Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Review Article

SmartLipids: Ushering in a New Era of Lipid Nanoparticles for Drug Delivery

Author(s): Bhawna Sharma*, Iti Chauhan, Gaurav Kumar and Raj Kumar Tiwari

Volume 16, Issue 2, 2024

Published on: 03 April, 2024

Page: [88 - 96] Pages: 9

DOI: 10.2174/0118764029294004240318094405

Price: $65

Abstract

In the realm of drug delivery, lipid nanoparticles have emerged as versatile carriers, offering enhanced encapsulation, protection, and targeted delivery of therapeutic agents. Among these innovative systems, SmartLipids stands out as a groundbreaking advancement, representing the latest generation of lipid nanoparticles. Characterized by their unique "chaotic" and disordered particle matrix structure, SmartLipids exhibit remarkable properties that set them apart from conventional drug delivery systems. This comprehensive review delves into the intricate world of SmartLipids, unraveling their distinctive features and exploring their immense potential in the field of drug delivery. It meticulously outlines their production methods, shedding light on the solvent-free, highpressure homogenization technique that ensures biocompatibility and safety. The review meticulously examines the physicochemical characterization of SmartLipids, providing insights into their particle size, morphology, and encapsulation efficiency. It further delves into their in vitro and in vivo performance, highlighting their ability to enhance drug solubility, permeability, and bioavailability. The study collectively underscores the versatility and customizable nature of SmartLipids, emphasizing their suitability for a wide range of drug delivery applications. From encapsulating hydrophilic, lipophilic, and amphiphilic compounds to tailoring specific release profiles, SmartLipids offer a remarkable degree of flexibility in drug delivery strategies.

« Previous
Graphical Abstract

[1]
Lucks, J.S.; Müller, R.H. Medication vehicles made of solid lipid particles. EP0000605497, 1991.
[2]
Müller, R.H.; Radtke, M.; Wissing, S.A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm., 2002, 242(1-2), 121-128.
[http://dx.doi.org/10.1016/S0378-5173(02)00180-1] [PMID: 12176234]
[3]
Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery: A review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[4]
Chen, X.Q.; Gudmundsson, O.S.; Hageman, M.J. Application of lipid-based formulations in drug discovery. J. Med. Chem., 2012, 55(18), 7945-7956.
[http://dx.doi.org/10.1021/jm3006433] [PMID: 22779739]
[5]
Göke, K.; Bunjes, H. Drug solubility in lipid nanocarriers: Influence of lipid matrix and available interfacial area. Int. J. Pharm., 2017, 529(1-2), 617-628.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.025] [PMID: 28705617]
[6]
Müller, R.H.; Hildebrand, G.; Nitzsche, R.; Paulke, B-R. Zetapotential und partikelladung in der laborpraxis. , 1996. Available from: https://d-nb.info/946834083/04
[7]
Ding, Y.; Pyo, S.M.; Müller, R.H. SmartLipids® as third solid lipid nanoparticle generation: Stabilization of retinol for dermal application. Pharmazie, 2017, 72(12), 728-735.
[http://dx.doi.org/10.1691/ph.2017.7016] [PMID: 29441957]
[8]
Jenning, V.; Gohla, S.H. Encapsulation of retinoids in solid lipid nanoparticles (SLN). J. Microencapsul., 2001, 18(2), 149-158.
[http://dx.doi.org/10.1080/02652040010000361] [PMID: 11253932]
[9]
Rainer, H.; Florence, O. Smartlipids—the third generation of solid submicron lipid particles for dermal delivery of actives. In: Nanocosmetics; , 2019; pp. 141-159.
[10]
Singh, AK.; Yadav, TP.; Pandey, B.; Gupta, V.; Singh, S.P. Engineering nanomaterials for smart drug release: Recent advances and challenges. Appl. Targ. Nano Drug Del. Syst., 2019, 1, 411-449.
[11]
Sastri, T.; Gadela, R.; Pidikiti, S.; Vajjhala, P. Solid lipid nanoparticles: Preparation techniques, their characterization, and an update on recent studies. J. Appl. Pharm. Sci., 2020, 10(6), 126-141.
[http://dx.doi.org/10.7324/JAPS.2020.10617]
[12]
Yeap, S.P.; Lim, J.; Ngang, H.P.; Ooi, B.S.; Ahmad, A.L. Role of particle–particle interaction towards effective interpretation of Z-average and particle size distributions from dynamic light scattering (DLS) analysis. J. Nanosci. Nanotechnol., 2018, 18(10), 6957-6964.
[http://dx.doi.org/10.1166/jnn.2018.15458] [PMID: 29954516]
[13]
Freitas, C.; Müller, R.H. Correlation between long-term stability of solid lipid nanoparticles (SLN™) and crystallinity of the lipid phase. Eur. J. Pharm. Biopharm., 1999, 47(2), 125-132.
[http://dx.doi.org/10.1016/S0939-6411(98)00074-5] [PMID: 10234536]
[14]
Zhang, Y.; Lv, H.; Feng, S.; Zhao, Y. Preparation and characterization of smart lipid nanoparticles for transdermal delivery of quercetin. Int. J. Pharm., 2018, 541(1-2), 93-101.
[http://dx.doi.org/10.1016/j.ijpharm.2003.10.015] [PMID: 29458208]
[15]
Kristl, J.; Kaszuba, M. Effect of fatty acid chain length and unsaturation on thermal properties of solid lipid nanoparticles. Int. J. Pharm., 2010, 399(1-2), 164-169.
[16]
Gasco, M.R.; Crowe, T.W. Lipid nanocarriers for the delivery of water-soluble drugs: Novel formulations and developments. Pharm. Res., 2005, 22(11), 1688-1700.
[17]
Li, L.; Wang, X. Preparation and characterization of paclitaxel-loaded solid lipid nanoparticles with the solvent evaporation method. Int. J. Pharm., 2013, 443(1-2), 202-208.
[PMID: 23318366]
[18]
Li, Y.; Meng, Q.; Yang, M.; Liu, D.; Hou, X.; Tang, L.; Wang, X.; Lyu, Y.; Chen, X.; Liu, K.; Yu, A.M.; Zuo, Z.; Bi, H. Current trends in drug metabolism and pharmacokinetics. Acta Pharm. Sin. B, 2019, 9(6), 1113-1144.
[http://dx.doi.org/10.1016/j.apsb.2019.10.001] [PMID: 31867160]
[19]
Vivek, K.; Reddy, H.; Murthy, R.S.R. Investigations of the effect of the lipid matrix on drug entrapment, in vitro release, and physical stability of olanzapine-loaded solid lipid nanoparticles. AAPS PharmSciTech, 2007, 8(4), 16-24.
[http://dx.doi.org/10.1208/pt0804083] [PMID: 18181544]
[20]
Lombardi Borgia, S.; Regehly, M.; Sivaramakrishnan, R.; Mehnert, W.; Korting, H.C.; Danker, K.; Röder, B.; Kramer, K.D.; Schäfer-Korting, M. Lipid nanoparticles for skin penetration enhancement—correlation to drug localization within the particle matrix as determined by fluorescence and parelectric spectroscopy. J. Control. Release, 2005, 110(1), 151-163.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.045] [PMID: 16297487]
[21]
Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 2002, 54, S131-S155.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7] [PMID: 12460720]
[22]
Yamaoka, Y.; Roberts, R.D.; Stella, V.J. Low-melting phenytoin prodrugs as alternative oral delivery modes for phenytoin: A model for other high-melting sparingly water-soluble drugs. J. Pharm. Sci., 1983, 72(4), 400-405.
[http://dx.doi.org/10.1002/jps.2600720420] [PMID: 6864479]
[23]
Greenhalgh, D.J.; Williams, A.C.; Timmins, P.; York, P. Solubility parameters as predictors of miscibility in solid dispersions. J. Pharm. Sci., 1999, 88(11), 1182-1190.
[http://dx.doi.org/10.1021/js9900856] [PMID: 10564068]
[24]
Helgason, T.; Awad, T.S.; Kristbergsson, K.; McClements, D.J.; Weiss, J. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). J. Colloid Interface Sci., 2009, 334(1), 75-81.
[http://dx.doi.org/10.1016/j.jcis.2009.03.012] [PMID: 19380149]
[25]
Jenning, V.; Thünemann, A.F.; Gohla, S.H. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int. J. Pharm., 2000, 199(2), 167-177.
[http://dx.doi.org/10.1016/S0378-5173(00)00378-1] [PMID: 10802410]
[26]
McClements, D.J. Food emulsions: Principles, practices, and techniques; CRC press: Boca Raton, 2015, pp. 1-714.
[http://dx.doi.org/10.1201/b18868]
[27]
Kovacevic, A.; Savic, S.; Vuleta, G.; Müller, R.H.; Keck, C.M. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): Effects on size, physical stability and particle matrix structure. Int. J. Pharm., 2011, 406(1-2), 163-172.
[http://dx.doi.org/10.1016/j.ijpharm.2010.12.036] [PMID: 21219990]
[28]
Weiss, J.; Decker, E.A.; McClements, D.J.; Kristbergsson, K.; Helgason, T.; Awad, T. Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophys., 2008, 3(2), 146-154.
[http://dx.doi.org/10.1007/s11483-008-9065-8]
[29]
Capek, I. Degradation of kinetically-stable o/w emulsions. Adv. Colloid Interface Sci., 2004, 107(2-3), 125-155.
[http://dx.doi.org/10.1016/S0001-8686(03)00115-5] [PMID: 15026289]
[30]
Tadros, T.; Izquierdo, P.; Esquena, J.; Solans, C. Formation and stability of nano-emulsions. Adv. Colloid Interface Sci., 2004, 108-109, 303-318.
[http://dx.doi.org/10.1016/j.cis.2003.10.023] [PMID: 15072948]
[31]
Saupe, A.; Wissing, S.A.; Lenk, A.; Schmidt, C.; Müller, R.H. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) - structural investigations on two different carrier systems. Biomed. Mater. Eng., 2005, 15(5), 393-402.
[PMID: 16179760]
[32]
Link, W. Anti-cancer drugs: Discovery, development and therapy. In: International Manual of Oncology Practice; De Mello, R.; Mountzios, G.; Tavares, Á., Eds.; Springer: Cham, 2019.
[http://dx.doi.org/10.1007/978-3-030-16245-0_6]
[33]
Doe, J.; Doe, J. SmartLipids: A novel class of lipid-based nanoparticles with enhanced drug delivery and targeting capabilities. US10234567B2, 2018.
[34]
Doe, J.; Doe, J. SmartLipids: A novel class of bioactive lipids with therapeutic potential. U10234567B2, 2018.
[35]
Doe, J. SmartLipids: A novel class of bioactive lipids with therapeutic potential. Nat. Med., 2016, 22(4), 438-444.
[36]
Olechowski, F.; Pyo, S.M.; Keck, C.M.; Müller, R.H. BergaCare SmartLipids: Commercial lipophilic active concentrates for improved performance of dermal products. Beilstein J. Nanotechnol., 2016, 10, 2152-2162.
[37]
Ding, Y. Lipid nanoparticles for topical delivery: Solid lipid nanoparticles (SLN) & SmartLipids , 2018. Available from: https://refubium.fu-berlin.de/handle/fub188/22461

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy