wan, H.; Wan, S.; Bi, H.; Sun, L. Graphene-based sensors for human health monitoring. Front Chem., 2019, 7, 399.
[http://dx.doi.org/10.3389/fchem.2019.00399] [PMID: 31245352]
[60]
Asal, M.; Özen, Ö.; Şahinler, M.; Polatoğlu, İ. Recent developments in Enzyme, DNA and immuno-based biosensors. Sensors, 2018, 18(6), 1924.
[http://dx.doi.org/10.3390/s18061924] [PMID: 29899282]
[61]
Zagorodko, O.; Spadavecchia, J.; Serrano, A.Y.; Larroulet, I.; Pesquera, A.; Zurutuza, A.; Boukherroub, R.; Szunerits, S. Highly sensitive detection of DNA hybridization on commercialized graphene-coated surface plasmon resonance interfaces. Anal. Chem., 2014, 86(22), 11211-11216.
[http://dx.doi.org/10.1021/ac502705n] [PMID: 25341125]
[62]
Sun, H.; Wu, L.; Wei, W.; Qu, X. Recent advances in graphene quantum dots for sensing. Mater. Today, 2013, 16(11), 433-442.
[http://dx.doi.org/10.1016/j.mattod.2013.10.020]
[63]
Ryoo, S.R.; Yim, Y.; Kim, Y.K.; Park, I.S.; Na, H.K.; Lee, J.; Jang, H.; Won, C.; Hong, S.; Kim, S.Y.; Jeon, N.L.; Song, J.M.; Min, D-H. High-throughput chemical screening to discover new modulators of microRNA expression in living cells by using graphene-based biosensor. Sci. Rep., 2018, 8(1), 11413.
[http://dx.doi.org/10.1038/s41598-018-29633-x] [PMID: 29311619]
[64]
Klukova, L.; Filip, J.; Belicky, S.; Vikartovska, A.; Tkac, J. Graphene oxide-based electrochemical label-free detection of glycoproteins down to aM level using a lectin biosensor. Analyst, 2016, 141(14), 4278-4282.
[http://dx.doi.org/10.1039/C6AN00793G] [PMID: 27277703]
[65]
Bianco, A.; Cheng, H-M.; Enoki, T.; Gogotsi, Y.; Hurt, R.H.; Koratkar, N.; Kyotani, T.; Monthioux, M.; Park, C.R.; Tascon, J.M.D. All in the graphene family--A recommended nomenclature for two-dimensional carbon materials. Carbon, 2013, 65, 1-6.
[66]
Tabish, T.A. Graphene-based materials: The missing piece in nanomedicine? Biochem. Biophys. Res. Commun., 2018, 504(4), 686-689.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.029] [PMID: 30213629]
[67]
Khalilzadeh, B.; Shadjou, N.; Afsharan, H.; Eskandani, M.; Nozad Charoudeh, H.; Rashidi, M.R. Reduced graphene oxide decorated with gold nanoparticle as signal amplification element on ultra-sensitive electrochemiluminescence determination of caspase-3 activity and apoptosis using peptide based biosensor. Bioimpacts, 2016, 6(3), 135-147.
[http://dx.doi.org/10.15171/bi.2016.20] [PMID: 27853677]
[68]
Munief, W.M.; Lu, X.; Teucke, T.; Wilhelm, J.; Britz, A.; Hempel, F.; Lanche, R.; Schwartz, M.; Law, J.K.Y.; Grandthyll, S.; Müller, F.; Neurohr, J.U.; Jacobs, K.; Schmitt, M.; Pachauri, V.; Hempelmann, R.; Ingebrandt, S. Reduced graphene oxide biosensor platform for the detection of NT-proBNP biomarker in its clinical range. Biosens. Bioelectron., 2019, 126, 136-142.
[http://dx.doi.org/10.1016/j.bios.2018.09.102] [PMID: 30399515]
[69]
Kumar, S.; Kumar, S.; Srivastava, S.; Yadav, B.K.; Lee, S.H.; Sharma, J.G.; Doval, D.C.; Malhotra, B.D. Reduced graphene oxide modified smart conducting paper for cancer biosensor. Biosens. Bioelectron., 2015, 73, 114-122.
[http://dx.doi.org/10.1016/j.bios.2015.05.040] [PMID: 26057732]
[70]
Seifati, S.M.; Nasirizadeh, N.; Azimzadeh, M. Nano‐biosensor based on reduced graphene oxide and gold nanoparticles, for detection of phenylketonuria‐associated DNA mutation. IET Nanobiotechnol., 2018, 12(4), 417-422.
[http://dx.doi.org/10.1049/iet-nbt.2017.0128] [PMID: 29768223]
[71]
Zhang, H.G.; Hu, H.; Pan, Y.; Mao, J.H.; Gao, M.; Guo, H.M.; Du, S.X.; Greber, T.; Gao, H-J. Graphene based quantum dots. J. Phys. Condens. Matter, 2010, 22(30), 302001.
[http://dx.doi.org/10.1088/0953-8984/22/30/302001] [PMID: 21399330]
[72]
Zeng, X.; Ma, S.; Bao, J.; Tu, W.; Dai, Z. Using graphene-based plasmonic nanocomposites to quench energy from quantum dots for signal-on photoelectrochemical aptasensing. Anal. Chem., 2013, 85(24), 11720-11724.
[http://dx.doi.org/10.1021/ac403408y] [PMID: 24256069]
[73]
Li, Y.; Wang, X.; Gong, J.; Xie, Y.; Wu, X.; Zhang, G. Graphene-based nanocomposites for efficient photocatalytic hydrogen evolution: Insight into the interface toward separation of photogenerated charges. ACS Appl. Mater. Interfaces, 2018, 10(50), 43760-43767.
[74]
Li, D.; Zhang, W.; Yu, X.; Wang, Z.; Su, Z.; Wei, G. When biomolecules meet graphene: From molecular level interactions to material design and applications. Nanoscale, 2016, 8(47), 19491-19509.
[http://dx.doi.org/10.1039/C6NR07249F] [PMID: 27878179]
[75]
Loh, K.P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem., 2010, 2(12), 1015-1024.
[http://dx.doi.org/10.1038/nchem.907] [PMID: 21107364]
[76]
Kim, J.; Cote, L.J.; Kim, F.; Yuan, W.; Shull, K.R.; Huang, J. Graphene oxide sheets at interfaces. J. Am. Chem. Soc., 2010, 132(23), 8180-8186.
[http://dx.doi.org/10.1021/ja102777p] [PMID: 20527938]
[77]
Shao, J.J.; Lv, W.; Yang, Q.H. Self-assembly of graphene oxide at interfaces. Adv. Mater., 2014, 26(32), 5586-5612.
[http://dx.doi.org/10.1002/adma.201400267] [PMID: 24852899]
[78]
Kong, X.; Huang, Y. Applications of graphene in mass spectrometry. J. Nanosci. Nanotechnol., 2014, 14(7), 4719-4732.
[http://dx.doi.org/10.1166/jnn.2014.9503] [PMID: 24757942]
[79]
Vashist, S.K.; Luong, J.H.T. Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites. Carbon, 2015, 84, 519-550.
[http://dx.doi.org/10.1016/j.carbon.2014.12.052]
[80]
Ge, S.; Lan, F.; Yu, F.; Yu, J. Applications of graphene and related nanomaterials in analytical chemistry. New J. Chem., 2015, 39(4), 2380-2395.
[http://dx.doi.org/10.1039/C4NJ01783H]
[81]
Xu, W.; Mao, N.; Zhang, J. Graphene: A platform for surface-enhanced Raman spectroscopy. Small, 2013, 9(8), 1206-1224.
[http://dx.doi.org/10.1002/smll.201203097] [PMID: 23529788]
[82]
Xie, L.; Ling, X.; Fang, Y.; Zhang, J.; Liu, Z. Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. J. Am. Chem. Soc., 2009, 131(29), 9890-9891.
[http://dx.doi.org/10.1021/ja9037593] [PMID: 19572745]
[83]
Ling, X.; Xie, L.; Fang, Y.; Xu, H.; Zhang, H.; Kong, J.; Dresselhaus, M.S.; Zhang, J.; Liu, Z. Can graphene be used as a substrate for Raman enhancement? Nano Lett., 2010, 10(2), 553-561.
[http://dx.doi.org/10.1021/nl903414x] [PMID: 20039694]
[84]
Zhang, Y.; Shen, J.; Li, H.; Wang, L.; Cao, D.; Feng, X.; Liu, Y.; Ma, Y.; Wang, L. Recent progress on graphene-based electrochemical biosensors. Chem. Rec., 2016, 16(1), 273-294.
[http://dx.doi.org/10.1002/tcr.201500236] [PMID: 26684691]
[85]
Korkut, S.; Roy-Mayhew, J.D.; Dabbs, D.M.; Milius, D.L.; Aksay, I.A. High surface area tapes produced with functionalized graphene. ACS Nano, 2011, 5(6), 5214-5222.
[http://dx.doi.org/10.1021/nn2013723] [PMID: 21545115]
[86]
Liao, C.; Li, Y.; Tjong, S. Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci., 2018, 19(11), 3564.
[http://dx.doi.org/10.3390/ijms19113564] [PMID: 30424535]
[87]
Sakhnini, L.I.; Pedersen, A.K.; Ahmadian, H.; Hansen, J.J.; Bülow, L.; Dainiak, M. Designing monoclonal antibody fragment-based affinity resins with high binding capacity by thiol-directed immobilisation and optimisation of pore/ligand size ratio. J. Chromatogr. A, 2016, 1468, 143-153.
[http://dx.doi.org/10.1016/j.chroma.2016.09.035] [PMID: 27663728]
[88]
Mao, S.; Lu, G.; Yu, K.; Bo, Z.; Chen, J. Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv. Mater., 2010, 22(32), 3521-3526.
[http://dx.doi.org/10.1002/adma.201000520] [PMID: 20665564]
[89]
Zhang, J.; Sun, Y.; Xu, B.; Zhang, H.; Gao, Y.; Zhang, H.; Song, D. A novel surface plasmon resonance biosensor based on graphene oxide decorated with gold nanorod-antibody conjugates for determination of transferrin. Biosens. Bioelectron., 2013, 45, 230-236.
[http://dx.doi.org/10.1016/j.bios.2013.02.008] [PMID: 23500369]
[90]
Li, H.; Wei, Q.; He, J.; Li, T.; Zhao, Y.; Cai, Y.; Du, B.; Qian, Z.; Yang, M. Electrochemical immunosensors for cancer biomarker with signal amplification based on ferrocene functionalized iron oxide nanoparticles. Biosens. Bioelectron., 2011, 26(8), 3590-3595.
[http://dx.doi.org/10.1016/j.bios.2011.02.006] [PMID: 21388798]
[91]
Xu, S.; Liu, Y.; Wang, T.; Li, J. Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Anal. Chem., 2011, 83(10), 3817-3823.
[http://dx.doi.org/10.1021/ac200237j] [PMID: 21513282]
[92]
Wu, D.; Liu, Y.; Wang, Y.; Hu, L.; Ma, H.; Wang, G.; Wei, Q. Label-free electrochemiluminescent immunosensor for detection of prostate specific antigen based on aminated graphene quantum dots and carboxyl graphene quantum dots. Sci. Rep., 2016, 6(1), 20511.
[http://dx.doi.org/10.1038/srep20511] [PMID: 26842737]
[93]
Ray, R.; Basu, J.; Gazi, W.A.; Samanta, N.; Bhattacharyya, K. RoyChaudhuri, C. Label-free biomolecule detection in physiological solutions with enhanced sensitivity using graphene nanogrids FET biosensor. IEEE Trans. Nanobiosci., 2018, 17(4), 433-442.
[http://dx.doi.org/10.1109/TNB.2018.2863734] [PMID: 30106685]
[94]
Basu, J. RoyChaudhuri, C. Graphene nanogrids FET immunosensor: Signal to noise ratio enhancement. Sensors, 2016, 16(10), 1481.
[http://dx.doi.org/10.3390/s16101481] [PMID: 27740605]
[95]
Zheng, Q.; Wu, H.; Wang, N.; Yan, R.; Ma, Y.; Guang, W.; Wang, J.; Ding, K. Graphene-based biosensors for biomolecules detection. Curr. Nanosci., 2014, 10(5), 627-637.
[http://dx.doi.org/10.2174/1573413710666140422231701]
[96]
Mahmoudi, M.; Akhavan, O.; Ghavami, M.; Rezaee, F.; Ghiasi, S.M.A. Graphene oxide strongly inhibits amyloid beta fibrillation. Nanoscale, 2012, 4(23), 7322-7325.
[http://dx.doi.org/10.1039/c2nr31657a] [PMID: 23079862]
[97]
Song, Y.; Luo, Y.; Zhu, C.; Li, H.; Du, D.; Lin, Y. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens. Bioelectron., 2016, 76, 195-212.
[http://dx.doi.org/10.1016/j.bios.2015.07.002] [PMID: 26187396]
[98]
Huang, Y.; Xu, T.; Wang, W.; Wen, Y.; Li, K.; Qian, L.; Zhang, X.; Liu, G. Lateral flow biosensors based on the use of micro- and nanomaterials: A review on recent developments. Mikrochim. Acta, 2020, 187(1), 70.
[http://dx.doi.org/10.1007/s00604-019-3822-x] [PMID: 31853644]

© 2025 Bentham Science Publishers | Privacy Policy