Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Anti-viral Effects of Pavetta indica Methanolic Extract and Acyclovir on Behavioral and Biochemical Parameters in Streptozotocin-induced Alzheimer's Disease in Rats

Author(s): Deepak Kumar, Govind Singh, Tarun, Meenakshi Dhanawat, Sumeet Gupta*, Mohamed A. Morsy, Anroop B. Nair and Asmaa I. Matouk

Volume 24, Issue 13, 2024

Published on: 27 April, 2024

Page: [1558 - 1571] Pages: 14

DOI: 10.2174/0118715303273145240110100341

Price: $65

Abstract

Background: Alzheimer's disease is a neurological dysfunction of the brain caused by neurodegeneration and oxidative stress. Some viruses, such as herpes viruses, HSV-1, and HSV-2, are causative agents of Alzheimer's disease and result in β-amyloid peptide and tau protein accumulation in the brain. Some antiviral drugs, such as valacyclovir, acyclovir, and foscarnet, reduce amyloid-beta and P-tau. Pavetta indica leaves are also reported for their antiviral properties. The current study aimed to find out the significance of using Pavetta indica methanolic extract and acyclovir against Alzheimer’s disease induced by streptozotocin.

Methods: Wistar rats received acyclovir and Pavetta indica methanolic extract orally at different dose ranges (50, 150, 450 mg/kg) and (125, 250, 500 mg/kg), respectively. The standard therapy, Rivastigmine (2 mg/kg), was given orally.

Results: Intracerebroventricular-streptozotocin produced significant alternations in behavioral assessments, including locomotor activity test, Morris water maze test, and elevated plus maze test. Moreover, intracerebroventricular-streptozotocin ameliorated the antioxidant defense activity by decreasing levels of catalase, superoxide dismutase, and reduced glutathione while enhancing the oxidative stress markers, including malondialdehyde, and total nitrite levels. Finally, the main findings showed that intracerebroventricular-streptozotocin significantly increased the inflammatory marker, tumor necrosis factor-α, and disturbed neurotransmitter mediators, including levels of acetylcholinesterase, glutamate, and γ-amino butyric acid.

Conclusion: In a dose-dependent manner, acyclovir and Pavetta indica methanolic extract treatments abrogated the streptozotocin-induced behavioral and neurological abnormalities in rats. The potential therapeutic effects of PIME and acyclovir administration in intracerebroventricular-streptozotocin-treated rats may be attributed to its potential antiviral, antioxidant, and anti-inflammatory effects. The current study suggests that Pavetta indica methanolic extract and acyclovir are promising therapeutic targets against Alzheimer’s disease.

Graphical Abstract

[1]
Ghumatkar, P.J.; Patil, S.P.; Jain, P.D.; Tambe, R.M.; Sathaye, S. Nootropic, neuroprotective and neurotrophic effects of phloretin in scopolamine induced amnesia in mice. Pharmacol. Biochem. Behav., 2015, 135, 182-191.
[http://dx.doi.org/10.1016/j.pbb.2015.06.005] [PMID: 26071678]
[2]
Iqbal, U.H.; Zeng, E.; Pasinetti, G.M. The use of antimicrobial and antiviral drugs in Alzheimer’s Disease. Int. J. Mol. Sci., 2020, 21(14), 4920.
[http://dx.doi.org/10.3390/ijms21144920] [PMID: 32664669]
[3]
Gustavsson, A.; Norton, N.; Fast, T.; Frölich, L.; Georges, J.; Holzapfel, D.; Kirabali, T.; Krolak-Salmon, P.; Rossini, P.M.; Ferretti, M.T.; Lanman, L.; Chadha, A.S.; van der Flier, W.M. Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimers Dement., 2023, 19(2), 658-670.
[http://dx.doi.org/10.1002/alz.12694] [PMID: 35652476]
[4]
Fulop, T.; Tripathi, S.; Rodrigues, S.; Desroches, M.; Bunt, T.; Eiser, A.; Bernier, F.; Beauregard, P.B.; Barron, A.E.; Khalil, A.; Plotka, A.; Hirokawa, K.; Larbi, A.; Bocti, C.; Laurent, B.; Frost, E.H.; Witkowski, J.M. Targeting impaired antimicrobial immunity in the brain for the treatment of alzheimer’s disease. Neuropsychiatr. Dis. Treat., 2021, 17, 1311-1339.
[http://dx.doi.org/10.2147/NDT.S264910] [PMID: 33976546]
[5]
Lindblom, N.; Lindquist, L.; Westman, J.; Åström, M.; Bullock, R.; Hendrix, S.; Wahlund, L.O. Potential virus involvement in alzheimer’s disease: Results from a phase iia trial evaluating apovir, an antiviral drug combination. J. Alzheimers Dis. Rep., 2021, 5(1), 413-431.
[http://dx.doi.org/10.3233/ADR-210301] [PMID: 34189413]
[6]
2020 Alzheimer’s disease facts and figures. Alzheimers Dement., 2020, 16(3), 391-460.
[http://dx.doi.org/10.1002/alz.12068]
[7]
NIH. Alzheimer’s Disease Fact Sheet; National Institute of Aging, 2020.
[8]
Tanzi, R.E.; Bertram, L. Twenty years of the Alzheimer’s disease amyloid hypothesis: A genetic perspective. Cell, 2005, 120(4), 545-555.
[http://dx.doi.org/10.1016/j.cell.2005.02.008] [PMID: 15734686]
[9]
Jucker, M.; Walker, L.C. Pathogenic protein seeding in alzheimer disease and other neurodegenerative disorders. Ann. Neurol., 2011, 70(4), 532-540.
[http://dx.doi.org/10.1002/ana.22615] [PMID: 22028219]
[10]
Singh, S.; Dhanawat, M.; Gupta, S.; Kumar, D.; Kakkar, S.; Nair, A.; Verma, I.; Sharma, P. Naturally inspired pyrimidines analogues for alzheimer’s disease. Curr. Neuropharmacol., 2020, 19(2), 136-151.
[http://dx.doi.org/10.2174/1570159X18666201111110136] [PMID: 33176653]
[11]
Bartus, R.T.; Dean, R.L., III; Beer, B.; Lippa, A.S. The cholinergic hypothesis of geriatric memory dysfunction. Science, 1982, 217(4558), 408-414.
[http://dx.doi.org/10.1126/science.7046051] [PMID: 7046051]
[12]
Lee, J.S.; Hong, S.S.; Kim, H.G.; Lee, H.W.; Kim, W.Y.; Lee, S.K.; Son, C.G. Gongjin-dan enhances hippocampal memory in a mouse model of scopolamine-induced amnesia. PLoS One, 2016, 11(8), e0159823.
[http://dx.doi.org/10.1371/journal.pone.0159823] [PMID: 27483466]
[13]
Penumala, M.; Zinka, R.B.; Shaik, J.B.; Amooru Gangaiah, D. In vitro screening of three indian medicinal plants for their phytochemicals, anticholinesterase, antiglucosidase, antioxidant, and neuroprotective effects. BioMed Res. Int., 2017, 2017, 1-12.
[http://dx.doi.org/10.1155/2017/5140506] [PMID: 29204442]
[14]
Piccialli, I.; Tedeschi, V.; Caputo, L.; D’Errico, S.; Ciccone, R.; De Feo, V.; Secondo, A.; Pannaccione, A. Exploring the therapeutic potential of phytochemicals in alzheimer’s disease: Focus on polyphenols and monoterpenes. Front. Pharmacol., 2022, 13, 876614.
[http://dx.doi.org/10.3389/fphar.2022.876614] [PMID: 35600880]
[15]
Li, J.; Sun, M.; Cui, X.; Li, C. Protective effects of flavonoids against alzheimer’s disease: Pathological hypothesis, potential targets, and structure–activity relationship. Int. J. Mol. Sci., 2022, 23(17), 10020.
[http://dx.doi.org/10.3390/ijms231710020] [PMID: 36077418]
[16]
Taqui, R.; Debnath, M.; Ahmed, S.; Ghosh, A. Advances on plant extracts and phytocompounds with acetylcholinesterase inhibition activity for possible treatment of Alzheimer's disease. Phytomed. Plus, 2022, 2(1), 100184.
[http://dx.doi.org/10.1016/j.phyplu.2021.100184]
[17]
Gupta, S.; Nair, A.; Jhawat, V.; Mustaq, N.; Sharma, A.; Dhanawat, M.; Khan, S.A. Unwinding complexities of diabetic alzheimer by potent novel molecules. Am. J. Alzheimers Dis. Other Demen., 2020, 35, 1533317520937542.
[http://dx.doi.org/10.1177/1533317520937542]
[18]
Pandareesh, M.D.; Anand, T.; Khanum, F. Cognition enhancing and neuromodulatory propensity of Bacopa monniera extract against scopolamine induced cognitive impairments in rat hippocampus. Neurochem. Res., 2016, 41(5), 985-999.
[http://dx.doi.org/10.1007/s11064-015-1780-1] [PMID: 26677075]
[19]
2017 Alzheimer’s disease facts and figures. Alzheimers Dement., 2017, 13(4), 325-373.
[http://dx.doi.org/10.1016/j.jalz.2017.02.001]
[20]
De Vlieger, L.; Vandenbroucke, R.E.; Van Hoecke, L. Recent insights into viral infections as a trigger and accelerator in alzheimer’s disease. Drug Discov. Today, 2022, 27(11), 103340.
[http://dx.doi.org/10.1016/j.drudis.2022.103340] [PMID: 35987492]
[21]
Liu, N.; Jiang, X.; Li, H. The viral hypothesis in Alzheimer’s disease: SARS-CoV-2 on the cusp. Front. Aging Neurosci., 2023, 15, 1129640.
[http://dx.doi.org/10.3389/fnagi.2023.1129640] [PMID: 37009449]
[22]
Wang, H.C.; Zhang, Q.X.; Zhao, J.; Wei, N.N. Molecular docking and molecular dynamics simulations studies on the protective and pathogenic roles of the amyloid-β peptide between herpesvirus infection and Alzheimer’s disease. J. Mol. Graph. Model., 2022, 113, 108143.
[http://dx.doi.org/10.1016/j.jmgm.2022.108143] [PMID: 35202955]
[23]
Tianfang, Ge. Herpes simplex virus infection increases beta-amyloid production and induces the development of alzheimer’s disease. BioMed Res. Int., 2022, 8804925.
[24]
Catumbela, C.S.G.; Giridharan, V.V.; Barichello, T.; Morales, R. Clinical evidence of human pathogens implicated in Alzheimer’s disease pathology and the therapeutic efficacy of antimicrobials: An overview. Transl. Neurodegener., 2023, 12(1), 37.
[http://dx.doi.org/10.1186/s40035-023-00369-7] [PMID: 37496074]
[25]
Devanand, D.P.; Andrews, H.; Kreisl, W.C.; Razlighi, Q.; Gershon, A.; Stern, Y.; Mintz, A.; Wisniewski, T.; Acosta, E.; Pollina, J.; Katsikoumbas, M.; Bell, K.L.; Pelton, G.H.; Deliyannides, D.; Prasad, K.M.; Huey, E.D. Antiviral therapy: Valacyclovir Treatment of Alzheimer’s Disease (VALAD) Trial: Protocol for a randomised, double-blind,placebo-controlled, treatment trial. BMJ Open, 2020, 10(2), e032112.
[http://dx.doi.org/10.1136/bmjopen-2019-032112] [PMID: 32034019]
[26]
Gupta, V.K.; Kaur, C.; Simlai, A.; Roy, A. Antimicrobial activity of Pavetta indica leaves. J. Appl. Pharm. Sci., 2013, 3, 78.
[27]
Mandal, S.C.; Mohana Lakshmi, S.; Ashok Kumar, C.K.; Sur, T.K.; Boominathan, R. Evaluation of anti‐inflammatory potential of Pavetta indica Linn. leaf extract (family: Rubiaceae) in rats. Phytother. Res., 2003, 17(7), 817-820.
[http://dx.doi.org/10.1002/ptr.1095] [PMID: 12916086]
[28]
Shah, J.; Patel, P.; Faldu, K.; Borisa, A.; Bhatt, H. Insights of valacyclovir in treatment of alzheimer’s disease: Computational docking studies and scopolamine rat model. Curr. Neurovasc. Res., 2022, 19(3), 344-357.
[http://dx.doi.org/10.2174/1567202619666220908125125] [PMID: 36089794]
[29]
Weidung, B.; Hemmingsson, E.S.; Olsson, J.; Sundström, T.; Blennow, K.; Zetterberg, H.; Ingelsson, M.; Elgh, F.; Lövheim, H. VALZ‐Pilot: High‐dose valacyclovir treatment in patients with early‐stage Alzheimer’s disease. Alzheimers Dement., 2022, 8(1), e12264.
[http://dx.doi.org/10.1002/trc2.12264] [PMID: 35310522]
[30]
Kirtikar, K. Indian Medicinal Plants; International Book Distributors, 1987.
[31]
Tiwari, S.; Prasad, J.; Dubey, N.K. Ethnomedicinal plants of India: Bioprospection and future outlooks. ©Agrobios research: An imprint of agrobios. In: Ethnomedicinal Plants: Revival of Traditional Knowledge; Jodhpur, 2022.
[32]
Thabrew, M.I. A comparative study of the efficacy of Pavetta indica and Osbeckiaoctandra in the treatment of liver dysfunction. Planta Med., 1987, 53(3), 239-241.
[33]
Bakshi, V.; Kumar, K.S.; Begum, N.; Kakalij, R.M. Neuroprotective activity of ethanolic extract of polyherbal formulation on streptozotocin induced alzheimer’s disease in mice. Int. J. Appl. Pharmaceut. Sci. Res., 2016, 1(1), 1-7.
[http://dx.doi.org/10.21477/ijapsr.v1i1.9602]
[34]
Barai, P.; Raval, N.; Acharya, S.; Acharya, N. Bergenia ciliata ameliorates streptozotocin-induced spatial memory deficits through dual cholinesterase inhibition and attenuation of oxidative stress in rats. Biomed. Pharmacother., 2018, 102, 966-980.
[http://dx.doi.org/10.1016/j.biopha.2018.03.115] [PMID: 29710552]
[35]
Sachdeva, A.K.; Misra, S.; Pal Kaur, I.; Chopra, K. Neuroprotective potential of sesamol and its loaded solid lipid nanoparticles in ICV-STZ-induced cognitive deficits: Behavioral and biochemical evidence. Eur. J. Pharmacol., 2015, 747, 132-140.
[http://dx.doi.org/10.1016/j.ejphar.2014.11.014] [PMID: 25449035]
[36]
Rinwa, P.; Singh, N.; Jaggi, A.S. Pharmacological investigation of memory restorative effect of riluzole in mice. Indian J. Pharmacol., 2012, 44(3), 366-371.
[http://dx.doi.org/10.4103/0253-7613.96337] [PMID: 22701248]
[37]
Sachdeva, A.K.; Kuhad, A.; Chopra, K. Epigallocatechin gallate ameliorates behavioral and biochemical deficits in rat model of load-induced chronic fatigue syndrome. Brain Res. Bull., 2011, 86(3-4), 165-172.
[http://dx.doi.org/10.1016/j.brainresbull.2011.06.007] [PMID: 21821105]
[38]
Sachdeva, A.K.; Kuhad, A.; Chopra, K. Naringin ameliorates memory deficits in experimental paradigm of Alzheimer’s disease by attenuating mitochondrial dysfunction. Pharmacol. Biochem. Behav., 2014, 127, 101-110.
[http://dx.doi.org/10.1016/j.pbb.2014.11.002] [PMID: 25449356]
[39]
Sharma, M.; Gupta, Y.K. Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci., 2002, 71(21), 2489-2498.
[http://dx.doi.org/10.1016/S0024-3205(02)02083-0] [PMID: 12270754]
[40]
Lowry, O.; Rosebrough, N.; Farr, A.L.; Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[41]
Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem., 1972, 247(10), 3170-3175.
[http://dx.doi.org/10.1016/S0021-9258(19)45228-9] [PMID: 4623845]
[42]
Divya Sri, N.; Madhan Mohan, M.; Mahesh, K.; Raghu, K.; Seeta Ram Rao, S. Amelioration of aluminium toxicity in pigeon pea (Cajanus cajan (L.) Millsp.) plant by 24-epibrassinolide. Am. J. Plant Sci., 2016, 7(12), 1618-1628.
[http://dx.doi.org/10.4236/ajps.2016.712153]
[43]
Aebi, H. Catalase. In: Methods of Enzymatic Analysis, 2nd ed; Bergmeyer, H.U., Ed.; Academic Press, 1974; pp. 673-684.
[http://dx.doi.org/10.1016/B978-0-12-091302-2.50032-3]
[44]
Beutler, E.; Duron, O.; Kelly, B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med., 1963, 61, 882-888.
[PMID: 13967893]
[45]
Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts. Arch. Biochem. Biophys., 1968, 125(1), 189-198.
[http://dx.doi.org/10.1016/0003-9861(68)90654-1] [PMID: 5655425]
[46]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[47]
Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem., 1982, 126(1), 131-138.
[http://dx.doi.org/10.1016/0003-2697(82)90118-X] [PMID: 7181105]
[48]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[49]
Srikumar, B.; Ramkumar, K.; Raju, T.; Shankaranarayana Rao, B. Assay of acetylcholinesterase activity in the brain. Brain Behav., 2004, 142, 144.
[50]
Zieminska, E.; Toczylowska, B.; Diamandakis, D.; Hilgier, W.; Filipkowski, R.K.; Polowy, R.; Orzel, J.; Gorka, M.; Lazarewicz, J.W. Glutamate, glutamine and GABA levels in rat brain measure using MRS, HPLC and NMR methods in study of two models of autism. Front. Mol. Neurosci., 2018, 11, 418.
[http://dx.doi.org/10.3389/fnmol.2018.00418] [PMID: 30505268]
[51]
Wozniak, M.A.; Frost, A.L.; Preston, C.M.; Itzhaki, R.F. Antivirals reduce the formation of key Alzheimer’s disease molecules in cell cultures acutely infected with herpes simplex virus type 1. PLoS One, 2011, 6(10), e25152.
[http://dx.doi.org/10.1371/journal.pone.0025152] [PMID: 22003387]
[52]
Ganguli, M.; Chandra, V.; Kamboh, M.I.; Johnston, J.M.; Dodge, H.H.; Thelma, B.K.; Juyal, R.C.; Pandav, R.; Belle, S.H.; DeKosky, S.T. Apolipoprotein E polymorphism and alzheimer disease. Arch. Neurol., 2000, 57(6), 824-830.
[http://dx.doi.org/10.1001/archneur.57.6.824] [PMID: 10867779]
[53]
Kim, M.; Park, S.J.; Choi, S.; Chang, J.; Kim, S.M.; Jeong, S.; Park, Y.J.; Lee, G.; Son, J.S.; Ahn, J.C.; Park, S.M. Association between antibiotics and dementia risk: A retrospective cohort study. Front. Pharmacol., 2022, 13, 888333.
[http://dx.doi.org/10.3389/fphar.2022.888333] [PMID: 36225572]
[54]
Salkovic-Petrisic, M.; Hoyer, S. Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: An experimental approach. J. Neural Transm. Suppl., 2007, 72(72), 217-233.
[http://dx.doi.org/10.1007/978-3-211-73574-9_28] [PMID: 17982898]
[55]
Sharma, M.; Gupta, Y.K. Effect of chronic treatment of melatonin on learning, memory and oxidative deficiencies induced by intracerebroventricular streptozotocin in rats. Pharmacol. Biochem. Behav., 2001, 70(2-3), 325-331.
[http://dx.doi.org/10.1016/S0091-3057(01)00611-6] [PMID: 11701204]
[56]
Sonkusare, S.; Srinivasan, K.; Kaul, C.; Ramarao, P. Effect of donepezil and lercanidipine on memory impairment induced by intracerebroventricular streptozotocin in rats. Life Sci., 2005, 77(1), 1-14.
[http://dx.doi.org/10.1016/j.lfs.2004.10.036] [PMID: 15848214]
[57]
Lannert, H.; Hoyer, S. Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav. Neurosci., 1998, 112(5), 1199-1208.
[http://dx.doi.org/10.1037/0735-7044.112.5.1199] [PMID: 9829797]
[58]
Deka, P.; Kumar, A. Pharmacological evaluation of triphala churna in streptozotocin (ICV) Induced dementia in rats. Int. J. Pharm. Pharm. Sci., 2018, 10(3), 97-105.
[http://dx.doi.org/10.22159/ijpps.2018v10i3.22795]
[59]
Vorhees, C.V.; Williams, M.T. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat. Protoc., 2006, 1(2), 848-858.
[http://dx.doi.org/10.1038/nprot.2006.116] [PMID: 17406317]
[60]
Sahab Uddin, M.; Nasrullah, M.; Hossain, M.S.; Rahman, M.M.; Sarwar, M.S.; Amran, M.S.; Sadik, M.G.; Rashid, M.; Asaduzzaman, M. Evaluation of nootropic activity of Persicaria flaccida on cognitive performance, brain antioxidant markers and acetylcholinesterase activity in rats: Implication for the management of Alzheimer’s disease. Am. J. Psychiat. Neurosci., 2016, 4(2), 26-37.
[http://dx.doi.org/10.11648/j.ajpn.20160402.12]
[61]
Behl, C.; Davis, J.B.; Lesley, R.; Schubert, D. Hydrogen peroxide mediates amyloid β protein toxicity. Cell, 1994, 77(6), 817-827.
[http://dx.doi.org/10.1016/0092-8674(94)90131-7] [PMID: 8004671]
[62]
Selkoe, D.J. Alzheimer’s disease: Genes, proteins, and therapy. Physiol. Rev., 2001, 81(2), 741-766.
[http://dx.doi.org/10.1152/physrev.2001.81.2.741] [PMID: 11274343]
[63]
Varadarajan, S.; Yatin, S.; Kanski, J.; Jahanshahi, F.; Butterfield, D.A. Methionine residue 35 is important in amyloid β-peptide-associated free radical oxidative stress. Brain Res. Bull., 1999, 50(2), 133-141.
[http://dx.doi.org/10.1016/S0361-9230(99)00093-3] [PMID: 10535332]
[64]
Grünblatt, E.; Salkovic-Petrisic, M.; Osmanovic, J.; Riederer, P.; Hoyer, S. Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J. Neurochem., 2007, 101(3), 757-770.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04368.x] [PMID: 17448147]
[65]
Gilgun-Sherki, Y.; Rosenbaum, Z.; Melamed, E.; Offen, D. Antioxidant therapy in acute central nervous system injury: Current state. Pharmacol. Rev., 2002, 54(2), 271-284.
[http://dx.doi.org/10.1124/pr.54.2.271] [PMID: 12037143]
[66]
Rasoolijazi, H.; Joghataie, M.T.; Roghani, M.; Nobakht, M. The beneficial effect of (-)-epigallocatechin-3-gallate in an experimental model of Alzheimer’s disease in rat: A behavioral analysis. Iran. Biomed. J., 2007, 11(4), 237-243.
[PMID: 18392085]
[67]
Sharma, C.; Kim, S.R. Linking oxidative stress and proteinopathy in Alzheimer's disease. Antioxidants, 2021, 10, 1231.
[http://dx.doi.org/10.3390/antiox10081231]
[68]
Javed, H.; Khan, M.M.; Khan, A.; Vaibhav, K.; Ahmad, A.; Khuwaja, G.; Ahmed, M.E.; Raza, S.S.; Ashafaq, M.; Tabassum, R.; Siddiqui, M.S.; El-Agnaf, O.M.; Safhi, M.M.; Islam, F. S-allyl cysteine attenuates oxidative stress associated cognitive impairment and neurodegeneration in mouse model of streptozotocin-induced experimental dementia of Alzheimer’s type. Brain Res., 2011, 1389, 133-142.
[http://dx.doi.org/10.1016/j.brainres.2011.02.072] [PMID: 21376020]
[69]
Wei, J.; Yang, F.; Gong, C.; Shi, X.; Wang, G. Protective effect of daidzein against streptozotocin‐induced Alzheimer’s disease via improving cognitive dysfunction and oxidative stress in rat model. J. Biochem. Mol. Toxicol., 2019, 33(6), e22319.
[http://dx.doi.org/10.1002/jbt.22319] [PMID: 30897277]
[70]
Thayyil, A.H.; Muthu, A.K. Comparative evaluation of in vitro antioxidant activities of various extracts from Chomelia asiatica (Linn) and Pavetta indica (Linn). J Pharm Sci Res., 2018, 10, 2738-2741.
[71]
Karam, A.; Nadia, A.; Abd, E.; Nemat, A.; Siham, M. Protective effect of ginger (Zingiber officinale) on Alzheimer’s disease induced in rats. J. Neuroinfect. Dis., 2014, 5, 2.
[72]
Yassin, N.; El-Shenawy, S.; Mahdy, K.A.; Gouda, N.; Marrie, A.; Farrag, A.; Ibrahim, B. Effect of boswellia serrata on Alzheimer’s disease induced in rats. J. Arab Soc. Med. Res., 2013, 8, 1-11.
[73]
Klugman, A.; Naughton, D.P.; Isaac, M.; Shah, I.; Petroczi, A.; Tabet, N. Antioxidant enzymatic activities in Alzheimer’s disease: The relationship to acetylcholinesterase inhibitors. J. Alzheimers Dis., 2012, 30(3), 467-474.
[http://dx.doi.org/10.3233/JAD-2012-120124] [PMID: 22451323]
[74]
Cumiskey, D.; Butler, M.P.; Moynagh, P.N.; O’Connor, J.J. Evidence for a role for the group I metabotropic glutamate receptor in the inhibitory effect of tumor necrosis factor-α on long-term potentiation. Brain Res., 2007, 1136(1), 13-19.
[http://dx.doi.org/10.1016/j.brainres.2006.12.019] [PMID: 17198691]
[75]
Misra, S.; Tiwari, V.; Kuhad, A.; Chopra, K. Modulation of nitrergic pathway by sesamol prevents cognitive deficits and associated biochemical alterations in intracerebroventricular streptozotocin administered rats. Eur. J. Pharmacol., 2011, 659(2-3), 177-186.
[http://dx.doi.org/10.1016/j.ejphar.2011.03.026] [PMID: 21463622]
[76]
Nandagopalan, V.; Doss, A.; Anand, S. An ethnobotanical study in the Pudukkottai district, South India. IJST, 2014, 2, 1.
[77]
Myhrer, T. Neurotransmitter systems involved in learning and memory in the rat: A meta-analysis based on studies of four behavioral tasks. Brain Res. Brain Res. Rev., 2003, 41(2-3), 268-287.
[http://dx.doi.org/10.1016/S0165-0173(02)00268-0] [PMID: 12663083]
[78]
Francis, P.T.; Palmer, A.M.; Snape, M.; Wilcock, G.K. The cholinergic hypothesis of Alzheimer’s disease: A review of progress. J. Neurol. Neurosurg. Psychiatry, 1999, 66(2), 137-147.
[http://dx.doi.org/10.1136/jnnp.66.2.137] [PMID: 10071091]
[79]
Chen, L.E.; Wu, F.; Zhao, A.; Ge, H.; Zhan, H. Protection efficacy of the extract of ginkgo biloba against the learning and memory damage of rats under repeated high sustained +Gz exposure. Evid. Based Complement. Altern. Med., 2016, eCAM, 6320586.
[80]
Zheng, H.; Youdim, M.B.H.; Fridkin, M. Site-activated multifunctional chelator with acetylcholinesterase and neuroprotective-neurorestorative moieties for Alzheimer’s therapy. J. Med. Chem., 2009, 52(14), 4095-4098.
[http://dx.doi.org/10.1021/jm900504c] [PMID: 19485411]
[81]
Amberla, K.; Nordberg, A.; Viitanen, M.; Winblad, B. Long-term treatment with tacrine (THA) in Alzheimer’s disease-evaluation of neuropsychological data. Acta Neurol. Scand., 1993, 88(S149), 55-57.
[http://dx.doi.org/10.1111/j.1600-0404.1993.tb04257.x] [PMID: 8128841]
[82]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[83]
Singh, M.; Kaur, M.; Kukreja, H.; Chugh, R.; Silakari, O.; Singh, D. Acetylcholinesterase inhibitors as Alzheimer therapy: From nerve toxins to neuroprotection. Eur. J. Med. Chem., 2013, 70, 165-188.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.050] [PMID: 24148993]
[84]
Tabet, N. Acetylcholinesterase inhibitors for Alzheimer’s disease: Anti-inflammatories in acetylcholine clothing! Age Ageing, 2006, 35(4), 336-338.
[http://dx.doi.org/10.1093/ageing/afl027] [PMID: 16788077]
[85]
Arora, R.; Deshmukh, R. Embelin attenuates intracerebroventricular streptozotocin-induced behavioral, biochemical, and neurochemical abnormalities in rats. Mol. Neurobiol., 2017, 54(9), 6670-6680.
[http://dx.doi.org/10.1007/s12035-016-0182-y] [PMID: 27744573]
[86]
Jackson, W.S. Selective vulnerability to neurodegenerative disease: The curious case of Prion Protein. Dis. Model. Mech., 2014, 7(1), 21-29.
[http://dx.doi.org/10.1242/dmm.012146] [PMID: 24396151]
[87]
Xu, Y.; Zhao, M.; Han, Y.; Zhang, H. GABAergic inhibitory interneuron deficits in alzheimer’s disease: Implications for treatment. Front. Neurosci., 2020, 14, 660.
[http://dx.doi.org/10.3389/fnins.2020.00660] [PMID: 32714136]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy