Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

In silico Identification of Fructose-1,6-biphosphatase Inhibitory Potentials of Xanthones Isolated from African Medicinal Plants: An Integrated Computational Approach

Author(s): Rajesh B. Patil, Onikepe Deborah Owoseeni, Prajakta M. Phage, Samson Oluwaseyi Famuyiwa, Felix Olusegun Gboyero, Glory Mayokun Arowojolu and Kolade Olatubosun Faloye*

Volume 21, Issue 10, 2024

Published on: 12 May, 2023

Page: [1675 - 1693] Pages: 19

DOI: 10.2174/1570180820666230417124235

Price: $65

Abstract

Background: Type 2 diabetes mellitus continues to pose a threat to the existence of the human race. The increasing number of diabetic subjects can be effectively controlled by targeting enzymes responsible for high blood glucose levels. Xanthones are a class of phytochemicals that possesses promising pharmacological potentials.

Objective: This study identified fructose 1,6-biphosphatase (FBPase) inhibitors by exploring xanthones isolated from African medicinal plants through ensemble docking, molecular dynamics simulation and density functional theory methods.

Methods: The study used ensemble docking, molecular dynamics simulation and density functional theory (B3LYP/6-3G (d,p) basis set) and ADMET methods to select lead compound that may be effective as fructose-I,6-biphosphatase inhibitor.

Results: The ensemble docking results identified globulixanthone C (-10.0 kcal/mol), 1-Isomangostin (- 9.0 kcal/mol), laurentixanthone A (-9.0 kcal/mol), bangangxanthone A (-8.9 kcal/mol) and staudtiixanthone B (-8.8 kcal/mol) as potential inhibitors of fructose-1,6-biphosphatase. Molecular dynamics studies showed the xanthones established good binding mode and their binding energy ranged from -74.057 to 53.669 kJ/mol. Also, the electronic and ADMET studies of the xanthones elucidated their excellent pharmacological potential.

Conclusion: The study identified xanthones as potential fructose-1,6-biphosphatase inhibitors. The ligands' binding energy and MMPBSA calculations supported their possible inhibitory property. Also, the ADMET properties estimated show the ligands as suitable drug candidates as fructose-1,6-biphosphatase inhibitors. Further in vitro and in vivo investigation of the hit molecules is necessary to develop new FBPase inhibitors.

[1]
DePaula, A.L.; Macedo, A.L.V.; Rassi, N.; Machado, C.A.; Schraibman, V.; Silva, L.Q.; Halpern, A. Laparoscopic treatment of type 2 diabetes mellitus for patients with a body mass index less than 35. Surg. Endosc., 2008, 22(3), 706-716.
[http://dx.doi.org/10.1007/s00464-007-9472-9] [PMID: 17704886]
[2]
Lotfy, M.; Adeghate, J.; Kalasz, H.; Singh, J.; Adeghate, E. Chronic complications of diabetes mellitus: A mini review. Curr. Diabetes Rev., 2016, 13(1), 3-10.
[http://dx.doi.org/10.2174/1573399812666151016101622] [PMID: 26472574]
[3]
Kaur, R.; Kaur, M.; Singh, J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: Molecular insights and therapeutic strategies. Cardiovasc. Diabetol., 2018, 17(1), 121.
[http://dx.doi.org/10.1186/s12933-018-0763-3] [PMID: 30170601]
[4]
Al-Yousif, N.; Rawal, S.; Jurczak, M.; Mahmud, H.; Shah, F.A. Endogenous glucose production in critical illness. Nutr. Clin. Pract., 2021, 36(2), 344-359.
[http://dx.doi.org/10.1002/ncp.10646] [PMID: 33682953]
[5]
Sahlan, M.; Faris, M.N.H.A.; Aditama, R.; Lischer, K.; Khayrani, A.C.; Pratami, D.K. Molecular docking of south sulawesi propolis against fructose 1,6-bisphosphatase as a type 2 diabetes mellitus drug. Int. J. Technol., 2020, 11(5), 910.
[http://dx.doi.org/10.14716/ijtech.v11i5.4332]
[6]
Matsuura, T.; Chinen, Y.; Arashiro, R.; Katsuren, K.; Tamura, T.; Hyakuna, N.; Ohta, T. Two newly identified genomic mutations in a Japanese female patient with fructose-1,6-bisphosphatase (FBPase) deficiency. Mol. Genet. Metab., 2002, 76(3), 207-210.
[http://dx.doi.org/10.1016/S1096-7192(02)00038-0] [PMID: 12126934]
[7]
Seeberger, P.H.; Rademacher, C. Carbohydrates as drugs, 1st ed; Springer International Publishing: Switzerland, 2014.
[http://dx.doi.org/10.1007/978-3-319-08675-0]
[8]
Myers, R.W.; Guan, H.P.; Ehrhart, J.; Petrov, A.; Prahalada, S.; Tozzo, E.; Yang, X.; Kurtz, M.M.; Trujillo, M.; Gonzalez Trotter, D.; Feng, D.; Xu, S.; Eiermann, G.; Holahan, M.A.; Rubins, D.; Conarello, S.; Niu, X.; Souza, S.C.; Miller, C.; Liu, J.; Lu, K.; Feng, W.; Li, Y.; Painter, R.E.; Milligan, J.A.; He, H.; Liu, F.; Ogawa, A.; Wisniewski, D.; Rohm, R.J.; Wang, L.; Bunzel, M.; Qian, Y.; Zhu, W.; Wang, H.; Bennet, B.; LaFranco Scheuch, L.; Fernandez, G.E.; Li, C.; Klimas, M.; Zhou, G.; van Heek, M.; Biftu, T.; Weber, A.; Kelley, D.E.; Thornberry, N.; Erion, M.D.; Kemp, D.M.; Sebhat, I.K. Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science, 2017, 357(6350), 507-511.
[http://dx.doi.org/10.1126/science.aah5582] [PMID: 28705990]
[9]
Miglianico, M.; Nicolaes, G.A.F.; Neumann, D. Pharmacological targeting of AMP-activated protein kinase and opportunities for computer-aided drug design. Miniperspective. J. Med. Chem., 2016, 59(7), 2879-2893.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01201] [PMID: 26510622]
[10]
Costa Leite, T.; Da Silva, D.; Guimarães Coelho, R.; Zancan, P.; Sola-Penna, M. Lactate favours the dissociation of skeletal muscle 6-phosphofructo-1-kinase tetramers down-regulating the enzyme and muscle glycolysis. Biochem. J., 2007, 408(1), 123-130.
[http://dx.doi.org/10.1042/BJ20070687] [PMID: 17666012]
[11]
Huang, Y.; Chi, B.; Xu, Y.; Song, R.; Wei, L.; Rao, L.; Feng, L.; Ren, Y.; Wan, J. In silico screening of a novel scaffold for fructose-1,6-bisphosatase (FBPase) inhibitors. J. Mol. Graph. Model., 2019, 86, 142-148.
[http://dx.doi.org/10.1016/j.jmgm.2018.10.017] [PMID: 30366190]
[12]
Elujoba, A.A.; Odeleye, O.M.; Ogunyemi, C.M. Traditional medicine development for medical and dental primary health care delivery system in Africa. African J. Tradit. Complement. Med., 2005, 2(1), 46-61.
[13]
El-Seedi, H.; El-Ghorab, D.; El-Barbary, M.; Zayed, M.; Göransson, U.; Larsson, S.; Verpoorte, R. Naturally occurring xanthones; latest investigations: Isolation, structure elucidation and chemosystematic significance. Curr. Med. Chem., 2009, 16(20), 2581-2626.
[http://dx.doi.org/10.2174/092986709788682056] [PMID: 19601799]
[14]
Peres, V.; Nagem, T.J.; de Oliveira, F.F. Tetraoxygenated naturally occurring xanthones. Phytochemistry, 2000, 55(7), 683-710.
[http://dx.doi.org/10.1016/S0031-9422(00)00303-4] [PMID: 11190384]
[15]
Bernal, F.; Coy-Barrera, E. Molecular docking and multivariate analysis of xanthones as antimicrobial and antiviral agents. Molecules, 2015, 20(7), 13165-13204.
[http://dx.doi.org/10.3390/molecules200713165] [PMID: 26197308]
[16]
Francik, R.; Szkaradek, N.; Żelaszczyk, D.; Marona, H. Antioxidant activity of xanthone derivatives. Acta Poloniae Pharmaceutica. Drug Res., 2016, 73(6), 1505-1509.
[17]
Dzoyem, J.P.; Lannang, A.M.; Fouotsa, H.; Mbazoa, C.D.; Nkengfack, A.E.; Sewald, N.; Eloff, J.N. Anti-inflammatory activity of benzophenone and xanthone derivatives isolated from Garcinia (Clusiaceae) species. Phytochem. Lett., 2015, 14, 153-158.
[http://dx.doi.org/10.1016/j.phytol.2015.10.003]
[18]
Marona, H.; Librowski, T.; Cegła, M.; Erdođan, C.; Sahin, N.O. Antiarrhythmic and antihypertensive activity of some xanthone derivatives. Acta Poloniae Pharmaceutica. Drug Res., 2008, 65(3), 383-390.
[19]
Trinh, B.T.D.; Quach, T.T.T.; Bui, D.N.; Staerk, D.; Nguyen, L.H.D.; Jäger, A.K. Xanthones from the twigs of Garcinia oblongifolia and their antidiabetic activity. Fitoterapia, 2017, 118, 126-131.
[http://dx.doi.org/10.1016/j.fitote.2017.03.003] [PMID: 28322990]
[20]
Ibrahim, S.R.M.; Abdallah, H.M.; El-Halawany, A.M.; Nafady, A.M.; Mohamed, G.A. Mangostanaxanthone VIII, a new xanthone from Garcinia mangostana and its cytotoxic activity. Nat. Prod. Res., 2019, 33(2), 258-265.
[http://dx.doi.org/10.1080/14786419.2018.1446012] [PMID: 29513040]
[21]
Haroon, H.B.; Perumalsamy, V.; Nair, G.; Anand, D.K.; Kolli, R.; Monichen, J.; Prabha, K. Repression of Polyol Pathway Activity by Hemidesmus indicus var. pubescens R.Br. Linn Root Extract, an Aldose Reductase Inhibitor: An in silico and ex vivo Study. Nat. Prod. Bioprospect., 2021, 11(3), 315-324.
[http://dx.doi.org/10.1007/s13659-020-00290-w] [PMID: 33284412]
[22]
Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422.
[http://dx.doi.org/10.1007/s10822-010-9352-6] [PMID: 20401516]
[23]
Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc., 2016, 11(5), 905-919.
[http://dx.doi.org/10.1038/nprot.2016.051] [PMID: 27077332]
[24]
Gosav, S.; Paduraru, N.; Maftei, D.; Birsa, M.L.; Praisler, M. Quantum chemical study of a derivative of 3-substituted dithiocarbamic flavanone. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 172, 115-125.
[http://dx.doi.org/10.1016/j.saa.2016.04.024] [PMID: 27116950]
[25]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[26]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46, 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[27]
Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. Gromacs: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun., 1995, 91(1-3), 43-56.
[http://dx.doi.org/10.1016/0010-4655(95)00042-E]
[28]
Huang, J.; MacKerell, A.D., Jr CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem., 2013, 34(25), 2135-2145.
[http://dx.doi.org/10.1002/jcc.23354] [PMID: 23832629]
[29]
Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B.L.; Grubmüller, H.; MacKerell, A.D., Jr CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods, 2017, 14(1), 71-73.
[http://dx.doi.org/10.1038/nmeth.4067] [PMID: 27819658]
[30]
Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.M.; Mittal, J.; Feig, M.; MacKerell, A.D., Jr Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. J. Chem. Theory Comput., 2012, 8(9), 3257-3273.
[http://dx.doi.org/10.1021/ct300400x] [PMID: 23341755]
[31]
Nguyen, T.T.; Viet, M.H.; Li, M.S. Effects of water models on binding affinity: Evidence from all-atom simulation of binding of tamiflu to A/H5N1 neuraminidase. ScientificWorldJournal, 2014, 2014, 1-14.
[http://dx.doi.org/10.1155/2014/536084] [PMID: 24672329]
[32]
Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem., 1997, 18(12), 1463-1472.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463:AID-JCC4>3.0.CO;2-H]
[33]
Petersen, H.G. Accuracy and efficiency of the particle mesh Ewald method. J. Chem. Phys., 1995, 103(9), 3668-3679.
[http://dx.doi.org/10.1063/1.470043]
[34]
Arnold, G.E.; Ornstein, R.L. Molecular dynamics study of time-correlated protein domain motions and molecular flexibility: Cytochrome P450BM-3. Biophys. J., 1997, 73(3), 1147-1159.
[http://dx.doi.org/10.1016/S0006-3495(97)78147-5] [PMID: 9284282]
[35]
Iyer, M.; Li, Z.; Jaroszewski, L.; Sedova, M.; Godzik, A. Difference contact maps: From what to why in the analysis of the conformational flexibility of proteins. PLoS One, 2020, 15(3)e0226702
[http://dx.doi.org/10.1371/journal.pone.0226702]
[36]
Maisuradze, G.G.; Liwo, A.; Scheraga, H.A. Relation between free energy landscapes of proteins and dynamics. J. Chem. Theory Comput., 2010, 6(2), 583-595.
[http://dx.doi.org/10.1021/ct9005745] [PMID: 23620713]
[37]
Kabsch, W.; Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 1983, 22(12), 2577-2637.
[http://dx.doi.org/10.1002/bip.360221211] [PMID: 6667333]
[38]
Joosten, R.P.; te Beek, T.A.H.; Krieger, E.; Hekkelman, M.L.; Hooft, R.W.W.; Schneider, R.; Sander, C.; Vriend, G. A series of PDB related databases for everyday needs. Nucleic Acids Res., 2011, 39, D411-D419.
[http://dx.doi.org/10.1093/nar/gkq1105] [PMID: 21071423]
[39]
Wang, L.; Zheng, G.; Liu, X.; Ni, D.; He, X.; Cheng, J.; Lu, S. Molecular dynamics simulations provide insights into the origin of gleevec’s selectivity toward human tyrosine kinases. J. Biomol. Struct. Dyn., 2019, 37(10), 2733-2744.
[http://dx.doi.org/10.1080/07391102.2018.1496139] [PMID: 30052122]
[40]
Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962.
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]
[41]
Baker, N.A.; Sept, D.; Joseph, S.; Holst, M.J.; McCammon, J.A. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci., 2001, 98(18), 10037-10041.
[http://dx.doi.org/10.1073/pnas.181342398] [PMID: 11517324]
[42]
Becke, A.D. A new mixing of Hartree–Fock and local density‐functional theories. J. Chem. Phys., 1993, 98(2), 1372-1377.
[http://dx.doi.org/10.1063/1.464304]
[43]
James, P.; Davis, S.P.; Ravisankar, V.; Nazeem, P.A.; Mathew, D. Novel antidiabetic molecules from the medicinal plants of Western Ghats of India, identified through wide-spectrum in silico analyses. J. Herbs Spices Med. Plants, 2017, 23(3), 249-262.
[http://dx.doi.org/10.1080/10496475.2017.1315675]
[44]
Sharma, P.; Joshi, T.; Joshi, T.; Chandra, S.; Tamta, S. In silico screening of potential antidiabetic phytochemicals from Phyllanthus emblica against therapeutic targets of type 2 diabetes. J. Ethnopharmacol., 2020, 248112268
[http://dx.doi.org/10.1016/j.jep.2019.112268] [PMID: 31593813]
[45]
Subramanian, N.; Sundaraganesan, N.; Jayabharathi, J. Molecular structure, spectroscopic (FT-IR, FT-Raman, NMR, UV) studies and first-order molecular hyperpolarizabilities of 1,2-bis(3-methoxy-4-hydroxybenzylidene)hydrazine by density functional method. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 76(2), 259-269.
[http://dx.doi.org/10.1016/j.saa.2010.03.033] [PMID: 20413344]
[46]
Domingo, L.; Ríos-Gutiérrez, M.; Pérez, P. Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules, 2016, 21(6), 748.
[http://dx.doi.org/10.3390/molecules21060748] [PMID: 27294896]
[47]
Pintilie, L.; Stefaniu, A. Molecular descriptors and properties of organic molecules. In: Symmetry (Group theory) and Mathematical Treatment in Chemistry; Akitsu, T., Ed.; InTech: Rijeka, 2018; pp. 161-176.
[48]
Srivastava, A.K.; Kumar, A.; Misra, N.; Manjula, P.S.; Sarojini, B.K.; Narayana, B. Synthesis, spectral (FT-IR, UV-visible, NMR) features, biological activity prediction and theoretical studies of 4-Amino-3-(4-hydroxybenzyl)-1H-1,2,4-triazole-5(4H)-thione and its tautomer. J. Mol. Struct., 2016, 1107, 137-144.
[http://dx.doi.org/10.1016/j.molstruc.2015.11.042]
[49]
Ayeni, A.O.; Akinyele, O.F.; Hosten, E.C.; Fakola, E.G.; Olalere, J.T.; Egharevba, G.O.; Watkins, G.M. Synthesis, crystal structure, experimental and theoretical studies of corrosion inhibition of 2-((4-(2-hydroxy-4-methylbenzyl)piperazin-1-yl)methyl)-5-methylphenol – A Mannich base. J. Mol. Struct., 2020, 1219128539
[http://dx.doi.org/10.1016/j.molstruc.2020.128539]
[50]
Pintilie, L.; Stefaniu, A.; Nicu, A.; Caproiu, M.; Maganu, M. Synthesis, antimicrobial and docking studies of novel 8-chloro-quinolones. Revista de Chimie, 2016, 67(3), 438-445.
[http://dx.doi.org/10.5772/intechopen.72995]

© 2024 Bentham Science Publishers | Privacy Policy