Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Mapping the Landscape of Obesity Effects on Male Reproductive Function: A Bibliometric Study

Author(s): Yanhong Wei*, Meihua Liao*, Yiming Lu, Xiaocan Lei, Junli Wang, Xiaoqiong Luo and Linlin Hu

Volume 24, Issue 13, 2024

Published on: 30 January, 2024

Page: [1546 - 1557] Pages: 12

DOI: 10.2174/0118715303271117231220072051

Price: $65

Abstract

Background: Due to changes in lifestyle and dietary habits, the global population with obesity is increasing gradually, resulting in a significant rise in the number of individuals having obesity. Obesity is caused by an imbalance between energy intake and consumption, leading to excessive fat accumulation, which interferes with normal human metabolism. It is also associated with cardiovascular disease, metabolic syndrome, male reproductive endocrine regulation disorders, systemic and local inflammatory reactions, excessive oxidative stress, and apoptosis. All these factors can damage the internal environment for sperm generation and maturation, resulting in male sexual dysfunction, a decline in sperm quality, and lower fertility. This study analyzes the trends and priorities of the effects of obesity on male reproductive disorders from a bibliometric perspective.

Methods: This study uses the Web of Science as the statistical source, covering all time spans. Tools like Web of Science, VOSviewer, and CiteSpace are used to analyze countries, institutions, authors, journals, and keywords in the field. Total publications, total citations, and average number of citations are selected for statistics.

Results: The results show that the research on the impact of obesity on male reproductive function can be roughly divided into three stages: the initial stage, the slow development stage, and the rapid development stage. Our statistical scope includes 463 highly relevant articles that we have screened. We found that the journal with the most publications in this field is Andrologia, and the institution with the highest total citations is the University of Utah. The most influential countries, institutions, and authors in this field are the United States, the University of Utah, and Carrell, Douglas. Currently, research related to the impact of obesity on male reproduction focuses mainly on three aspects: biochemistry, molecular biology, and reproductive biology. The keyword explosion results indicate that sperm, obesity, and male reproduction are at the forefront and trends of future research in this field. There has been a shift from basic biochemical and molecular research to research on molecular mechanisms relying on omics technologies. However, we have observed that the number of papers published in 2022 is lower than in 2021, indicating a growth interruption during this period. Considering that this deviation may be due to the impact of the COVID-19 pandemic, it may hinder the progress of certain experiments in 2022. In recent years, China has rapidly developed research in this field. However, the average citation rate is relatively low, indicating the need for Chinese scholars to improve the quality of their articles further. Based on our research and in the context of global obesity, men are at risk of increased infertility. Addressing this issue relies on our continued research into the mechanisms of obesity-related male reproductive disorders. Over the past forty-three years, with the contributions of scientists worldwide, research in this field has flourished.

Conclusion: The impact of obesity on male reproductive disorders has been extensively studied. Currently, research in this field primarily focuses on male sperm function, sperm quality, and the effects or mechanisms of cells on male reproduction. Future trends in this field should concentrate on the relationship between male fertility and energy metabolism, as well as the endocrine function of adipose tissue. This study comprehensively analyzes the current research status and global trends in obesity and male reproductive disorders. We also discuss the future developments in this field, making it easier for researchers to understand its developmental history, current status, and trends, providing valuable reference for effective exploration in this area.

Graphical Abstract

[1]
Kelly, T.; Yang, W.; Chen, C.S.; Reynolds, K.; He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes., 2008, 32(9), 1431-1437.
[http://dx.doi.org/10.1038/ijo.2008.102]
[2]
Brero, M.; Meyer, C.L.; Jackson-Morris, A.; Spencer, G.; Ludwig-Borycz, E.; Wu, D.; Espinosa De Candido, A.F.; Ferre, E.M.I.; Bonvecchio, A.A.; Jewell, J.; Nugent, R. Investment case for the prevention and reduction of childhood and adolescent overweight and obesity in Mexico. Obes. Rev., 2023, 24(9), e13595.
[http://dx.doi.org/10.1111/obr.13595] [PMID: 37464960]
[3]
Nelson, T.D.; Stice, E. Contextualizing the neural vulnerabilities model of obesity. Nutrients, 2023, 15(13), 2988.
[http://dx.doi.org/10.3390/nu15132988] [PMID: 37447312]
[4]
Wei, S.; Nguyen, T.T.; Zhang, Y.; Ryu, D.; Gariani, K. Sarcopenic obesity: Epidemiology, pathophysiology, cardiovascular disease, mortality, and management. Front. Endocrinol., 2023, 14, 1185221.
[http://dx.doi.org/10.3389/fendo.2023.1185221] [PMID: 37455897]
[5]
Sishi, B.; Loos, B.; Ellis, B.; Smith, W.; du Toit, E.F.; Engelbrecht, A.M. Diet-induced obesity alters signalling pathways and induces atrophy and apoptosis in skeletal muscle in a prediabetic rat model. Exp. Physiol., 2011, 96(2), 179-193.
[http://dx.doi.org/10.1113/expphysiol.2010.054189 ] [PMID: 20952489]
[6]
DiNicolantonio, J.J.; Lucan, S.C.; O’Keefe, J.H. The evidence for saturated fat and for sugar related to coronary heart disease. Prog. Cardiovasc. Dis., 2016, 58(5), 464-472.
[http://dx.doi.org/10.1016/j.pcad.2015.11.006] [PMID: 26586275]
[7]
James, W.P.T. WHO recognition of the global obesity epidemic. Int. J. Obes., 2008, 32(S7), S120-S126.
[http://dx.doi.org/10.1038/ijo.2008.247] [PMID: 19136980]
[8]
Di Vincenzo, A.; Busetto, L.; Vettor, R.; Rossato, M. Obesity, male reproductive function and bariatric surgery. Front. Endocrinol., 2018, 9, 769.
[http://dx.doi.org/10.3389/fendo.2018.00769] [PMID: 30619096]
[9]
Ehsanpour, S.; Dadkhah, H.; Kazemi, A.; Nasr-Isfahani, M-H. The relationship between the amount of saturated fat intake and semen quality in men. Iran. J. Nurs. Midwifery Res., 2017, 22(1), 46-50.
[http://dx.doi.org/10.4103/1735-9066.202067] [PMID: 28382058]
[10]
Katib, A. Mechanisms linking obesity to male infertility. Cent. European J. Urol., 2015, 68(1), 79-85.
[PMID: 25914843]
[11]
Barbagallo, F.; Condorelli, R.A.; Mongioì, L.M.; Cannarella, R.; Cimino, L.; Magagnini, M.C.; Crafa, A.; La Vignera, S.; Calogero, A.E. Molecular mechanisms underlying the relationship between obesity and male infertility. Metabolites, 2021, 11(12), 840.
[http://dx.doi.org/10.3390/metabo11120840] [PMID: 34940598]
[12]
Ahmad, R.; Haque, M. Obesity: A doorway to a molecular path leading to infertility. Cureus, 2022, 14(10), e30770.
[http://dx.doi.org/10.7759/cureus.30770] [PMID: 36320802]
[13]
Ajayi, A.F.; Onaolapo, M.C.; Omole, A.I.; Adeyemi, W.J.; Oluwole, D.T. Mechanism associated with changes in male reproductive functions during ageing process. Exp. Gerontol., 2023, 179, 112232.
[http://dx.doi.org/10.1016/j.exger.2023.112232] [PMID: 37315721]
[14]
Almabhouh, F.A.; Singh, H.J. The impact of leptin on sperm. Reprod. Fertil. Dev., 2023, 35(8), 459-468.
[http://dx.doi.org/10.1071/RD22222] [PMID: 37196661]
[15]
Peel, A.; Saini, A.; Deluao, J.C.; McPherson, N.O. Sperm DNA damage: The possible link between obesity and male infertility, an update of the current literature. Andrology, 2023, 11(8), 1635-1652.
[http://dx.doi.org/10.1111/andr.13409] [PMID: 36789664]
[16]
Salas-Huetos, A.; Rosique-Esteban, N.; Becerra-Tomás, N.; Vizmanos, B.; Bulló, M.; Salas-Salvadó, J. The effect of nutrients and dietary supplements on sperm quality parameters: A systematic review and meta-analysis of randomized clinical trials. Adv. Nutr., 2018, 9(6), 833-848.
[http://dx.doi.org/10.1093/advances/nmy057] [PMID: 30462179]
[17]
Wang, J.Y.; Ma, D.; Luo, M.; Tan, Y.P.; Ou Zhong; Tian, G.; Lv, Y.T.; Li, M.X.; Chen, X.; Tang, Z.H.; Hu, L.L.; Lei, X.C. Effect of spermidine on ameliorating spermatogenic disorders in diabetic mice via regulating glycolysis pathway. Reprod. Biol. Endocrinol., 2022, 20(1), 45.
[http://dx.doi.org/10.1186/s12958-022-00890-w] [PMID: 35255928]
[18]
Luo, M.; Liao, B.; Ma, D.; Wang, J.; Wang, J.; Liu, J.; Lei, X.; Cai, Y.; Tang, L.; Zhao, L.; Long, S.; Yang, F.; Lei, X. Dendrobium nobile-derived polysaccharides ameliorate spermatogenic disorders in mice with streptozotocin-induced diabetes through regulation of the glycolytic pathway. Int. J. Biol. Macromol., 2022, 216, 203-212.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.06.193] [PMID: 35792310]
[19]
Ma, D.; Hu, L.; Wang, J.; Luo, M.; Liang, A.; Lei, X.; Liao, B.; Li, M.; Xie, M.; Li, H.; Gong, Y.; Zi, D.; Li, X.; Chen, X.; Liao, X. Nicotinamide mononucleotide improves spermatogenic function in streptozotocin-induced diabetic mice via modulating the glycolysis pathway. Acta Biochim. Biophys. Sin., 2022, 54(9), 1314-1324.
[http://dx.doi.org/10.3724/abbs.2022099] [PMID: 35929593]
[20]
Ninkov, A.; Frank, J.R.; Maggio, L.A. Bibliometrics: Methods for studying academic publishing. Perspect. Med. Educ., 2021, 11(3), 173-176.
[http://dx.doi.org/10.1007/S40037-021-00695-4] [PMID: 34914027]
[21]
Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, scopus, web of science, and google scholar: Strengths and weaknesses. FASEB J., 2008, 22(2), 338-342.
[http://dx.doi.org/10.1096/fj.07-9492LSF] [PMID: 17884971]
[22]
Chen, J.; Liu, J.; Liu, X.; Zeng, C.; Chen, Z.; Li, S.; Zhang, Q. Animal model contributes to the development of intracranial aneurysm: A bibliometric analysis. Front. Vet. Sci., 2022, 9, 1027453.
[http://dx.doi.org/10.3389/fvets.2022.1027453] [PMID: 36467643]
[23]
Pei, Z.; Chen, S.; Ding, L.; Liu, J.; Cui, X.; Li, F.; Qiu, F. Current perspectives and trend of nanomedicine in cancer: A review and bibliometric analysis. J. Control. Release, 2022, 352, 211-241.
[http://dx.doi.org/10.1016/j.jconrel.2022.10.023]
[24]
Wan, Y.; Shen, J.; Ouyang, J.; Dong, P.; Hong, Y.; Liang, L.; Liu, J. Bibliometric and visual analysis of neutrophil extracellular traps from 2004 to 2022. Front. Immunol., 2022, 13, 1025861.
[http://dx.doi.org/10.3389/fimmu.2022.1025861] [PMID: 36341351]
[25]
Zheng, Z.; Xu, W.; Xu, Y.; Xue, Q. Mapping knowledge structure and themes trends of biodegradable Mg-based alloy for orthopedic application: A comprehensive bibliometric analysis. Front. Bioeng. Biotechnol., 2022, 10, 940700.
[http://dx.doi.org/10.3389/fbioe.2022.940700] [PMID: 36017343]
[26]
Wei, T.; Liu, W.; Zheng, Z.; Chen, Y.; Shen, M.; Li, C. Bibliometric analysis of research trends on 3-monochloropropane-1,2-diol esters in foods. J. Agric. Food Chem., 2022, 70(49), 15347-15359.
[http://dx.doi.org/10.1021/acs.jafc.2c06067] [PMID: 36468534]
[27]
Avin, C.; Lotker, Z.; Peleg, D.; Pignolet, Y.A.; Turkel, I. Elites in social networks: An axiomatic approach to power balance and Price’s square root law. PLoS One, 2018, 13(10), e0205820.
[http://dx.doi.org/10.1371/journal.pone.0205820] [PMID: 30356289]
[28]
Zhao, J.; Dou, Y.; Liang, G.; Huang, H.; Hong, K.; Yang, W.; Zhou, G.; Sha, B.; Liu, J.; Zeng, L. Global publication trends and research hotspots of the immune system and osteoporosis: A bibliometric and visualization analysis from 2012 to 2022. Endocr. Metab. Immune Disord. Drug Targets, 2024, 24(4), 455-467.
[http://dx.doi.org/10.2174/0118715303257269231011073100] [PMID: 37881072]
[29]
Wilson, M.M.; Reedy, J.; Krebs-Smith, S.M. American diet quality: Where it is, where it is heading, and what it could be. J. Acad. Nutr. Diet., 2016, 116(2), 302-310.e1.
[http://dx.doi.org/10.1016/j.jand.2015.09.020] [PMID: 26612769]
[30]
Fainberg, J.; Kashanian, J.A. Recent advances in understanding and managing male infertility. F1000 Res., 2019, 8, 670.
[http://dx.doi.org/10.12688/f1000research.17076.1 ] [PMID: 31143441]
[31]
Auger, J.; Eustache, F.; Chevrier, C.; Jégou, B. Spatiotemporal trends in human semen quality. Nat. Rev. Urol., 2022, 19(10), 597-626.
[http://dx.doi.org/10.1038/s41585-022-00626-w] [PMID: 35978007]
[32]
Su, P-Y.; Cao, L-L.; Chang, J-J.; Wang, S-J.; Li, Y-H.; Yuan, M-Y.; Wang, G-F. The effect of healthy dietary patterns on male semen quality: A systematic review and meta-analysis. Asian J. Androl., 2022, 24(5), 549-557.
[http://dx.doi.org/10.4103/aja202252] [PMID: 35915543]
[33]
Soubry, A.; Guo, L.; Huang, Z.; Hoyo, C.; Romanus, S.; Price, T.; Murphy, S.K. Obesity-related DNA methylation at imprinted genes in human sperm: Results from the TIEGER study. Clin. Epigenetics, 2016, 8(1), 51.
[http://dx.doi.org/10.1186/s13148-016-0217-2] [PMID: 27158277]
[34]
Allouche-Fitoussi, D.; Breitbart, H. The role of zinc in male fertility. Int. J. Mol. Sci., 2020, 21(20), 7796.
[http://dx.doi.org/10.3390/ijms21207796] [PMID: 33096823]
[35]
Hariharan, S.; Dharmaraj, S. Selenium and selenoproteins: It’s role in regulation of inflammation. Inflammopharmacology, 2020, 28(3), 667-695.
[http://dx.doi.org/10.1007/s10787-020-00690-x] [PMID: 32144521]
[36]
Mohammadi, H.; Golbabaei, F.; Dehghan, S.F.; Imani, H.; Ramezani, T.F.; Khodakarim, A.S. The influence of vitamin e and omega-3 fatty acids on reproductive health indices among male workers exposed to electromagnetic fields. Am. J. Men Health, 2022, 16(1)
[http://dx.doi.org/10.1177/15579883221074821] [PMID: 35172663]
[37]
Kumari, P.; Jaiswar, S.P.; Shankhwar, P.; Deo, S.; Ahmad, K.; Iqbal, B.; Mahdi, A.A. Leptin as a predictive marker in unexplained infertility in north indian population. J. Clin. Diagn. Res., 2017, 11(3), QC28-QC31.
[http://dx.doi.org/10.7860/JCDR/2017/22444.9567 ] [PMID: 28511457]
[38]
Smith, J.T.; Acohido, B.V.; Clifton, D.K.; Steiner, R.A. KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J. Neuroendocrinol., 2006, 18(4), 298-303.
[http://dx.doi.org/10.1111/j.1365-2826.2006.01417.x ] [PMID: 16503925]
[39]
Ghavami, A.; Mohammadi, H.; Hadi, A.; Ziaei, R.; Nattagh-Eshtivani, E.; Sheykhrobat, M.V.; Askari, G. Effects of coenzyme Q10 supplementation on anthropometric indices in adults: A systematic review and meta-analysis of randomized controlled trials. Int. J. Prev. Med., 2020, 11, 181.
[PMID: 33456737]
[40]
Norris, K.M.; Okie, W.; Kim, W.K.; Adhikari, R.; Yoo, S.; King, S.; Pazdro, R. A high-fat diet differentially regulates glutathione phenotypes in the obesity-prone mouse strains DBA/2J, C57BL/6J, and AKR/J. Nutr. Res., 2016, 36(12), 1316-1324.
[http://dx.doi.org/10.1016/j.nutres.2016.10.004] [PMID: 27866830]
[41]
Evans, E.P.P.; Scholten, J.T.M.; Mzyk, A.; Reyes-San-Martin, C.; Llumbet, A.E.; Hamoh, T.; Arts, E.G.J.M.; Schirhagl, R.; Cantineau, A.E.P. Male subfertility and oxidative stress. Redox Biol., 2021, 46, 102071.
[http://dx.doi.org/10.1016/j.redox.2021.102071] [PMID: 34340027]
[42]
Dutta, S.; Sengupta, P.; Slama, P.; Roychoudhury, S. Oxidative stress, testicular inflammatory pathways, and male reproduction. Int. J. Mol. Sci., 2021, 22(18), 10043.
[http://dx.doi.org/10.3390/ijms221810043] [PMID: 34576205]
[43]
Zhong, O.; Liao, B.; Wang, J.; Liu, K.; Lei, X.; Hu, L. Effects of sleep disorders and circadian rhythm changes on male reproductive health: A systematic review and meta-analysis. Front. Physiol., 2022, 13, 913369.
[http://dx.doi.org/10.3389/fphys.2022.913369] [PMID: 35910569]
[44]
Yan, X.; Dong, L.; Liu, Y.; Yang, F.; Tan, K.; Li, J.; Chang, D.; Yu, X. Effects of physical exercises on semen quality and reproductive outcomes in male infertility. Medicine, 2019, 98(41), e17494.
[http://dx.doi.org/10.1097/MD.0000000000017494 ] [PMID: 31593115]
[45]
Luo, M.; Zhuge, X.; Ji, L.; Wang, J.; Mo, Y.; Tan, Y.; Zhou, L.; Lei, X.; Huang, H. Icariin ameliorates spermatogenesis disorder in obese mice induced by high‐fat diet through regulating the glycolytic pathway. Mol. Nutr. Food Res., 2023, 67(13), 2200524.
[http://dx.doi.org/10.1002/mnfr.202200524] [PMID: 37057609]
[46]
Barati, E.; Nikzad, H.; Karimian, M. Oxidative stress and male infertility: Current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell. Mol. Life Sci., 2020, 77(1), 93-113.
[http://dx.doi.org/10.1007/s00018-019-03253-8] [PMID: 31377843]
[47]
Rossi, S.P.; Matzkin, M.E.; Riviere, E.; Martinez, G.; Ponzio, R.; Levalle, O.; Terradas, C.; Calandra, R.S.; Frungieri, M.B. Melatonin improves oxidative state and lactate metabolism in rodent Sertoli cells. Mol. Cell. Endocrinol., 2023, 576, 112034.
[http://dx.doi.org/10.1016/j.mce.2023.112034] [PMID: 37516434]
[48]
Mu, Y.; Yin, T.; Zhang, Y.; Yang, J.; Wu, Y. Diet-induced obesity impairs spermatogenesis: The critical role of NLRP3 in Sertoli cells. Inflamm. Regen., 2022, 42(1), 24.
[http://dx.doi.org/10.1186/s41232-022-00203-z] [PMID: 35915511]
[49]
Yamamoto, S.; Arakaki, R.; Noguchi, H.; Takeda, A.; Uchishiba, M.; Kamada, S.; Mineda, A.; Kon, M.; Kawakita, T.; Kinouchi, R.; Yamamoto, Y.; Yoshida, K.; Shinohara, N.; Iwasa, T. New discoveries on the interaction between testosterone and oxytocin in male rats - Testosterone-mediated effects of oxytocin in the prevention of obesity. Physiol. Behav., 2023, 266, 114199.
[http://dx.doi.org/10.1016/j.physbeh.2023.114199] [PMID: 37062515]
[50]
Souza, I.L.L.; Barros, B.C.; Ferreira, E.S.; Queiroga, F.R.; Vasconcelos, L.H.C.; Toscano, L.L.T.; Silva, A.S.; Silva, P.M.; Cavalcante, F.A.; Silva, B.A. Supplementation with Spirulina platensis prevents damage to rat erections in a model of erectile dysfunction promoted by hypercaloric diet-induced obesity. Mar. Drugs, 2022, 20(8), 467.
[http://dx.doi.org/10.3390/md20080467] [PMID: 35892935]
[51]
Yi, X.; Tang, D.; Cao, S.; Li, T.; Gao, H.; Ma, T.; Yao, T.; Li, J.; Chang, B. Effect of different exercise loads on testicular oxidative stress and reproductive function in obese male mice. Oxid. Med. Cell. Longev., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/3071658] [PMID: 32082477]
[52]
Cai, P.; Wang, Y.; Feng, N.; Zou, H.; Gu, J.; Yuan, Y.; Liu, X.; Liu, Z.; Bian, J. Polystyrene nanoplastics aggravate reproductive system damage in obese male mice by perturbation of the testis redox homeostasis. Environ. Toxicol., 2023, 38(12), 2881-2893.
[http://dx.doi.org/10.1002/tox.23923] [PMID: 37555767]
[53]
Zhao, J.; Ren, S.; Liu, C.; Huo, L.; Liu, Z.; Zhai, L. Di-(2-Ethylhexyl) phthalate increases obesity-induced damage to the male reproductive system in mice. Oxid. Med. Cell. Longev., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/1861984] [PMID: 29887939]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy