Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Molecular Modeling of some 1,3,4-Oxadiazole Derivatives as EGFR Inhibitors for the Treatment of Cancer

Author(s): Shital M. Patil*, Shashikant V. Bhandari, Varsha A. Patil, Vrushali Randive and Indrani Mahadik

Volume 21, Issue 10, 2024

Published on: 12 May, 2023

Page: [1694 - 1706] Pages: 13

DOI: 10.2174/1570180820666230410083544

Price: $65

Abstract

Background: Cancer is a group of illnesses characterised by the impartial increase and unfolding of somatic cells. A variety of natural compounds, such as curcumin, zingiberine and their composites, and synthetic organic derivatives of imidazole, benzothiazole, oxadiazole, quinazoline etc., have been developed as anticancer agents. But many of these show various side effects, drug resilience, and toxicity to the normal cells of the host body. Therefore, there is still demand to develop new synthetic derivatives to improve their pharmacological profile.

Objective: The Aim of this study is to understand the binding mode and to check the drug likeliness of numerous 1,3,4-oxadiazole derivatives as EGFR inhibitors for the treatment of cancer. The objective of the study is to screen newly designed derivatives of 1,3,4-oxadiazole using molecular docking and ADMET studies as EGFR inhibitors.

Methods: In silico docking studies were performed using AutoDockVina software, and compounds were further studied for ADME and toxicity using SwissADME and pkCSM software, respectively.

Results: Considering the docking results, pharmacokinetic behaviour and toxicity profile, eight derivatives (derivatives 2,3,4,5,10,13,16, and 17) showed potential as EGFR inhibitors.

Conclusion: Compounds 2 and 3 showed the highest binding affinity in the pocket of EGFR and also displayed a better pharmacokinetic profile. Therefore, these derivatives can be used in the management of cancer and can be taken further for wet-lab studies.

[1]
Campbell, P.J.; Getz, G.; Korbel, J.O.; Stuart, J.M.; Jennings, J.L.; Stein, L.D. et al., Pancancer analysis of whole genomes. Nature, 2020, 578, 82-93.
[http://dx.doi.org/10.1038/s41586-020-1969-6] [PMID: 32025007]
[2]
The Collaborative on Health and the Environment, Toxipedia. Available from: https://www.healthandenvironment.org/docs/Toxipedia CancerPageArchive
[3]
[4]
Lal, K.; Yadav, P. Recent advancements in 1,4-disubstituted 1H-1,2,3-triazoles as potential anticancer agents. Anticancer. Agents Med. Chem., 2018, 18(1), 21-37.
[http://dx.doi.org/10.2174/1871520616666160811113531] [PMID: 27528183]
[5]
Sethiya, A.; Agarwal, D.K.; Agarwal, S. Current trends in drug delivery system of curcumin and its therapeutic applications. Mini Rev. Med. Chem., 2020, 20(13), 1190-1232.
[http://dx.doi.org/10.2174/1389557520666200429103647] [PMID: 32348221]
[6]
Cree, I.A.; Knight, L.; Di Nicolantonio, F.; Sharma, S.; Gulliford, T. Chemosensitization of solid tumors by modulation of resistance mechanisms. Curr. Opin. Investig. Drugs, 2002, 3(4), 634-640.
[PMID: 12090736]
[7]
Cohen, P. Protein kinases — the major drug targets of the twenty-first century? Nat. Rev. Drug Discov., 2002, 1(4), 309-315.
[http://dx.doi.org/10.1038/nrd773] [PMID: 12120282]
[8]
Mendelsohn, J.; Baselga, J. The EGF receptor family as targets for cancer therapy. Oncogene, 2000, 19(56), 6550-6565.
[http://dx.doi.org/10.1038/sj.onc.1204082] [PMID: 11426640]
[9]
Thanikachalam, P.V.; Maurya, R.K.; Garg, V.; Monga, V.; Kakkar, S.; Narasimhan, B.; Mandewale, M.C.; Patil, U.C.; Shedge, S.V.; Dappadwad, U.R.; Yamgar, R.S.; Xu, Z.; Zhao, S.J.; Liu, Y. Corrigendum to“An insight into the medicinal perspective of synthetic analogs of indole: A review” [Eur. J. Med. Chem. 180 (2019) 562– 612 11516]. Eur. J. Med. Chem., 2019, 183, 111680.
[http://dx.doi.org/10.1016/j.ejmech.2019.111680] [PMID: 31520927]
[10]
Kakkar, S.; Narasimhan, B. A comprehensive review on biological activities of oxazole derivatives. BMC Chem., 2019, 13(1), 16.
[http://dx.doi.org/10.1186/s13065-019-0531-9] [PMID: 31384765]
[11]
Mandewale, M.C.; Patil, U.C.; Shedge, S.V.; Dappadwad, U.R.; Yamgar, R.S. A review on quinoline hydrazone derivatives as a new class of potent antitubercular and anticancer agents. Beni. Suef Univ. J. Basic Appl. Sci., 2017, 6(4), 354-361.
[http://dx.doi.org/10.1016/j.bjbas.2017.07.005]
[12]
Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem., 2019, 183, 111700.
[http://dx.doi.org/10.1016/j.ejmech.2019.111700] [PMID: 31546197]
[13]
Nayak, S.; Gaonkar, S.L. A review on recent synthetic strategies and pharmacological importance of 1,3-thiazole derivatives, Mini-Reviews. Mini Rev. Med. Chem., 2019, 19(3), 215-238.
[http://dx.doi.org/10.2174/1389557518666180816112151] [PMID: 30112994]
[14]
Soni, J.; Sethiya, A.; Sahiba, N.; Agarwal, D.K.; Agarwal, S. Contemporary progress in the synthetic strategies of imidazole and its biological activities. Curr. Org. Synth., 2020, 16(8), 1078-1104.
[http://dx.doi.org/10.2174/1570179416666191007092548] [PMID: 31984918]
[15]
Wang, Y.; Sauer, D.R.; Djuric, S.W. A simple and efficient one step synthesis of 1,3,4-oxadiazoles utilizing polymer-supported reagents and microwave heating. Tetrahedron Lett., 2006, 47(1), 105-108.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.131]
[16]
Shingare, R.M.; Patil, Y.S.; Sangshetti, J.N.; Patil, R.B.; Rajani, D.P.; Madje, B.R. Synthesis, biological evaluation and docking study of some novel isoxazole clubbed 1,3,4-oxadiazoles derivatives. Med. Chem. Res., 2018, 27(4), 1283-1291.
[http://dx.doi.org/10.1007/s00044-018-2148-2]
[17]
Andreani, A.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M. Synthesis and antitubercular activity of imidazo[2,1-b]thiazoles. Eur. J. Med. Chem., 2001, 36(9), 743-746.
[http://dx.doi.org/10.1016/S0223-5234(01)01266-1] [PMID: 11672884]
[18]
Abu-Zaied, M.A.; Nawwar, G.A.M.; Swellem, R.H.; El-Sayed, S.H. Synthesis and screening of new 5-substituted-1,3,4-oxadiazole-2thioglycosides as potent anticancer agents. Pharmacol. Pharm., 2012, 3, 254-261.
[http://dx.doi.org/10.4236/pp.2012.32034]
[19]
Bhutani, R.; Pathak, D.P.; Kapoor, G.; Husain, A.; Kant, R.; Iqbal, M.A. Synthesis, molecular modelling studies and ADME prediction of benzothiazole clubbed oxadiazole-Mannich bases, and evaluation of their anti-diabetic activity through in vivo model. Bioorg. Chem., 2018, 77, 6-15.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.037] [PMID: 29316509]
[20]
Kouhkan, M.; Karimi, F.; Souldozi, A.; Rashedi, J. In vitro antimicrobial activity of new substituted 1,3,4-oxadiazole derivatives. Int. J. Adv. Res. (Indore), 2017, 5(5), 1468-1474.
[http://dx.doi.org/10.21474/IJAR01/4269]
[21]
Javid, M.; Rahim, F.; Taha, M.; Nawaz, M.; Wadood, A.; Ali, M.; Mosaddik, A.; Shah, S. Synthesis, SAR elucidations and molecular docking study of newly designed Isatin based oxadiazole analogs as potent inhibitors of thymidine phosphorylase. Bioorg. Chem., 2018, 2-12.
[22]
Mihailović, N.; Marković, V.; Matić, I.Z.; Stanisavljević, N.S.; Jovanović, Ž.S.; Trifunović, S.; Joksović, L. Synthesis and antioxidant activity of 1,3,4-oxadiazoles and their diacylhydrazine precursors derived from phenolic acids. RSC Advances, 2017, 7(14), 8550-8560.
[http://dx.doi.org/10.1039/C6RA28787E]
[23]
Bhat, M.A.; Al-Omar, M.A.; Siddiqui, N. Synthesis, anticonvulsant and neurotoxicity of some novel 1,3,4-oxadiazole derivatives of phthalimide. Pharma Chem., 2010, 2(2), 1-10.
[24]
Abd-Ellah, H.S.; Abdel-Aziz, M.; Shoman, M.E.; Beshr, E.A.M.; Kaoud, T.S.; Ahmed, A.S.F.F. Novel 1,3,4-oxadiazole/oxime hybrids: Synthesis, docking studies and investigation of anti-inflammatory, ulcerogenic liability and analgesic activities. Bioorg. Chem., 2016, 69, 48-63.
[http://dx.doi.org/10.1016/j.bioorg.2016.09.005] [PMID: 27669120]
[25]
Bala, S.; Kamboj, S.; Saini, V.; Prasad, D.N. Anti-inflammatory, analgesic evaluation and molecular docking studies of N-phenyl anthranilic acid-based 1,3,4-oxadiazole analogues. J. Chem., 2013, 2013, 1-6.
[http://dx.doi.org/10.1155/2013/412053]
[26]
Attaby, F.A.; Abdel-Fattah, A.M.; Shaif, L.M.; Elsayed, M.M. Anti-alzheimer and anti-COX-2 activities of the newly synthesized 2,3′-bipyridine derivatives (II). Phosphorus Sulfur Silicon Relat. Elem., 2010, 185(3), 668-679.
[http://dx.doi.org/10.1080/10426500902917644]
[27]
El-Sayed, W.A.; El-Essawy, F.A.; Ali, O.M.; Nasr, B.S.; Abdalla, M.M.; Abdel-Rahman, A.A.H. Synthesis and antiviral evaluation of new 2,5-disubstituted 1,3,4-oxadiazole derivatives and their acyclic nucleoside analogues. Monatsh. Chem., 2010, 141(9), 1021-1028.
[http://dx.doi.org/10.1007/s00706-010-0360-y]
[28]
Farshori, N.N.; Banday, M.R.; Ahmad, A.; Khan, A.U.; Rauf, A. Synthesis, characterization, and in vitro antimicrobial activities of 5-alkenyl/hydroxyalkenyl-2-phenylamine-1,3,4-oxadiazoles and thiadiazoles. Bioorg. Med. Chem. Lett., 2010, 20(6), 1933-1938.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.126] [PMID: 20172722]
[29]
Malhotra, V.; Pathak, S.R.; Nath, R.; Mukherjee, D.; Shanker, K. Substituted imidazole derivatives as novel cardiovascular agents. Bioorg. Med. Chem. Lett., 2011, 21(3), 936-939.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.062] [PMID: 21232951]
[30]
Chandrasekera, N.S.; Bailey, M.A.; Files, M.; Alling, T.; Florio, S.K.; Ollinger, J.; Odingo, J.O.; Parish, T. Synthesis and anti-tubercular activity of 3-substituted benzo[b]thiophene-1,1-dioxides. PeerJ, 2014, 2, e612.
[http://dx.doi.org/10.7717/peerj.612] [PMID: 25320680]
[31]
Shahzada, S.A.; Yar, M.; Khan, Z.A.; Khan, I.U.; Naqvi, S.A.R.; Mahmood, N.; Khan, K.M. Microwave-assisted solvent free efficient synthesis of 1,3,4-oxadiazole-2(3H)-thiones and their potent in vitro urease inhibition activity. Eur. J. Chem., 2012, 3(2), 143-146.
[http://dx.doi.org/10.5155/eurjchem.3.2.143-146.551]
[32]
Tang, J-F. Design, synthesis, biological evaluation and molecular modelling of novel 1,3,4-oxadiazole derivatives based on Vanillic acid as potential immunosuppressive agents. Bioorg. Med. Chem., 2012, 20(14), 4226-4236.
[33]
Sahoo, B.; Dinda, S.; Kumar, B.V.V.; Panda, J.; Brahmkshatriya, P. Design, green synthesis, and anti-inflammatory activity of schiff base of 1,3,4-oxadiazole analogues. Lett. Drug Des. Discov., 2013, 11(1), 82-89.
[http://dx.doi.org/10.2174/15701808113109990041]
[34]
Özdemir, A.; Sever, B.; Altıntop, M.; Temel, H.; Atlı, Ö.; Baysal, M.; Demirci, F. Synthesis and evaluation of new oxadiazole, thiadiazole, and triazole derivatives as potential anticancer agents targeting MMP-9. Molecules, 2017, 22(7), 1109-1123.
[http://dx.doi.org/10.3390/molecules22071109] [PMID: 28677624]
[35]
Ahsan, M.J.; Yadav, R.P.; Saini, S.; Hassan, M.Z.; Bakht, M.A.; Jadav, S.S.; AlTamimi, A.B.S.; Geesi, M.H.; Ansari, M.Y.; Khalilullah, H.; Riadi, Y. Synthesis, cytotoxic evaluation, and molecular docking studies of new oxadiazole analogues. Lett. Org. Chem., 2018, 15, 49-56.
[36]
Singh, A.K.; Sahu, V.K.; Yadav, D. Biological activities of 2,5-disubstituted-1, 3,4-oxadiazoles. Int. J. Pharm. Sci. Res., 2011, 2(6), 135-147.
[37]
Mohan, C.D.; Anilkumar, N.C.; Rangappa, S.; Shanmugam, M.K.; Mishra, S.; Chinnathambi, A.; Alharbi, S.A.; Bhattacharjee, A.; Sethi, G.; Kumar, A.P. Basappa; Rangappa, K.S. Novel 1,3,4-oxadiazole induces anticancer activity by targeting nF-κB in hepatocellular carcinoma cells. Front. Oncol., 2018, 8, 42.
[http://dx.doi.org/10.3389/fonc.2018.00042]
[38]
Hamdy, R.; Ziedan, N.I.; Ali, S.; Bordoni, C.; El-Sadek, M.; Lashin, E.; Brancale, A.; Jones, A.T.; Westwell, A.D. Synthesis and evaluation of 5-(1 H -indol-3-yl)- N -aryl-1,3,4-oxadiazol-2-amines as Bcl-2 inhibitory anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(4), 1037-1040.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.061] [PMID: 28087272]
[39]
Ragab, F.A.F.; Abou-Seri, S.M.; Abdel-Aziz, S.A.; Alfayomy, A.M.; Aboelmagd, M. Design, synthesis and anticancer activity of new monastrol analogues bearing 1,3,4-oxadiazole moiety. Eur. J. Med. Chem., 2017, 138, 140-151.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.026] [PMID: 28667871]
[40]
Bajaj, S.; Roy, P.P.; Singh, J. Synthesis, thymidine phosphorylase inhibitory and computational study of novel 1,3,4-oxadiazole-2-thione derivatives as potential anticancer agents. Comput. Biol. Chem., 2018, 76, 151-160.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.05.013] [PMID: 30015176]
[41]
Masciocchi, D.; Villa, S.; Meneghetti, F.; Pedretti, A.; Barlocco, D.; Legnani, L.; Toma, L.; Kwon, B.M.; Nakano, S.; Asai, A.; Gelain, A. Biological and computational evaluation of an oxadiazole derivative (MD77) as a new lead for direct STAT3 inhibitors. MedChemComm, 2012, 3(5), 592-599.
[http://dx.doi.org/10.1039/c2md20018j]
[42]
Abou-Seri, S.M. Synthesis and biological evaluation of novel 2,4′-bis substituted diphenylamines as anticancer agents and potential epidermal growth factor receptor tyrosine kinase inhibitors. Eur. J. Med. Chem., 2010, 45(9), 4113-4121.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.072] [PMID: 20580136]
[43]
Akhtar, M.J.; Siddiqui, A.A.; Khan, A.A.; Ali, Z.; Dewangan, R.P.; Pasha, S.; Yar, M.S. Design, synthesis, docking and QSAR study of substituted benzimidazole linked oxadiazole as cytotoxic agents, EGFR and erbB2 receptor inhibitors. Eur. J. Med. Chem., 2017, 126, 853-869.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.014] [PMID: 27987485]
[44]
Tang, J.F.; Lv, X.H.; Wang, X.L.; Sun, J.; Zhang, Y.B.; Yang, Y.S.; Gong, H.B.; Zhu, H.L. Design, synthesis, biological evaluation and molecular modeling of novel 1,3,4-oxadiazole derivatives based on Vanillic acid as potential immunosuppressive agents. Bioorg. Med. Chem., 2012, 20(14), 4226-4236.
[http://dx.doi.org/10.1016/j.bmc.2012.05.055] [PMID: 22727369]
[45]
Kilimnik, A.; Kostjukova, M.N.; Pyatkin, I.H.; Pronin, A.M.; Trelnikova, S.R.S.; Fedotov, Y.A.; Kolesnikov, A.V. Novel small-molecule inhibitors of C-terminal Src kinase (Csk). Cell. Mol. Biol. Lett., 2003, 8, 588-589.
[46]
Paruch, K.; Popiołek, Ł.; Wujec, M. Antimicrobial and antiprotozoal activity of 3-acetyl-2,5-disubstituted-1,3,4-oxadiazolines: A review. Med. Chem. Res., 2020, 29(1), 1-16.
[http://dx.doi.org/10.1007/s00044-019-02463-w]
[47]
Musmade, D.S.; Pattan, S.R.; Yalgatti, M.S. Oxadiazole a nucleus with versatile biological behavior. Indian J. Pharm. Educ. Res., 2015, 05(01), 11-20.
[48]
Tong, J.; Wang, Z. Analysis of epidermal growth factor receptor-induced cell motility by wound healing assay. Methods Mol. Biol., 2017, 1652, 159-163.
[http://dx.doi.org/10.1007/978-1-4939-7219-7_12] [PMID: 28791642]
[49]
Masuda, H.; Zhang, D.; Bartholomeusz, C.; Doihara, H.; Hortobagyi, G.N.; Ueno, N.T. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res. Treat., 2012, 136(2), 331-345.
[http://dx.doi.org/10.1007/s10549-012-2289-9] [PMID: 23073759]
[50]
Rimawi, M.F.; Shetty, P.B.; Weiss, H.L.; Schiff, R.; Osborne, C.K.; Chamness, G.C.; Elledge, R.M. Epidermal growth factor receptor expression in breast cancer association with biologic phenotype and clinical outcomes. Cancer, 2010, 116(5), 1234-1242.
[http://dx.doi.org/10.1002/cncr.24816] [PMID: 20082448]
[51]
Harrison, P.T.; Vyse, S.; Huang, P.H. Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Semin. Cancer Biol., 2020, 61, 167-179.
[http://dx.doi.org/10.1016/j.semcancer.2019.09.015] [PMID: 31562956]
[52]
Maemondo, M.; Inoue, A.; Kobayashi, K.; Sugawara, S.; Oizumi, S.; Isobe, H.; Gemma, A.; Harada, M.; Yoshizawa, H.; Kinoshita, I.; Fujita, Y.; Okinaga, S.; Hirano, H.; Yoshimori, K.; Harada, T.; Ogura, T.; Ando, M.; Miyazawa, H.; Tanaka, T.; Saijo, Y.; Hagiwara, K.; Morita, S.; Nukiwa, T. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med., 2010, 362(25), 2380-2388.
[http://dx.doi.org/10.1056/NEJMoa0909530] [PMID: 20573926]
[53]
Masters, G.A.; Temin, S.; Azzoli, C.G.; Giaccone, G.; Baker, S., Jr; Brahmer, J.R.; Ellis, P.M.; Gajra, A.; Rackear, N.; Schiller, J.H.; Smith, T.J.; Strawn, J.R.; Trent, D.; Johnson, D.H. Systemic therapy for stage IV non–small-cell lung cancer: American Society of Clinical Oncology clinical practice guide-line update. J. Clin. Oncol., 2015, 33(30), 3488-3515.
[http://dx.doi.org/10.1200/JCO.2015.62.1342] [PMID: 26324367]
[54]
Hassan, S.S.; Abbas, S.Q.; Ali, F.; Ishaq, M.; Bano, I.; Hassan, M.; Jin, H.Z.; Bungau, S.G. A comprehensive in silico exploration of pharmacological properties, bioactivities, molecular docking, and anticancer potential of Vieloplain F from Xylopia vielana targeting B-Raf Kinase. Molecules, 2022, 27(3), 917-971.
[http://dx.doi.org/10.3390/molecules27030917] [PMID: 35164181]
[55]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[56]
Yadav, R.; Imran, M.; Dhamija, P.; Chaurasia, D.K.; Handu, S. Virtual screening, ADMET prediction and dynamics simulation of potential compounds targeting the main protease of SARS-CoV-2. J. Biomol. Struct. Dyn., 2021, 39(17), 6617-6632.
[http://dx.doi.org/10.1080/07391102.2020.1796812] [PMID: 32715956]
[57]
Muegge, I. Selection criteria for drug-like compounds. Med. Res. Rev., 2003, 23(3), 302-321.
[http://dx.doi.org/10.1002/med.10041] [PMID: 12647312]
[58]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[59]
Polothi, R. Synthesis and biological evaluation of 1,2,4-oxadiazole linked 1,3,4-oxadiazole derivatives as tubulin binding agents. Synth. Commun., 2019, 49(13), 1603-1612.
[60]
Nehad, A.; Sayed, El. New oxadiazoles with selective-COX-2 and EGFR dual inhibitory activity: Design, synthesis, cytotoxicity evaluation and in silico studies. Eur. J. Med. Chem., 2019, 183, 111693.
[61]
Aboraia, A.S.; Abdel-Rahman, H.M.; Mahfouz, N.M. EL-Gendy, M.A. Novel 5-(2-hydroxyphenyl)-3-substituted-2,3-dihydro-1,3,4-oxadiazole-2-thione derivatives: Promising anticancer agents. Bioorg. Med. Chem., 2006, 14(4), 1236-1246.
[http://dx.doi.org/10.1016/j.bmc.2005.09.053] [PMID: 16242340]
[62]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717]
[63]
Silva Faria, W.C.; Oliveira, M.G.; Cardoso da Conceição, E.; Silva, V.B.; Veggi, N.; Converti, A.; Miguel de Barros, W.; Fernandes da Silva, M.; Bragagnolo, N. Antioxidant efficacy and in silico toxicity prediction of free and spray-dried extracts of green Arabica and Robusta coffee fruits and their application in edible oil. Food Hydrocoll., 2020, 108, 106004.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106004]
[64]
Kumar, V.; Kumar, R.; Parate, S.; Yoon, S.; Lee, G.; Kim, D.; Lee, K.W. Identification of ACK1 inhibitors as anticancer agents by using computer-aided drug designing. J. Mol. Struct., 2021, 1235, 130200.
[http://dx.doi.org/10.1016/j.molstruc.2021.130200]
[65]
Domínguez-Villa, F.X.; Durán-Iturbide, N.A.; Ávila-Zárraga, J.G. Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl)indol-4-ones: Potential inhibitors of SARS CoV-2 main protease. Bioorg. Chem., 2021, 106, 104497.
[http://dx.doi.org/10.1016/j.bioorg.2020.104497] [PMID: 33261847]
[67]
Hu, B.; Joseph, J.; Geng, X.; Wu, Y.; Suleiman, M.R.; Liu, X.; Shi, J.; Wang, X.; He, Z.; Wang, J.; Cheng, M. Refined pharmacophore features for virtual screening of human thromboxane A2 receptor antagonists. Comput. Biol. Chem., 2020, 86, 107249.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107249] [PMID: 32199335]

© 2025 Bentham Science Publishers | Privacy Policy