Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Evaluation of Blood Lactate among Different Player Roles: A Pilot Study on Competitive Young Male Soccer Players

Author(s): Rosaria Arcone, Pietro Montesano, Maurizio Di Silvestro, Antonio D'Errico, Rosaria Meccariello* and Filomena Mazzeo

Volume 24, Issue 13, 2024

Published on: 30 January, 2024

Page: [1538 - 1545] Pages: 8

DOI: 10.2174/0118715303269744231221101401

Price: $65

Abstract

Background: Soccer match requires anaerobic and aerobic energetic metabolism. The aim of this pilot study was to investigate the changes in blood lactate concentration in young male soccer players in different playing roles at different time points after the soccer match.

Methods: Following an initial screening of 134 young soccer athletes, 8 male athletes (average age of 15.5 ± 5 SD) were chosen for their characteristics similar to those of competitive athletes. Players were categorized as goalkeeper, central defender, central midfielder, and forward. Blood lactate concentrations were determined using a portable device at different times (10 min, 5 and 16 h) after the soccer match by a maximum effort test on a treadmill. The data were analyzed by one-way analysis of variance ANOVA, followed by Bonferroni’s post-hoc test.

Results: The following results (mean ± SD) were obtained: VO2max (%) 60.33 ± 3.10; blood lactate (mM) end match (10 min) 2.17 ± 0.78, post-match-early (after 5 h) 2.2 ± 0.42, postmatch- late (16 h) 3.2 ± 0.84. ANOVA analysis indicated that the blood LA concentrations at end-match (10 min) and post-match-early (5 h) were statistically significative lower than those determined at post-match-late (16 h) (p < 0.05).

Conclusion: These results suggest that aerobic mechanisms can also use LA as an energy source, contributing to the reduction of its blood concentration. This effect can be due to reduced maximal work during a soccer match and to the LA removal during exercise at reduced intensity. These data can provide indications for planning suitable training strategies for young male soccer players.

Graphical Abstract

[1]
Altmann, S.; Neumann, R.; Woll, A.; Härtel, S. Endurance capacities in professional soccer players: Are performance profiles position specific? Front. Sports Act. Living., 2020, 2, 549897.
[http://dx.doi.org/10.3389/fspor.2020.549897] [PMID: 33345113]
[2]
Mazzeo, F.; Santamaria, S.; Montesano, P. Gender difference, nutritional supplements and drug use in sport to enhancing performance: An Italian revision over the last decade. Sport Mont, 2019, 17(1), 69-73.
[http://dx.doi.org/10.26773/smj.190212]
[3]
Zumbaugh, M.D.; Johnson, S.E.; Shi, T.H.; Gerrard, D.E. Molecular and biochemical regulation of skeletal muscle metabolism. J. Anim. Sci., 2022, 100(8), skac035.
[http://dx.doi.org/10.1093/jas/skac035] [PMID: 35908794]
[4]
Montesano, P.; Mazzeo, F. Pilates improvement the individual basics of service and smash in volleyball. Sport Mont, 2018, 16(3), 25-30.
[http://dx.doi.org/10.26773/smj.181005]
[5]
Pereyra, A.S.; Lin, C.T.; Sanchez, D.M.; Laskin, J.; Spangenburg, E.E.; Neufer, P.D.; Fisher-Wellman, K.; Ellis, J.M. Skeletal muscle undergoes fiber type metabolic switch without myosin heavy chain switch in response to defective fatty acid oxidation. Mol. Metab., 2022, 59, 101456.
[http://dx.doi.org/10.1016/j.molmet.2022.101456] [PMID: 35150906]
[6]
Montesano, P.; Tafuri, D.; Mazzeo, F. Improvement of the motor performance difference in athletes of weelchair basketball. J. Phys. Educ. Sport, 2013, 13(3), 362-370.
[http://dx.doi.org/10.7752/jpes.2013.03058]
[7]
van Hall, G. Lactate kinetics in human tissues at rest and during exercise. Acta Physiol., 2010, 199(4), 499-508.
[http://dx.doi.org/10.1111/j.1748-1716.2010.02122.x] [PMID: 20345411]
[8]
Kristensen, M.; Albertsen, J.; Rentsch, M.; Juel, C. Lactate and force production in skeletal muscle. J. Physiol., 2005, 562(2), 521-526.
[http://dx.doi.org/10.1113/jphysiol.2004.078014] [PMID: 15550457]
[9]
Bangsbo, J.; Johansen, L.; Graham, T.; Saltin, B. Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise. J. Physiol., 1993, 462(1), 115-133.
[http://dx.doi.org/10.1113/jphysiol.1993.sp019546] [PMID: 8331579]
[10]
Mazzeo, F. Attitude and practice of substance misuse and dietary supplements to improve performance in sport. J. Subst. Use, 2019, 24(6), 581-586.
[http://dx.doi.org/10.1080/14659891.2019.1642410]
[11]
Severino, N.C.; Peluso Cassese, F.; Ceciliani, A.; D’Elia, F.; Di Tore, A.P. Psychophysical benefits of recreational five-a-side football. J. Hum. Sport Exercise, 2019, 14(2proc), S206-S214.
[http://dx.doi.org/10.14198/jhse.2019.14.Proc2.07]
[12]
Latino, F.; Cataldi, S.; Fischetti, F. Effects of a coordinative ability training program on adolescents’ cognitive functioning. Front. Psychol., 2021, 12, 620440.
[http://dx.doi.org/10.3389/fpsyg.2021.620440] [PMID: 33584480]
[13]
Mariani, A.M.; Melchiori, F.M.; Peluso Cassese, F. Mental skill training to enhance sport motivation in adolescents. J. Phys. Educ. Sport, 2019, 2019(5), 1908-1913.
[http://dx.doi.org/10.7752/jpes.2019.s5283]
[14]
Brooks, G.A. Lactate as a fulcrum of metabolism. Redox Biol., 2020, 35, 101454.
[http://dx.doi.org/10.1016/j.redox.2020.101454] [PMID: 32113910]
[15]
Glancy, B.; Kane, D.A.; Kavazis, A.N.; Goodwin, M.L.; Willis, W.T.; Gladden, L.B. Mitochondrial lactate metabolism: History and implications for exercise and disease. J. Physiol., 2021, 599(3), 863-888.
[http://dx.doi.org/10.1113/JP278930] [PMID: 32358865]
[16]
Thompson, L.V. Effects of age and training on skeletal muscle physiology and performance. Phys. Ther., 1994, 74(1), 71-81.
[http://dx.doi.org/10.1093/ptj/74.1.71] [PMID: 8265730]
[17]
Mateo-Orcajada, A.; Vaquero-Cristóbal, R.; Esparza-Ros, F.; Abenza-Cano, L. Physical, psychological, and body composition differences between active and sedentary adolescents according to the “fat but fit” paradigm. Int. J. Environ. Res. Public Health, 2022, 19(17), 10797.
[http://dx.doi.org/10.3390/ijerph191710797] [PMID: 36078538]
[18]
Faude, O.; Kindermann, W.; Meyer, T. Lactate threshold concepts: How valid are they? Sports Med., 2009, 39(6), 469-490.
[http://dx.doi.org/10.2165/00007256-200939060-00003] [PMID: 19453206]
[19]
Bangsbo, J.; Iaia, F.M.; Krustrup, P. Metabolic response and fatigue in soccer. Int. J. Sports Physiol. Perform., 2007, 2(2), 111-127.
[http://dx.doi.org/10.1123/ijspp.2.2.111] [PMID: 19124899]
[20]
Hall, M.M.; Rajasekaran, S.; Thomsen, T.W.; Peterson, A.R. Lactate: Friend or foe. PM R, 2016, 8(3S)(Suppl.), S8-S15.
[http://dx.doi.org/10.1016/j.pmrj.2015.10.018] [PMID: 26972271]
[21]
Manoj, K.M.; Nirusimhan, V.; Parashar, A.; Edward, J.; Gideon, D.A. Murburn precepts for lactic‐acidosis, cori cycle, and warburg effect: Interactive dynamics of dehydrogenases, protons, and oxygen. J. Cell. Physiol., 2022, 237(3), 1902-1922.
[http://dx.doi.org/10.1002/jcp.30661] [PMID: 34927737]
[22]
Köklü, Y.; Alemdaroğlu, U. Comparıson of the heart rate and blood lactate responses of different small sided games in young soccer players. Sports, 2016, 4(4), 48.
[http://dx.doi.org/10.3390/sports4040048] [PMID: 29910295]
[23]
Schwesig, R.; Schulze, S.; Reinhardt, L.; Laudner, K.G.; Delank, K.S.; Hermassi, S. Differences in player position running velocity at lactate thresholds among male professional german soccer players. Front. Physiol., 2019, 10, 886.
[http://dx.doi.org/10.3389/fphys.2019.00886] [PMID: 31338041]
[24]
Wisløff, U.; Castagna, C.; Helgerud, J.; Jones, R.; Hoff, J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players: Figure 1. Br. J. Sports Med., 2004, 38(3), 285-288.
[http://dx.doi.org/10.1136/bjsm.2002.002071] [PMID: 15155427]
[25]
Krustrup, P.; Mohr, M.; Steensberg, A.; Bencke, J.; Kjær, M.; Bangsbo, J. Muscle and blood metabolites during a soccer game: implications for sprint performance. Med. Sci. Sports Exerc., 2006, 38(6), 1165-1174.
[http://dx.doi.org/10.1249/01.mss.0000222845.89262.cd] [PMID: 16775559]
[26]
Ferraz, R.; van den Tillar, R.; Marques, M.C. The influence of different exercise intensities on kicking accuracy and velocity in soccer players. J. Sport Health Sci., 2017, 6(4), 462-467.
[http://dx.doi.org/10.1016/j.jshs.2015.10.001] [PMID: 30356631]
[27]
Castagna, C.; Belardinelli, R.; Abt, G. The VO2 and HR response to training with the ball in youth soccer players. In: Science and Football V; Reilly, T.; Cabri, J.; Araújo, D., Eds.; Routledge, Taylor & Francis Group: London, New York, 2005; pp. 462-464.
[28]
Asadi, A.; Ramirez-Campillo, R.; Arazi, H.; Sáez de Villarreal, E. The effects of maturation on jumping ability and sprint adaptations to plyometric training in youth soccer players. J. Sports Sci., 2018, 36(21), 2405-2411.
[http://dx.doi.org/10.1080/02640414.2018.1459151] [PMID: 29611771]
[29]
Nobari, H.; Eken, Ö.; Prieto-González, P.; Brito, J.P.; Oliveira, R. Associations among maturity, accumulated workload, physiological, and body composition factors in youth soccer players: a comparison between playing positions. Biology, 2022, 11(11), 1605.
[http://dx.doi.org/10.3390/biology11111605] [PMID: 36358306]
[30]
Svensson, M.; Drust, B. Testing soccer players. J. Sports Sci., 2005, 23(6), 601-618.
[http://dx.doi.org/10.1080/02640410400021294] [PMID: 16195009]
[31]
Mazzeo, F.; Liccardo, A. Respiratory responses to exercise in sport. Sport Sci. (Travnik), 2019, 12(1), 49-52.
[32]
Mazzeo, F.; Tafuri, D.; Montesano, P. Respiratory endurance, pulmonary drugs and sport performance: An analysis in a sample of amateur soccer athletes. Sport Sci., 2020, 13(1), 11-16.
[33]
Slimani, M.; Znazen, H.; Miarka, B.; Bragazzi, N.L. Maximum oxygen uptake of male soccer players according to their competitive level, playing position and age group: Implication from a network meta-analysis. J. Hum. Kinet., 2019, 66(1), 233-245.
[http://dx.doi.org/10.2478/hukin-2018-0060] [PMID: 30988857]
[34]
Ziogas, G.G.; Patras, K.N.; Stergiou, N.; Georgoulis, A.D. Velocity at lactate threshold and running economy must also be considered along with maximal oxygen uptake when testing elite soccer players during preseason. J. Strength Cond. Res., 2011, 25(2), 414-419.
[http://dx.doi.org/10.1519/JSC.0b013e3181bac3b9] [PMID: 20351577]
[35]
Cerda-Kohler, H.; Burgos-Jara, C.; Ramírez-Campillo, R.; Valdés-Cerda, M.; Báez, E.; Zapata-Gómez, D.; Andrade, D.C.; Izquierdo, M. Analysis of agreement between 4 lactate threshold measurements methods in professional soccer players. J. Strength Cond. Res., 2016, 30(10), 2864-2870.
[http://dx.doi.org/10.1519/JSC.0000000000001368] [PMID: 26849788]
[36]
Bandyopadhyay, A. Validity of Cooper’s 12-minute run test for estimation of maximum oxygen uptake in male university students. Biol. Sport, 2014, 32(1), 59-63.
[http://dx.doi.org/10.5604/20831862.1127283] [PMID: 25729151]
[37]
Montesano, P.; Mazzeo, F. Improvement in soccer learning and methodology for young athletes J. Phys. Educ. Sport, 2019, 19(3), 795-801. Art 113
[38]
Bishop, D. Evaluation of the accusport lactate analyser. Int. J. Sports Med., 2001, 22(7), 525-530.
[http://dx.doi.org/10.1055/s-2001-17611] [PMID: 11590480]
[39]
Montesano, P. Goalkeeper in soccer: Performance and explosive strength. J. Phys. Educ. Sport, 2016, 16(1), 230-233.
[40]
Suarez-Arrones, L.; Saez de Villarreal, E.; Núñez, F.J.; Di Salvo, V.; Petri, C.; Buccolini, A.; Maldonado, R.A.; Torreno, N.; Mendez-Villanueva, A. In-season eccentric-overload training in elite soccer players: Effects on body composition, strength and sprint performance. PLoS One, 2018, 13(10), e0205332.
[http://dx.doi.org/10.1371/journal.pone.0205332] [PMID: 30325935]
[41]
Aslan, A.; Acikada, C.; Güvenç, A.; Gören, H.; Hazir, T.; Ozkara, A. Metabolic demands of match performance in young soccer players. J. Sports Sci. Med., 2012, 11, 170-179.
[42]
Esbjörnsson, M.E.; Dahlström, M.S.; Gierup, J.W.; Jansson, E.C. Muscle fiber size in healthy children and adults in relation to sex and fiber types. Muscle Nerve, 2021, 63(4), 586-592.
[http://dx.doi.org/10.1002/mus.27151] [PMID: 33347630]
[43]
Pedersen, B.K. Muscle as a secretory organ. Compr. Physiol., 2013, 3(3), 1337-1362.
[http://dx.doi.org/10.1002/cphy.c120033] [PMID: 23897689]
[44]
Pagliara, V.; De Rosa, M.; Di Donato, P.; Nasso, R.; D’Errico, A.; Cammarota, F.; Poli, A.; Masullo, M.; Arcone, R. Inhibition of interleukin-6-induced matrix metalloproteinase-2 expression and invasive ability of lemon peel polyphenol extract in human primary colon cancer cells. Molecules, 2021, 26(23), 7076.
[http://dx.doi.org/10.3390/molecules26237076] [PMID: 34885656]
[45]
Gutiérrez-Vargas, R.; Ugalde-Ramírez, A.; Rico-González, M.; Pino-Ortega, J.; González-Hernández, J.; Rojas-Valverde, D. A systematic review of the effects of football playing on changes in serum brain-derived neurotrophic factor level. Appl. Sci., 2021, 11(24), 11828.
[http://dx.doi.org/10.3390/app112411828]
[46]
Borghi, G.; Borges, P.H.; Menegassi, V.M.; Rinaldi, G.S.W. Relationship between preferred leadership style and motivation in young soccer regional players J. Phys. Educ. Sport, 2017, 17(Art. 296), 2599-2603.
[47]
Arcone, R.; Chinali, A.; Pozzi, N.; Parafati, M.; Maset, F.; Pietropaolo, C.; De Filippis, V. Conformational and biochemical characterization of a biologically active rat recombinant Protease Nexin-1 expressed in E. coli. Biochim. Biophys. Acta. Proteins Proteomics, 2009, 1794(4), 602-614.
[http://dx.doi.org/10.1016/j.bbapap.2008.12.006] [PMID: 19167525]
[48]
Huang, Z.; Zhang, Y.; Zhou, R.; Yang, L.; Pan, H. Lactate as potential mediators for exercise-induced positive effects on neuroplasticity and cerebrovascular plasticity. Front. Physiol., 2021, 12, 656455.
[http://dx.doi.org/10.3389/fphys.2021.656455] [PMID: 34290615]
[49]
Alcaro, S.; Arcone, R.; Costa, G.; De Vita, D.; Iannone, M.; Ortuso, F.; Procopio, A.; Pasceri, R.; Rotiroti, D.; Scipione, L. Simple choline esters as potential anti-Alzheimer agents. Curr. Pharm. Des., 2010, 16(6), 692-697.
[http://dx.doi.org/10.2174/138161210790883796] [PMID: 20388079]
[50]
Proia, P.; Di Liegro, C.; Schiera, G.; Fricano, A.; Di Liegro, I. Lactate as a metabolite and a regulator in the central nervous system. Int. J. Mol. Sci., 2016, 17(9), 1450.
[http://dx.doi.org/10.3390/ijms17091450] [PMID: 27598136]
[51]
Pagliara, V.; Parafati, M.; Adornetto, A.; White, M.C.; Masullo, M.; Grimaldi, M.; Arcone, R. Dibutyryl cAMP- or Interleukin-6-induced astrocytic differentiation enhances mannose binding lectin (MBL)-associated serine protease (MASP)-1/3 expression in C6 glioma cells. Arch. Biochem. Biophys., 2018, 653, 39-49.
[http://dx.doi.org/10.1016/j.abb.2018.06.016] [PMID: 29963999]
[52]
Calì, C.; Tauffenberger, A.; Magistretti, P. The strategic location of glycogen and lactate: From body energy reserve to brain plasticity. Front. Cell. Neurosci., 2019, 13, 82.
[http://dx.doi.org/10.3389/fncel.2019.00082] [PMID: 30894801]
[53]
Vitale, R.M.; Rispoli, V.; Desiderio, D.; Sgammato, R.; Thellung, S.; Canale, C.; Vassalli, M.; Carbone, M.; Ciavatta, M.L.; Mollo, E.; Felicità, V.; Arcone, R.; Gavagnin Capoggiani, M.; Masullo, M.; Florio, T.; Amodeo, P. In silico identification and experimental validation of novel anti-alzheimer’s multitargeted ligands from a marine source featuring a “2-aminoimidazole plus aromatic group” scaffold. ACS Chem. Neurosci., 2018, 9(6), 1290-1303.
[http://dx.doi.org/10.1021/acschemneuro.7b00416] [PMID: 29473731]
[54]
Costanzo, P.; Oliverio, M.; Maiuolo, J.; Bonacci, S.; De Luca, G.; Masullo, M.; Arcone, R.; Procopio, A. Novel hydroxytyrosol-donepezil hybrids as potential antioxidant and neuroprotective agents. Front. Chem., 2021, Art. 741444.
[http://dx.doi.org/10.3389/fchem.2021.741444]
[55]
Montesano, P.; Tafuri, D.; Mazzeo, F. The drop outs in young players. J. Phys. Educ. Sport, 2016, 2016(4), 1242-1246.
[http://dx.doi.org/10.7752/jpes.2016.04197]
[56]
Montesano, P.; Di Silvestro, M.; Cipriani, G.; Mazzeo, F. Overtraining syndrome, stress and nutrition in football amateur athletes. J. Hum. Sport. Exerc., 2019, 14(S4), 957-969.
[57]
Fernández-Álvarez, M.M.; Martín-Payo, R.; Zabaleta-del-Olmo, E.; García-García, R.; Cuesta, M.; Gonzalez-Méndez, X. Assessment of diet quality and physical activity of soccer players aged 13 to 16, from the principality of asturias, Spain. Anales de Pediatría (English Edition), 2021, 95(1), 33-39.
[http://dx.doi.org/10.1016/j.anpede.2020.05.015] [PMID: 34119459]
[58]
Meccariello, R.; D’Angelo, S. Impact of polyphenolic-food on longevity: An elixir of life. An overview. Antioxidants, 2021, 10(4), 507.
[http://dx.doi.org/10.3390/antiox10040507] [PMID: 33805092]
[59]
Santos-Sánchez, G.; Cruz-Chamorro, I.; Perza-Castillo, J.L.; Vicente-Salar, N. Body composition assessment and mediterranean diet adherence in u12 spanish male professional soccer players: Cross-sectional study. Nutrients, 2021, 13(11), 4045.
[http://dx.doi.org/10.3390/nu13114045] [PMID: 34836297]
[60]
Nikolaidis, P.; Ziv, G.; Lidor, R.; Arnon, M. Inter-individual variability in soccer players of different age groups playing different positions. J. Hum. Kinet., 2014, 40(1), 213-225.
[http://dx.doi.org/10.2478/hukin-2014-0023] [PMID: 25031689]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy