Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Neuroprotective and Nootropic Evaluation of some Important Medicinal Plants in Dementia: A Review

Author(s): Fahad Hassan Shah, Young Seok Eom, Kyeong Ho Lim and Song Ja Kim*

Volume 21, Issue 10, 2024

Published on: 12 May, 2023

Page: [1652 - 1661] Pages: 10

DOI: 10.2174/1570180820666230427123641

Price: $65

Abstract

Dementia is a devitalising decline in neurological acuity, which burdens both high- and lowincome countries due to poor diagnostic systems and high healthcare costs. A growing population and rises in deleterious environmental and genetic anomalies aggravate new and aggressive cases of dementia and neurodegenerative disorders. The unparalleled capability of medicinal plants is constantly explored in treating neurological disorders, and some of these phytocompounds are used for treating diseases. However, some of these metabolites are neurotoxic and disrupt DNA polymerase functions. They possess lifethreatening side effects and are unable to prevent disease progression. Therefore, it is important to focus on discovering novel compounds from new medicinal plants. Our review encompasses some medicinal plant metabolites recently explored in treating this disease. We also summarized the molecular mechanism of action as determined in in-vitro: the toxic dose, nootropic and neuroprotective effects on neurophysiology and neurotransmitter levels, and the antioxidant effects.

[1]
Nichols, E.; Szoeke, C.E.I.; Vollset, S.E.; Abbasi, N.; Abd-Allah, F.; Abdela, J.; Aichour, M.T.E.; Akinyemi, R.O.; Alahdab, F.; Asgedom, S.W.; Awasthi, A.; Barker-Collo, S.L.; Baune, B.T.; Béjot, Y.; Belachew, A.B.; Bennett, D.A.; Biadgo, B.; Bijani, A.; Bin Sayeed, M.S.; Brayne, C.; Carpenter, D.O.; Carvalho, F.; Catalá-López, F.; Cerin, E.; Choi, J.Y.J.; Dang, A.K.; Degefa, M.G.; Djalalinia, S.; Dubey, M.; Duken, E.E.; Edvardsson, D.; Endres, M.; Eskandarieh, S.; Faro, A.; Farzadfar, F.; Fereshtehnejad, S-M.; Fernandes, E.; Filip, I.; Fischer, F.; Gebre, A.K.; Geremew, D.; Ghasemi-Kasman, M.; Gnedovskaya, E.V.; Gupta, R.; Hachinski, V.; Hagos, T.B.; Hamidi, S.; Hankey, G.J.; Haro, J.M.; Hay, S.I.; Irvani, S.S.N.; Jha, R.P.; Jonas, J.B.; Kalani, R.; Karch, A.; Kasaeian, A.; Khader, Y.S.; Khalil, I.A.; Khan, E.A.; Khanna, T.; Khoja, T.A.M.; Khubchandani, J.; Kisa, A.; Kissimova-Skarbek, K.; Kivimäki, M.; Koyanagi, A.; Krohn, K.J.; Logroscino, G.; Lorkowski, S.; Majdan, M.; Malekzadeh, R.; März, W.; Massano, J.; Mengistu, G.; Meretoja, A.; Mohammadi, M.; Mohammadi-Khanaposhtani, M.; Mokdad, A.H.; Mondello, S.; Moradi, G.; Nagel, G.; Naghavi, M.; Naik, G.; Nguyen, L.H.; Nguyen, T.H.; Nirayo, Y.L.; Nixon, M.R.; Ofori-Asenso, R.; Ogbo, F.A.; Olagunju, A.T.; Owolabi, M.O.; Panda-Jonas, S.; Passos, V.M.A.; Pereira, D.M.; Pinilla-Monsalve, G.D.; Piradov, M.A.; Pond, C.D.; Poustchi, H.; Qorbani, M.; Radfar, A.; Reiner, R.C., Jr; Robinson, S.R.; Roshandel, G.; Rostami, A.; Russ, T.C.; Sachdev, P.S.; Safari, H.; Safiri, S.; Sahathevan, R.; Salimi, Y.; Satpathy, M.; Sawhney, M.; Saylan, M.; Sepanlou, S.G.; Shafieesabet, A.; Shaikh, M.A.; Sahraian, M.A.; Shigematsu, M.; Shiri, R.; Shiue, I.; Silva, J.P.; Smith, M.; Sobhani, S.; Stein, D.J.; Tabarés-Seisdedos, R.; Tovani-Palone, M.R.; Tran, B.X.; Tran, T.T.; Tsegay, A.T.; Ullah, I.; Venketasubramanian, N.; Vlassov, V.; Wang, Y-P.; Weiss, J.; Westerman, R.; Wijeratne, T.; Wyper, G.M.A.; Yano, Y.; Yimer, E.M.; Yonemoto, N.; Yousefifard, M.; Zaidi, Z.; Zare, Z.; Vos, T.; Feigin, V.L.; Murray, C.J.L. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2019, 18(1), 88-106.
[http://dx.doi.org/10.1016/S1474-4422(18)30403-4] [PMID: 30497964]
[2]
Merluzzi, A.P.; Carlsson, C.M.; Johnson, S.C.; Schindler, S.E.; Asthana, S.; Blennow, K. Neurodegeneration, synaptic dysfunction, and gliosis are phenotypic of Alzheimer dementia. Neurology, 2018, 91(5), e436-e443.
[http://dx.doi.org/10.1212/WNL.0000000000005901]
[3]
Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; Costafreda, S.G.; Dias, A.; Fox, N.; Gitlin, L.N.; Howard, R.; Kales, H.C.; Kivimäki, M.; Larson, E.B.; Ogunniyi, A.; Orgeta, V.; Ritchie, K.; Rockwood, K.; Sampson, E.L.; Samus, Q.; Schneider, L.S.; Selbæk, G.; Teri, L.; Mukadam, N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet, 2020, 396(10248), 413-446.
[http://dx.doi.org/10.1016/S0140-6736(20)30367-6] [PMID: 32738937]
[4]
Alzobaidi, N.; Quasimi, H.; Emad, N.A.; Alhalmi, A.; Naqvi, M. Bioactive Compounds and Traditional Herbal Medicine: Promising approaches for the treatment of dementia. Degener. Neurol. Neuromuscul. Dis., 2021, 11, 1-14.
[http://dx.doi.org/10.2147/DNND.S299589] [PMID: 33880073]
[5]
Launer, L.J. Statistics on the burden of dementia: Need for stronger data. Lancet Neurol., 2019, 18(1), 25-27.
[http://dx.doi.org/10.1016/S1474-4422(18)30456-3] [PMID: 30497966]
[6]
Shah, F.H.; Shah, S.T.A.; Salman, S.; Idrees, J.; Idrees, F.; Khan, A. A Therapeutic approaches of prominent medicinal plants for targetting Alzheimer’s disease. Z. Arznei Gewurzpflanzen, 2020, 25(1), 15-18.
[7]
Hosseinkhani, A.; Sahragard, A.; Namdari, A.; Zarshenas, M.M. Botanical Sources for Alzheimer’s: A review on reports from traditional persian medicine. Am. J. Alzheimers Dis. Other Demen., 2017, 32(7), 429-437.
[http://dx.doi.org/10.1177/1533317517717013] [PMID: 28683559]
[8]
Tewari, D.; Stankiewicz, A.M.; Mocan, A.; Sah, A.N.; Tzvetkov, N.T.; Huminiecki, L.; Horbańczuk, J.O.; Atanasov, A.G. Ethnopharmacological approaches for dementia therapy and significance of natural products and herbal drugs. Front. Aging Neurosci., 2018, 10, 3.
[http://dx.doi.org/10.3389/fnagi.2018.00003] [PMID: 29483867]
[9]
Panda, S.S.; Jhanji, N. Natural products as potential anti-alzheimer agents. Curr. Med. Chem., 2020, 27(35), 5887-5917.
[http://dx.doi.org/10.2174/0929867326666190618113613] [PMID: 31215372]
[10]
Syad, A.N.; Devi, K.P. Botanics: A potential source of new therapies for Alzheimer’s disease? Botanics, 2014, 4, 11-26.
[11]
Fatima, N.; Nayeem, N. Toxic effects as a result of herbal medicine intake.In: Toxicology; Larramendy, M.L.; Soloneski, S., Eds.; InTech Open, 2016, pp. 193-207.
[http://dx.doi.org/10.5772/64468]
[12]
Ashokkumar, K.; Murugan, M.; Dhanya, M.K.; Warkentin, T.D. Botany, traditional uses, phytochemistry and biological activities of cardamom [Elettaria cardamomum (L.) Maton]-a critical review. J. Ethnopharmacol., 2020, 246, 112244.
[http://dx.doi.org/10.1016/j.jep.2019.112244] [PMID: 31541721]
[13]
Lim, T.K. Elettaria cardamomum BT. In: Edible Medicinal And Non-Medicinal Plants; Lim, T.K., Ed.; Dordrecht: Springer: Netherlands, 2013; p. 5.
[14]
Alam, A.; Majumdar, R.S.; Alam, P. Systematics evaluations of morphological traits, chemical composition, and antimicrobial properties of selected varieties of elettaria cardamomum (L.). Maton. Nat. Prod. Commun., 2019, 14(12), 1934578X19892688.
[15]
Gomaa, A.A.; Makboul, R.M.; El-Mokhtar, M.A.; Abdel-Rahman, E.A.; Ahmed, I.A.; Nicola, M.A. Terpenoid-rich Elettaria cardamomum extract prevents Alzheimer-like alterations induced in diabetic rats via inhibition of GSK3β activity, oxidative stress and pro-inflammatory cytokines. Cytokine, 2019, 113, 405-416.
[http://dx.doi.org/10.1016/j.cyto.2018.10.017] [PMID: 30539783]
[16]
Abu-Taweel, G.M. Cardamom (Elettaria cardamomum) perinatal exposure effects on the development, behavior and biochemical parameters in mice offspring. Saudi J. Biol. Sci., 2018, 25(1), 186-193.
[http://dx.doi.org/10.1016/j.sjbs.2017.08.012] [PMID: 29379379]
[17]
Paul, K.; Ganguly, U.; Chakrabarti, S.; Bhattacharjee, P. Is 1,8-Cineole-Rich extract of small cardamom seeds more effective in preventing Alzheimer’s Disease than 1,8-Cineole Alone? Neuromolecular Med., 2020, 22(1), 150-158.
[http://dx.doi.org/10.1007/s12017-019-08574-2] [PMID: 31628580]
[18]
Vieira, V.; Calhelha, R.C.; Barros, L.; Coutinho, J.A.P.; Ferreira, C.F.R.; Ferreira, O. Insights on the extraction performance of alkanediols and glycerol: Using Juglans regia L. leaves as a source of bioactive compounds. Mol., 2020, 25(11), 1-13.
[http://dx.doi.org/10.3390/molecules25112497]
[19]
Catanzaro, E.; Greco, G.; Potenza, L.; Calcabrini, C.; Fimognari, C. Natural Products to Fight Cancer: A Focus on Juglans regia. Toxins, 2018, 10(11), 469.
[http://dx.doi.org/10.3390/toxins10110469] [PMID: 30441778]
[20]
Fizeșan, I.; Rusu, M.E.; Georgiu, C.; Pop, A.; Ștefan, M.G.; Muntean, D.M.; Mirel, S.; Vostinaru, O.; Kiss, B.; Popa, D.S. Antitussive, antioxidant, and anti-inflammatory effects of a walnut (Juglans regia L.) septum extract rich in bioactive compounds. Antioxidants, 2021, 10(1), 119.
[http://dx.doi.org/10.3390/antiox10010119] [PMID: 33467612]
[21]
Al-Snafi, A.E. Chemical constituents, nutritional, pharmacological and therapeutic importance of Juglans regia-A review. IOSR J. Pharm., 2018, 8(11), 1-21.
[22]
Vieira, V.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Coutinho, J.A.P.; Ferreira, O.; Barros, L.; Ferreira, I.C.F.R. Hydroethanolic extract of Juglans regia L. green husks: A source of bioactive phytochemicals. Food Chem. Toxicol., 2020, 137, 111189.
[http://dx.doi.org/10.1016/j.fct.2020.111189] [PMID: 32045648]
[23]
Jahanban-Esfahlan, A.; Amarowicz, R. Walnut (Juglans regia L.) shell pyroligneous acid: chemical constituents and functional applications. RSC Advances, 2018, 8(40), 22376-22391.
[http://dx.doi.org/10.1039/C8RA03684E] [PMID: 35539719]
[24]
Ilah, A.; Zaman, A.; Bano, S.; Ismail, F.; Subhan, S. Walnut (Juglans regia L) and its neuroprotective action mechanism on brain. Phytopharmaceuticals for Brain Health., 2017, 27, 265-278.
[http://dx.doi.org/10.1201/9781315152998-14]
[25]
Mohammadi, J.; Delaviz, H.; Ghalamfarsa, G.; Mohammadi, B.; Farhadi, N. A review study on phytochemistry and pharmacology applications of Juglans Regia plant. Pharmacogn. Rev., 2017, 11(22), 145-152.
[http://dx.doi.org/10.4103/phrev.phrev_10_17] [PMID: 28989250]
[26]
Labuckas, D.O.; Maestri, D.M.; Perelló, M.; Martínez, M.L.; Lamarque, A.L. Phenolics from walnut (Juglans regia L.) kernels: Antioxidant activity and interactions with proteins. Food Chem., 2008, 107(2), 607-612.
[http://dx.doi.org/10.1016/j.foodchem.2007.08.051] [PMID: 26059139]
[27]
Wang, R.; Zhong, D.; Wu, S.; Han, Y.; Zheng, Y.; Tang, F.; Ni, Z.; Liu, Y. The phytochemical profiles for walnuts (J. regia and J. sigillata) from China with protected geographical indications. Food Sci. Technol., 2021, 41(Suppl. 2), 695-701.
[http://dx.doi.org/10.1590/fst.30320]
[28]
Wang, S.; Zheng, L.; Zhao, T.; Zhang, Q.; Liu, Y.; Sun, B.; Su, G.; Zhao, M. Inhibitory effects of walnut (juglans regia) peptides on neuroinflammation and oxidative stress in lipopolysaccharide-induced cognitive impairment mice. J. Agric. Food Chem., 2020, 68(8), 2381-2392.
[http://dx.doi.org/10.1021/acs.jafc.9b07670] [PMID: 32037817]
[29]
Liu, M.; Yang, S.; Yang, J.; Lee, Y.; Kou, J.; Wang, C. Neuroprotective and memory-enhancing effects of antioxidant peptide from walnut (Juglans regia L.) protein hydrolysates. Nat. Prod. Commun., 2019, 14(7), 1934578X19865838.
[30]
Jalal, Z.; El Atki, Y.; Lyoussi, B.; Abdellaoui, A. Phytochemistry of the essential oil of Melissa officinalis L. growing wild in Morocco: Preventive approach against nosocomial infections. Asian Pac. J. Trop. Biomed., 2015, 5(6), 458-461.
[http://dx.doi.org/10.1016/j.apjtb.2015.03.003]
[31]
Shakeri, A.; Sahebkar, A.; Javadi, B. Melissa officinalis L.-A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol., 2016, 188, 204-228.
[http://dx.doi.org/10.1016/j.jep.2016.05.010] [PMID: 27167460]
[32]
Mahboubi, M. Melissa officinalis and rosmarinic acid in management of memory functions and Alzheimer disease. Asian Pac. J. Trop. Biomed., 2019, 9(2), 47.
[http://dx.doi.org/10.4103/2221-1691.250849]
[33]
López, V.; Martín, S.; Gómez-Serranillos, M.P.; Carretero, M.E.; Jäger, A.K.; Calvo, M.I. Neuroprotective and neurological properties of Melissa officinalis. Neurochem. Res., 2009, 34(11), 1955-1961.
[http://dx.doi.org/10.1007/s11064-009-9981-0] [PMID: 19760174]
[34]
Ozarowski, M.; Mikolajczak, P.L.; Piasecka, A.; Kachlicki, P.; Kujawski, R.; Bogacz, A.; Bartkowiak-Wieczorek, J.; Szulc, M.; Kaminska, E.; Kujawska, M.; Jodynis-Liebert, J.; Gryszczynska, A.; Opala, B.; Lowicki, Z.; Seremak-Mrozikiewicz, A.; Czerny, B. Influence of the Melissa officinalis leaf extract on long-term memory in scopolamine animal model with assessment of mechanism of action. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-17.
[http://dx.doi.org/10.1155/2016/9729818] [PMID: 27239217]
[35]
Soodi, M.; Dashti, A.; Hajimehdipoor, H.; Akbari, S.; Ataei, N. Melissa officinalis acidic fraction protects cultured cerebellar granule neurons against beta amyloid-induced apoptosis and oxidative stress. Cell J., 2017, 18(4), 556-564.
[PMID: 28042540]
[36]
Ghazizadeh, J.; Hamedeyazdan, S.; Torbati, M.; Farajdokht, F.; Fakhari, A.; Mahmoudi, J.; Araj-khodaei, M.; Sadigh-Eteghad, S. Melissa officinalis L. hydro‐alcoholic extract inhibits anxiety and depression through prevention of central oxidative stress and apoptosis. Exp. Physiol., 2020, 105(4), 707-720.
[http://dx.doi.org/10.1113/EP088254] [PMID: 32003913]
[37]
Singh, D.; Chaudhuri, P.K. A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Ind. Crops Prod., 2018, 118, 367-382.
[http://dx.doi.org/10.1016/j.indcrop.2018.03.048]
[38]
Zahran, E.M.; Abdelmohsen, U.R.; Khalil, H.E.; Desoukey, S.Y.; Fouad, M.A.; Kamel, M.S. Diversity, phytochemical and medicinal potential of the genus Ocimum L. (Lamiaceae). Phytochem. Rev., 2020, 19(4), 907-953.
[http://dx.doi.org/10.1007/s11101-020-09690-9]
[39]
Baliga, M.S.; Jimmy, R.; Thilakchand, K.R.; Sunitha, V.; Bhat, N.R.; Saldanha, E. Ocimum Sanctum L (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer. Nutr. Cancer, 2013, 65(sup 1), 26-35.
[40]
Venuprasad, M.P.; Kandikattu, H.K.; Razack, S.; Amruta, N.; Khanum, F. Chemical composition of Ocimum sanctum by LC-ESI–MS/MS analysis and its protective effects against smoke induced lung and neuronal tissue damage in rats. Biomed. Pharmacother., 2017, 91, 1-12.
[http://dx.doi.org/10.1016/j.biopha.2017.04.011] [PMID: 28433747]
[41]
Hening, P.; Mataram, M.B.A.; Wijayanti, N.; Kusindarta, D.L.; Wihadmadyatami, H. The neuroprotective effect of Ocimum sanctum Linn. ethanolic extract on human embryonic kidney-293 cells as in vitro model of neurodegenerative disease. Vet. World, 2018, 11(9), 1237-1243.
[http://dx.doi.org/10.14202/vetworld.2018.1237-1243] [PMID: 30410227]
[42]
Mataram, M.B.A.; Hening, P.; Harjanti, F.N.; Karnati, S.; Wasityastuti, W.; Nugrahaningsih, D.A.A.; Kusindarta, D.L.; Wihadmadyatami, H. The neuroprotective effect of ethanolic extract Ocimum sanctum Linn. in the regulation of neuronal density in hippocampus areas as a central autobiography memory on the rat model of Alzheimer’s disease. J. Chem. Neuroanat., 2021, 111, 101885.
[http://dx.doi.org/10.1016/j.jchemneu.2020.101885] [PMID: 33188864]
[43]
Kumar, N.; Kumar, R.; Kishore, K.; Onosma, L.; Onosma, L. A review of phytochemistry and ethnopharmacology. Pharmacogn. Rev., 2013, 7(14), 140-151.
[http://dx.doi.org/10.4103/0973-7847.120513] [PMID: 24347922]
[44]
Fareed, S.; Siddiqui, H.H.; Haque, S.E.; Khalid, M.; Akhtar, J. Psychoimmunomodulatory effects of Onosma bracteatum Wall.(Gaozaban) on stress model in sprague dawley rats. J. Clin. Diagn. Res., 2012, 6(7), 1356-1360.
[45]
Pan, Y.; Liu, Y.; Fujii, R.; Farooq, U.; Cheng, L.; Matsuura, A.; Qi, J.; Xiang, L. Ehretiquinone from Onosma bracteatum wall exhibits antiaging effect on yeasts and mammals through antioxidative stress and autophagy induction. Oxid. Med. Cell. Longev., 2021, 2021, 1-15.
[http://dx.doi.org/10.1155/2021/5469849] [PMID: 33510837]
[46]
Akram, M.; Riaz, M.; Munir, N.; Akhter, N.; Zafar, S.; Jabeen, F.; Ali Shariati, M.; Akhtar, N.; Riaz, Z.; Altaf, S.H.; Daniyal, M.; Zahid, R.; Said Khan, F. Chemical constituents, experimental and clinical pharmacology of Rosa damascena: a literature review. J. Pharm. Pharmacol., 2020, 72(2), 161-174.
[http://dx.doi.org/10.1111/jphp.13185] [PMID: 31709541]
[47]
Karimipour, M.; Mardani, M.; Ghanadian, M.; Esmaeili, A.; Mohammadnejad, D.; Alaei, H.A.; Esfandiary, E. Neuroprotective effects of Rosa damascena extract on learning and memory in a rat model of amyloid-β-induced Alzheimer’s disease. Adv. Biomed. Res., 2015, 4(1), 131.
[http://dx.doi.org/10.4103/2277-9175.161512] [PMID: 26322279]
[48]
Rezvani-Kamran, A.; Salehi, I.; Shahidi, S.; Zarei, M.; Moradkhani, S.; Komaki, A. Effects of the hydroalcoholic extract of Rosa damascena on learning and memory in male rats consuming a high-fat diet. Pharm. Biol., 2017, 55(1), 2065-2073.
[http://dx.doi.org/10.1080/13880209.2017.1362010] [PMID: 28832226]
[49]
Chen, H.W.; Wei, B.J.; He, X.H.; Liu, Y.; Wang, J. Chemical components and cardiovascular activities of Valeriana spp. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/947619] [PMID: 26788113]
[50]
Sermukhamedova, O.; Ludwiczuk, A.; Widelski, J.; Głowniak, K.; Sakipova, Z.; Ibragimova, L.; Poleszak, E.; Cordell, G.A.; Skalicka-Woźniak, K. Chemical comparison of the underground parts of Valeriana officinalis and Valeriana turkestanica from Poland and Kazakhstan. Open Chem., 2017, 15(1), 75-81.
[http://dx.doi.org/10.1515/chem-2017-0010]
[51]
Al-Attraqchi, O.H.A.; Deb, P.K.; Al-Attraqchi, N.H.A. Review of the phytochemistry and pharmacological properties of valeriana officinalis. Curr. Tradit. Med., 2020, 6(4), 260-277.
[http://dx.doi.org/10.2174/2215083805666190314112755]
[52]
Malva, J.O.; Santos, S.; Macedo, T. Neuroprotective properties of Valeriana officinalis extracts. Neurotox. Res., 2004, 6(2), 131-140.
[http://dx.doi.org/10.1007/BF03033215] [PMID: 15325965]
[53]
Nam, S.M.; Choi, J.H.; Yoo, D.Y.; Kim, W.; Jung, H.Y.; Kim, J.W.; Kang, S.Y.; Park, J.; Kim, D.W.; Kim, W.J.; Yoon, Y.S.; Hwang, I.K. Valeriana officinalis extract and its main component, valerenic acid, ameliorate d-galactose-induced reductions in memory, cell proliferation, and neuroblast differentiation by reducing corticosterone levels and lipid peroxidation. Exp. Gerontol., 2013, 48(11), 1369-1377.
[http://dx.doi.org/10.1016/j.exger.2013.09.002] [PMID: 24055511]

© 2025 Bentham Science Publishers | Privacy Policy