Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Mini-Review Article

Advances in Neutrophil Cell Membrane-coated Nano Drug Delivery Systems: A Comprehensive Review

Author(s): Neha Bajwa*

Volume 16, Issue 2, 2024

Published on: 25 January, 2024

Page: [75 - 87] Pages: 13

DOI: 10.2174/0118764029272246231120045443

Price: $65

Abstract

Cell-mediated drug delivery systems have gained significant attention in medical research due to their potential for enhanced therapeutic specificity and efficacy in various diseases. Among immune cells, neutrophils (NEs) have emerged as a promising candidate for drug delivery due to their prevalence and rapid response at inflammatory sites. However, the short lifespan and challenges associated with the in vitro cultivation of NEs have hindered their direct use for drug administration. This review aims to highlight the importance of NEs as effective drug-delivery vehicles and elucidate the underlying mechanisms contributing to their pharmacological efficacy. By analyzing recent studies and advancements in the field, we will discuss the strategies employed to harness NEs as drug carriers, including coating nanostructures with NE cell membranes.

In addition, we will investigate the distinctive characteristics of NEs that allow for targeted drug delivery. These properties include the NE's capacity to navigate intricate biological environments and actively move towards inflamed tissues. Moreover, we will examine the mechanisms by which NEs release drugs and explore their potential applications in different therapeutic fields.

[1]
Anderson, B.O.; Brown, J.M.; Harken, A.H. Mechanisms of neutrophil-mediated tissue injury. J. Surg. Res., 1991, 51(2), 170-179.
[http://dx.doi.org/10.1016/0022-4804(91)90090-9] [PMID: 1650866]
[2]
Bordon, J.; Aliberti, S.; Fernandez-Botran, R.; Uriarte, S.M.; Rane, M.J.; Duvvuri, P.; Peyrani, P.; Morlacchi, L.C.; Blasi, F.; Ramirez, J.A. Understanding the roles of cytokines and neutrophil activity and neutrophil apoptosis in the protective versus deleterious inflammatory response in pneumonia. Int. J. Infect. Dis., 2013, 17(2), e76-e83.
[http://dx.doi.org/10.1016/j.ijid.2012.06.006] [PMID: 23069683]
[3]
Budnik, V.; Ruiz-Cañada, C.; Wendler, F. Extracellular vesicles round off communication in the nervous system. Nat. Rev. Neurosci., 2016, 17(3), 160-172.
[http://dx.doi.org/10.1038/nrn.2015.29] [PMID: 26891626]
[4]
Cao, X.; Hu, Y.; Luo, S.; Wang, Y.; Gong, T.; Sun, X.; Fu, Y.; Zhang, Z. Neutrophil-mimicking therapeutic nanoparticles for targeted chemotherapy of pancreatic carcinoma. Acta Pharm. Sin. B, 2019, 9(3), 575-589.
[http://dx.doi.org/10.1016/j.apsb.2018.12.009] [PMID: 31193785]
[5]
Chu, D.; Dong, X.; Shi, X.; Zhang, C.; Wang, Z. Neutrophil-based drug delivery systems. Adv. Mater., 2018, 30(22), e1706245.
[http://dx.doi.org/10.1002/adma.201706245]
[6]
Drechsler, M.; Megens, R.T.A.; van Zandvoort, M.; Weber, C.; Soehnlein, O. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation, 2010, 122(18), 1837-1845.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.961714] [PMID: 20956207]
[7]
Elliott, S.N.; Wallace, J.L. Neutrophil-mediated gastrointestinal injury. Can. J. Gastroenterol., 1998, 12(8), 559-568.
[http://dx.doi.org/10.1155/1998/398384] [PMID: 9926266]
[8]
Finisguerra, V.; Di Conza, G.; Di Matteo, M.; Serneels, J.; Costa, S.; Thompson, A.A.R.; Wauters, E.; Walmsley, S.; Prenen, H.; Granot, Z.; Casazza, A.; Mazzone, M. MET is required for the recruitment of anti-tumoural neutrophils. Nature, 2015, 522(7556), 349-353.
[http://dx.doi.org/10.1038/nature14407] [PMID: 25985180]
[9]
Fujishima, S.; Aikawa, N. Neutrophil-mediated tissue injury and its modulation. Intensive Care Med., 1995, 21(3), 277-285.
[http://dx.doi.org/10.1007/BF01701489] [PMID: 7790621]
[10]
Fullerton, J.N.; Gilroy, D.W. Resolution of inflammation: A new therapeutic frontier. Nat. Rev. Drug Discov., 2016, 15(8), 551-567.
[http://dx.doi.org/10.1038/nrd.2016.39] [PMID: 27020098]
[11]
Hao, J.; Chen, J.; Wang, M.; Zhao, J.; Wang, J.; Wang, X.; Li, Y.; Tang, H. Neutrophils, as “Trojan horses”, participate in the delivery of therapeutical PLGA nanoparticles into a tumor based on the chemotactic effect. Drug Deliv., 2020, 27(1), 1-14.
[http://dx.doi.org/10.1080/10717544.2019.1701141] [PMID: 31818156]
[12]
Hare, J.I.; Lammers, T.; Marianne, B. Challenges and strategies in anticanceranticancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev., 2017, 108, 25-38.
[http://dx.doi.org/10.1016/j.addr.2016.04.025] [PMID: 27137110]
[13]
Jaeschke, H. Neutrophil-mediated tissue injury in alcoholic hepatitis. Alcohol, 2002, 27(1), 23-27.
[http://dx.doi.org/10.1016/S0741-8329(02)00200-8] [PMID: 12062633]
[14]
Kang, T.; Zhu, Q.; Wei, D.; Feng, J.; Yao, J.; Jiang, T.; Song, Q.; Wei, X.; Chen, H.; Gao, X.; Chen, J. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano, 2017, 11(2), 1397-1411.
[http://dx.doi.org/10.1021/acsnano.6b06477] [PMID: 28075552]
[15]
Ley, K.; Laudanna, C.; Cybulsky, M.I.; Nourshargh, S. Getting to the site of inflammation: The leukocyte adhesion cascade updated. Nat. Rev. Immunol., 2007, 7(9), 678-689.
[http://dx.doi.org/10.1038/nri2156] [PMID: 17717539]
[16]
Mukaida, N.; Matsumoto, T.; Kenji Yokoi, A. Inhibition of neutrophil-mediated acute inflammatory injury by an antibody against interleukin-8 (Il-8). Inflamm. Res., 1998, 47(3), 151-157.
[http://dx.doi.org/10.1007/s000110050308]
[17]
Osuka, S.; Van Meir, E.G. Neutrophils traffic in cancer nanodrugs. Nat. Nanotechnol., 2017, 12(7), 616-618.
[http://dx.doi.org/10.1038/nnano.2017.82] [PMID: 28650438]
[18]
Stearns-Kurosawa, D.J. The pathogenesis of sepsis. Annu. Rev. Pathol., 2011, 6, 19-48.
[19]
Su, Y.; Wang, T.; Su, Y.; Li, M.; Zhou, J.; Zhang, W.; Wang, W. A neutrophil membrane-functionalized black phosphorus riding inflammatory signal for positive feedback and multimode cancer therapy. Mater. Horiz., 2020, 7(2), 574-585.
[http://dx.doi.org/10.1039/C9MH01068H]
[20]
Villanueva, M. Neutrophils deliver the goods. Nat. Rev. Drug Discov., 2017, 16(8), 529.
[http://dx.doi.org/10.1038/nrd.2017.133]
[21]
Xue, J.; Zhao, Z.; Zhang, L.; Xue, L.; Shen, S.; Wen, Y.; Wei, Z.; Wang, L.; Kong, L.; Sun, H.; Ping, Q.; Mo, R.; Zhang, C. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol., 2017, 12(7), 692-700.
[http://dx.doi.org/10.1038/nnano.2017.54] [PMID: 28650441]
[22]
Zernecke, A.; Bot, I.; Djalali-Talab, Y.; Shagdarsuren, E.; Bidzhekov, K.; Meiler, S.; Krohn, R.; Schober, A.; Sperandio, M.; Soehnlein, O.; Bornemann, J.; Tacke, F.; Biessen, E.A.; Weber, C. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ. Res., 2008, 102(2), 209-217.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.160697] [PMID: 17991882]
[23]
Zhang, Q.; Dehaini, D.; Zhang, Y.; Zhou, J.; Chen, X.; Zhang, L.; Fang, R.H.; Gao, W. Zhang, Liangfang Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol., 2018, 13(12), 1182-1190.
[http://dx.doi.org/10.1038/s41565-018-0254-4]
[24]
Zhou, X.; Cao, X.; Tu, H.; Zhang, Z.R.; Deng, L. Inflammation-targeted delivery of celastrol via neutrophil membrane-coated nanoparticles in the management of acute pancreatitis. Mol. Pharm., 2019, 16(3), 1397-1405.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01342] [PMID: 30753778]
[25]
Machhi, J.; Shahjin, F.; Das, S.; Patel, M.; Abdelmoaty, M.M.; Cohen, J.D.; Singh, P.A.; Baldi, A.; Bajwa, N.; Kumar, R.; Vora, L.K.; Patel, T.A.; Oleynikov, M.D.; Soni, D.; Yeapuri, P.; Mukadam, I.; Chakraborty, R.; Saksena, C.G.; Herskovitz, J.; Hasan, M.; Oupicky, D.; Das, S.; Donnelly, R.F.; Hettie, K.S.; Chang, L.; Gendelman, H.E.; Kevadiya, B.D. Nanocarrier vaccines for SARS-CoV-2. Adv. Drug Deliv. Rev., 2021, 171, 215-239.
[http://dx.doi.org/10.1016/j.addr.2021.01.002] [PMID: 33428995]
[26]
Simnani, F.Z.; Singh, D.; Patel, P.; Choudhury, A.; Sinha, A.; Nandi, A.; Samal, S.K.; Verma, S.K.; Panda, P.K. Nanocarrier vaccine therapeutics for global infectious and chronic diseases. Mater. Today, 2023.
[27]
Chen, S.; Huang, X.; Xue, Y.; Álvarez-Benedicto, E.; Shi, Y.; Chen, W.; Koo, S.; Siegwart, D.J.; Dong, Y.; Tao, W. Nanotechnology-based mRNA vaccines. Nat. Rev. Methods Primers, 2023, 3(1), 63.
[http://dx.doi.org/10.1038/s43586-023-00246-7]
[28]
Ashique, S.; Garg, A.; Bhatt, S.; Sirohi, E.; Fatima, N.; Bajwa, N.; Dua, K.; Mishra, N. Synbiotics in cervical cancer. In: Synbiotics for the Management of Cancer; Springer: Singapore, 2023; pp. 135-155.
[http://dx.doi.org/10.1007/978-981-19-7550-9_6]
[29]
Bajwa, N.; Mahal, S.; Naryal, S.; Singh, P.A.; Baldi, A. Development of novel solid nanostructured lipid carriers for bioavailability enhancement using a quality by design approach. AAPS PharmSciTech, 2022, 23(7), 253.
[http://dx.doi.org/10.1208/s12249-022-02386-7] [PMID: 36109467]
[30]
Bajwa, N.; Singh, P.A.; Naryal, S.; Sharma, T.; Sijwal, P.S.; Baldi, A. Execution of quality by design approach for preparation and optimization of inclusion complexes: In-vivo and ex-vivo assessment. Anal. Chem. Lett., 2022, 12(6), 715-729.
[http://dx.doi.org/10.1080/22297928.2022.2159521]
[31]
Hussein, M.; Mumtaz, M.; Nasir, I.; Abdullahi, A. Nanotechnology-based vaccines. Biol. Med. Nat. Prod. Chem., 2023, 12(1), 343-361.
[32]
Yi, Y.; Yu, M.; Li, W.; Zhu, D.; Mei, L.; Ou, M. Vaccine-like nanomedicine for cancer immunotherapy. J. Control. Release, 2023, 355, 760-778.
[http://dx.doi.org/10.1016/j.jconrel.2023.02.015] [PMID: 36822241]
[33]
Rana, I.; Oh, J.; Baig, J.; Moon, J.H.; Son, S.; Nam, J. Nanocarriers for cancer nano-immunotherapy. Drug Deliv. Transl. Res., 2023, 13(7), 1936-1954.
[http://dx.doi.org/10.1007/s13346-022-01241-3] [PMID: 36190661]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy