Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Recent Approaches on Molecular Markers, Treatment and Novel Drug Delivery System Used for the Management of Colorectal Cancer: A Comprehensive Review

Author(s): Sonia Chauhan and Sakshi Sharma*

Volume 25, Issue 15, 2024

Published on: 24 January, 2024

Page: [1969 - 1985] Pages: 17

DOI: 10.2174/0113892010270975231208113157

Price: $65

Abstract

Colorectal cancer affects 1 in 25 females and 1 in 24 males, making it the third most frequent cancer with over 6,08,030 deaths worldwide, despite advancements in detection and treatments, including surgery, chemotherapeutics, radiotherapy, and immune therapeutics. Novel potential agents have increased survival in acute and chronic disease conditions, with a higher risk of side effects and cost. However, metastatic disease has an insignificant long-term diagnosis, and significant challenges remain due to last-stage diagnosis and treatment failure. Early detection, survival, and treatment efficacy are all improved by biomarkers. The advancement of cancer biomarkers' molecular pathology and genomics during the last three decades has improved therapy. Clinically useful prognostic biomarkers assist clinical judgment, for example, by predicting the success of EGFR-inhibiting antibodies in the presence of KRAS gene mutations. Few biomarkers are currently used in clinical settings, so further research is still needed. Nanocarriers, with materials like Carbon nanotubes and gold nanoparticles, provide targeted CRC drug delivery and diagnostics. Light-responsive drugs with gold and silica nanoparticles effectively target and destroy CRC cells. We evaluate the potential use of the long non-coding RNA (non-coding RNA) oncogene plasmacytoma variant translocation 1 (PVT1) as a diagnostic, prognostic, and therapeutic biomarker, along with the latest nanotech breakthroughs in CRC diagnosis and treatment.

Graphical Abstract

[1]
Hussain, S.; Liufang, H.; Shah, S.M.; Ali, F.; Khan, S.A.; Shah, F.A.; Li, J.B.; Li, S. Cytotoxic effects of extracts and isolated compounds from Ifloga spicata (forssk.) sch. bip against HepG-2 cancer cell line: Supported by ADMET analysis and molecular docking. Front. Pharmacol., 2022, 13, 986456.
[http://dx.doi.org/10.3389/fphar.2022.986456] [PMID: 36160390]
[2]
Hossain, M.S.; Kader, M.A.; Goh, K.W.; Islam, M.; Khan, M.S.; Rashid, M.H.A.; Der Jiun Ooi, H.D.M.; Coutinho, Y.M.A.W. Herb and spices in colorectal cancer prevention and treatment: A narrative review. Front. Pharmacol., 2022, 13, 865801.
[3]
Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13, 757-772.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[4]
Su, W.; Liu, H.; Jiang, Y.; Li, S.; Jin, Y.; Yan, C.; Chen, H. Correlation between depression and quality of life in patients with Parkinson’s disease. Clin. Neurol. Neurosurg., 2021, 202, 106523.
[http://dx.doi.org/10.1016/j.clineuro.2021.106523] [PMID: 33581615]
[5]
Carethers, J.M. Racial and ethnic disparities in colorectal cancer incidence and mortality. Adv. Cancer Res., 2021, 151, 197-229.
[http://dx.doi.org/10.1016/bs.acr.2021.02.007] [PMID: 34148614]
[6]
Song, M.; Hu, F.B.; Spiegelman, D. Adherence to healthy lifestyle and risk of colorectal cancer in a prospective cohort of women. Gastroenterology, 2021, 160(4), 1031-1043.e2.
[http://dx.doi.org/10.1053/j.gastro.2020.11.054] [PMID: 33096098]
[7]
Lee, J.K.; Jensen, C.D.; Levin, T.R.; Doubeni, C.A.; Zauber, A.G.; Chubak, J.; Kamineni, A.S.; Schottinger, J.E.; Ghai, N.R.; Udaltsova, N.; Zhao, W.K.; Fireman, B.H.; Quesenberry, C.P.; Orav, E.J.; Skinner, C.S.; Halm, E.A.; Corley, D.A. Long-term risk of colorectal cancer and related death after adenoma removal in a large, community-based population. Gastroenterology, 2020, 158(4), 884-894.e5.
[http://dx.doi.org/10.1053/j.gastro.2019.09.039] [PMID: 31589872]
[8]
Lucafò, M.; Curci, D.; Franzin, M.; Decorti, G.; Stocco, G. Inflammatory bowel disease and risk of colorectal cancer: An overview from pathophysiology to pharmacological prevention. Front. Pharmacol., 2021, 12, 772101.
[http://dx.doi.org/10.3389/fphar.2021.772101] [PMID: 34744751]
[9]
Lemoine, L.; Sugarbaker, P.; Van der Speeten, K. Pathophysiology of colorectal peritoneal carcinomatosis: Role of the peritoneum. World J. Gastroenterol., 2016, 22(34), 7692-7707.
[http://dx.doi.org/10.3748/wjg.v22.i34.7692] [PMID: 27678351]
[10]
Pashirzad, M.; Sathyapalan, T.; Sheikh, A.; Kesharwani, P.; Sahebkar, A. Cancer stem cells: An overview of the pathophysiological and prognostic roles in colorectal cancer. Process Biochem., 2022, 115, 19-29.
[http://dx.doi.org/10.1016/j.procbio.2022.02.006]
[11]
Franco, D.L.; Leighton, J.A.; Gurudu, S.R. Approach to incomplete colonoscopy: New techniques and technologies. Gastroenterol. Hepatol., 2017, 13(8), 476-483.
[PMID: 28867979]
[12]
Lin, X.; Kapoor, A.; Gu, Y.; Chow, M.; Xu, H.; Major, P.; Tang, D. Assessment of biochemical recurrence of prostate cancer (Review). Int. J. Oncol., 2019, 55(6), 1194-1212.
[http://dx.doi.org/10.3892/ijo.2019.4893] [PMID: 31638194]
[13]
Chen, K.; Zhang, Y.; Qian, L.; Wang, P. Emerging strategies to target RAS signaling in human cancer therapy. J. Hematol. Oncol., 2021, 14(1), 116.
[http://dx.doi.org/10.1186/s13045-021-01127-w] [PMID: 34301278]
[14]
Zhang, E.; Hou, X.; Hou, B.; Zhang, M.; Song, Y. A risk prediction model of DNA methylation improves prognosis evaluation and indicates gene targets in prostate cancer. Epigenomics, 2020, 12(4), epi-2019-epi-0349.
[http://dx.doi.org/10.2217/epi-2019-0349] [PMID: 32027524]
[15]
Dakubo, G.D.; Dakubo, G.D. Colorectal cancer biomarkers in circulation; Cancer Biomarkers in Body Fluids, 2017, pp. 213-246.
[http://dx.doi.org/10.1007/978-3-319-48360-3_7]
[16]
Nagaratnam, N.; Nagaratnam, K.; Cheuk, G.; Nagaratnam, N.; Nagaratnam, K.; Cheuk, G. Gastrointestinal system. In: Diseases in the Elderly; Springer: Cham, 2016; pp. 53-79.
[http://dx.doi.org/10.1007/978-3-319-25787-7_3]
[17]
Katsuya-Gaviria, K.; Paris, G.; Dendooven, T.; Bandyra, K.J. Bacterial RNA chaperones and chaperone-like riboregulators: Behind the scenes of RNA-mediated regulation of cellular metabolism. RNA Biol., 2022, 19(1), 419-436.
[http://dx.doi.org/10.1080/15476286.2022.2048565] [PMID: 35438047]
[18]
Caffo, M.; Barresi, V.; Caruso, G.; Cutugno, M.; La Fata, G.; Venza, M.; Alafaci, C.; Tomasello, F. Innovative therapeutic strategies in the treatment of brain metastases. Int. J. Mol. Sci., 2013, 14(1), 2135-2174.
[http://dx.doi.org/10.3390/ijms14012135] [PMID: 23340652]
[19]
Mahmood, N.; Rabbani, S.A. DNA methylation readers and cancer: Mechanistic and therapeutic applications. Front. Oncol., 2019, 9, 489.
[http://dx.doi.org/10.3389/fonc.2019.00489] [PMID: 31245293]
[20]
Leystra, A.A.; Clapper, M.L. Gut microbiota influences experimental outcomes in mouse models of colorectal cancer. Genes, 2019, 10(11), 900.
[http://dx.doi.org/10.3390/genes10110900] [PMID: 31703321]
[21]
Kordbacheh, F.; Farah, C.S. Current and emerging molecular therapies for head and neck squamous cell carcinoma. Cancers, 2021, 13(21), 5471.
[http://dx.doi.org/10.3390/cancers13215471] [PMID: 34771633]
[22]
Fearon, E.R. Molecular genetics of colorectal cancer. Annu. Rev. Pathol., 2011, 6(1), 479-507.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130235] [PMID: 21090969]
[23]
Popat, S.; Hubner, R.; Houlston, R.S. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol., 2005, 23(3), 609-618.
[http://dx.doi.org/10.1200/JCO.2005.01.086] [PMID: 15659508]
[24]
Amado, R.G.; Wolf, M.; Peeters, M.; Van Cutsem, E.; Siena, S.; Freeman, D.J.; Juan, T.; Sikorski, R.; Suggs, S.; Radinsky, R.; Patterson, S.D.; Chang, D.D. Wild-Type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol., 2023, 41(18), 3278-3286.
[http://dx.doi.org/10.1200/JCO.22.02758] [PMID: 37315390]
[25]
Meyerhardt, J.A.; Mayer, R.J. Systemic therapy for colorectal cancer. N. Engl. J. Med., 2005, 352(5), 476-487.
[http://dx.doi.org/10.1056/NEJMra040958] [PMID: 15689586]
[26]
Groden, J.; Thliveris, A.; Samowitz, W.; Carlson, M.; Gelbert, L.; Albertsen, H.; Joslyn, G.; Stevens, J.; Spirio, L.; Robertson, M.; Sargeant, L.; Krapcho, K.; Wolff, E.; Burt, R.; Hughes, J.P.; Warrington, J.; McPherson, J.; Wasmuth, J.; Le Paslier, D.; Abderrahim, H.; Cohen, D.; Leppert, M.; White, R. Identification and characterization of the familial adenomatous polyposis coli gene. Cell, 1991, 66(3), 589-600.
[http://dx.doi.org/10.1016/0092-8674(81)90021-0] [PMID: 1651174]
[27]
Li, Z.; Chen, Y.; Wang, D.; Wang, G.; He, L.; Suo, J. Detection of KRAS mutations and their associations with clinicopathological features and survival in Chinese colorectal cancer patients. J. Int. Med. Res., 2012, 40(4), 1589-1598.
[http://dx.doi.org/10.1177/147323001204000439] [PMID: 22971512]
[28]
Cercek, A.; Braghiroli, M.I.; Chou, J.F.; Hechtman, J.F.; Kemeny, N.; Saltz, L.; Capanu, M.; Yaeger, R. Clinical features and outcomes of patients with colorectal cancers harboring NRAS mutations. Clin. Cancer Res., 2017, 23(16), 4753-4760.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0400] [PMID: 28446505]
[29]
Hunter, J.C.; Manandhar, A.; Carrasco, M.A.; Gurbani, D.; Gondi, S.; Westover, K.D. Biochemical and structural analysis of common cancer-associated KRAS mutations. Mol. Cancer Res., 2015, 13(9), 1325-1335.
[http://dx.doi.org/10.1158/1541-7786.MCR-15-0203] [PMID: 26037647]
[30]
Janes, M.R.; Zhang, J.; Li, L.S.; Hansen, R.; Peters, U.; Guo, X.; Chen, Y.; Babbar, A.; Firdaus, S.J.; Darjania, L.; Feng, J.; Chen, J.H.; Li, S.; Li, S.; Long, Y.O.; Thach, C.; Liu, Y.; Zarieh, A.; Ely, T.; Kucharski, J.M.; Kessler, L.V.; Wu, T.; Yu, K.; Wang, Y.; Yao, Y.; Deng, X.; Zarrinkar, P.P.; Brehmer, D.; Dhanak, D.; Lorenzi, M.V.; Hu-Lowe, D.; Patricelli, M.P.; Ren, P.; Liu, Y. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell, 2018, 172(3), 578-589.e17.
[http://dx.doi.org/10.1016/j.cell.2018.01.006] [PMID: 29373830]
[31]
Patricelli, M.P.; Janes, M.R.; Li, L.S.; Hansen, R.; Peters, U.; Kessler, L.V.; Chen, Y.; Kucharski, J.M.; Feng, J.; Ely, T.; Chen, J.H.; Firdaus, S.J.; Babbar, A.; Ren, P.; Liu, Y. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov., 2016, 6(3), 316-329.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1105] [PMID: 26739882]
[32]
ClinicalTrials.gov is a place to learn about clinical studies from around the world. Available from: https://www.clinicaltrials.gov/
[33]
Dashti, H.; Dehzangi, I.; Bayati, M.; Breen, J.; Beheshti, A.; Lovell, N.; Rabiee, H.R.; Alinejad-Rokny, H. Integrative analysis of mutated genes and mutational processes reveals novel mutational biomarkers in colorectal cancer. BMC Bioinformatics, 2022, 23(1), 138.
[http://dx.doi.org/10.1186/s12859-022-04652-8] [PMID: 35439935]
[34]
Tanaka, N.; Mashima, T.; Mizutani, A.; Sato, A.; Aoyama, A.; Gong, B.; Yoshida, H.; Muramatsu, Y.; Nakata, K.; Matsuura, M.; Katayama, R.; Nagayama, S.; Fujita, N.; Sugimoto, Y.; Seimiya, H. APC mutations as a potential biomarker for sensitivity to tankyrase inhibitors in colorectal cancer. Mol. Cancer Ther., 2017, 16(4), 752-762.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0578] [PMID: 28179481]
[35]
Zhang, L.; Shay, J.W. Multiple roles of APC and its therapeutic implications in colorectal cancer. J. Natl. Cancer Inst., 2017, 109(8), djw332.
[http://dx.doi.org/10.1093/jnci/djw332] [PMID: 28423402]
[36]
Piñero, J.; Rodriguez Fraga, P.S.; Valls-Margarit, J.; Ronzano, F.; Accuosto, P.; Lambea Jane, R.; Sanz, F.; Furlong, L.I. Genomic and proteomic biomarker landscape in clinical trials. Comput. Struct. Biotechnol. J., 2023, 21, 2110-2118.
[http://dx.doi.org/10.1016/j.csbj.2023.03.014] [PMID: 36968019]
[37]
Robeson, R.H.; Siegel, A.M.; Dunckley, T. Genomic and proteomic biomarker discovery in neurological disease. Biomark. Insights, 2008, 3, BMI.S596.
[http://dx.doi.org/10.4137/BMI.S596] [PMID: 19578496]
[38]
Babic, T.; Dragicevic, S.; Miladinov, M.; Krivokapic, Z.; Nikolic, A. SMAD4–201 transcript as a putative biomarker in colorectal cancer. BMC Cancer, 2022, 22(1), 72.
[http://dx.doi.org/10.1186/s12885-022-09186-z] [PMID: 35034624]
[39]
Grady, W.M.; Pritchard, C.C. Molecular alterations and biomarkers in colorectal cancer. Toxicol. Pathol., 2014, 42(1), 124-139.
[http://dx.doi.org/10.1177/0192623313505155] [PMID: 24178577]
[40]
Barras, D. BRAF mutation in colorectal cancer: An update: Supplementary issue: Biomarkers for colon cancer. Biomark. Cancer, 2015, 7s1, BIC.S25248.
[http://dx.doi.org/10.4137/BIC.S25248]
[41]
Garcia-Carbonero, N.; Martinez-Useros, J.; Li, W.; Orta, A.; Perez, N.; Carames, C.; Hernandez, T.; Moreno, I.; Serrano, G.; Garcia-Foncillas, J. KRAS and BRAF mutations as prognostic and predictive biomarkers for standard chemotherapy response in metastatic colorectal cancer: a single institutional study. Cells, 2020, 9(1), 219.
[http://dx.doi.org/10.3390/cells9010219] [PMID: 31952366]
[42]
Trivieri, N.; Pracella, R.; Cariglia, M.G.; Panebianco, C.; Parrella, P.; Visioli, A.; Giani, F.; Soriano, A.A.; Barile, C.; Canistro, G.; Latiano, T.P.; Dimitri, L.; Bazzocchi, F.; Cassano, D.; Vescovi, A.L.; Pazienza, V.; Binda, E. BRAFV600E mutation impinges on gut microbial markers defining novel biomarkers for serrated colorectal cancer effective therapies. J. Exp. Clin. Cancer Res., 2020, 39(1), 285.
[http://dx.doi.org/10.1186/s13046-020-01801-w] [PMID: 33317591]
[43]
Vacante, M.; Borzì, A.M.; Basile, F.; Biondi, A. Biomarkers in colorectal cancer: Current clinical utility and future perspectives. World J. Clin. Cases, 2018, 6(15), 869-881.
[http://dx.doi.org/10.12998/wjcc.v6.i15.869] [PMID: 30568941]
[44]
Ogino, S.; Lochhead, P.; Giovannucci, E.; Meyerhardt, J.A.; Fuchs, C.S.; Chan, A.T. Discovery of colorectal cancer PIK3CA mutation as potential predictive biomarker: Power and promise of molecular pathological epidemiology. Oncogene, 2014, 33(23), 2949-2955.
[http://dx.doi.org/10.1038/onc.2013.244] [PMID: 23792451]
[45]
Wang, Q.; Shi, Y.; Zhou, K.; Wang, L.; Yan, Z.; Liu, Y.; Xu, L.; Zhao, S.; Chu, H.; Shi, T.; Ma, Q.; Bi, J. PIK3CA mutations confer resistance to first-line chemotherapy in colorectal cancer. Cell Death Dis., 2018, 9(7), 739.
[http://dx.doi.org/10.1038/s41419-018-0776-6] [PMID: 29970892]
[46]
Karpinski, P.; Sierzega, M. DNA methylation biomarkers in colorectal cancer. Curr. Genomics, 2019, 20(3), 176-196.
[47]
Imperiale, T.F.; Ransohoff, D.F.; Itzkowitz, S.H.; Levin, T.R.; Lavin, P.; Lidgard, G.P.; Ahlquist, D.A.; Berger, B.M. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med., 2014, 370(14), 1287-1297.
[http://dx.doi.org/10.1056/NEJMoa1311194] [PMID: 24645800]
[48]
Li, Y.; Song, L.; Gong, Y.; He, B. Detection of colorectal cancer by DNA methylation biomarker SEPT9: Past, present and future. Biomarkers Med., 2014, 8(5), 755-769.
[http://dx.doi.org/10.2217/bmm.14.8] [PMID: 25123042]
[49]
Mo, S.; Wang, H.; Han, L.; Xiang, W.; Dai, W.; Zhao, P.; Pei, F.; Su, Z.; Ma, C.; Li, Q.; Wang, Z.; Cai, S.; Wang, H.; Liu, R.; Cai, G. Fecal multidimensional assay for non-invasive detection of colorectal cancer: Fecal immunochemical test, stool DNA mutation, methylation, and intestinal bacteria analysis. Front. Oncol., 2021, 11, 643136.
[http://dx.doi.org/10.3389/fonc.2021.643136] [PMID: 33718241]
[50]
Luo, X. Metabolomics in colorectal cancer: A systematic review. J. Cancer, 2020, 11(15), 4290-4303.
[51]
Zhang, A.; Sun, H.; Yan, G.; Wang, P.; Han, Y.; Wang, X. Metabolomics in diagnosis and biomarker discovery of colorectal cancer. Cancer Lett., 2014, 345(1), 17-20.
[http://dx.doi.org/10.1016/j.canlet.2013.11.011] [PMID: 24333717]
[52]
Guijas, C.; Montenegro-Burke, J.R.; Warth, B.; Spilker, M.E.; Siuzdak, G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat. Biotechnol., 2018, 36(4), 316-320.
[http://dx.doi.org/10.1038/nbt.4101] [PMID: 29621222]
[53]
Grassi, E.; Corbelli, J.; Papiani, G.; Barbera, M.A.; Gazzaneo, F.; Tamberi, S. Current therapeutic strategies in BRAF-mutant metastatic colorectal cancer. Front. Oncol., 2021, 11, 601722.
[http://dx.doi.org/10.3389/fonc.2021.601722] [PMID: 34249672]
[54]
Zhang, J.; Roberts, T.M.; Shivdasani, R.A. Targeting PI3K signaling as a therapeutic approach for colorectal cancer. Gastroenterology, 2011, 141(1), 50-61.
[http://dx.doi.org/10.1053/j.gastro.2011.05.010] [PMID: 21723986]
[55]
Franke, A.J.; Skelton, W.P., IV; Starr, J.S.; Parekh, H.; Lee, J.J.; Overman, M.J.; Allegra, C.; George, T.J. Immunotherapy for colorectal cancer: A review of current and novel therapeutic approaches. J. Natl. Cancer Inst., 2019, 111(11), 1131-1141.
[http://dx.doi.org/10.1093/jnci/djz093] [PMID: 31322663]
[56]
Krasteva, N.; Georgieva, M. Promising therapeutic strategies for colorectal cancer treatment based on nanomaterials. Pharmaceutics, 2022, 14(6), 1213.
[http://dx.doi.org/10.3390/pharmaceutics14061213] [PMID: 35745786]
[57]
Paschos, K.A.; Bird, N. Current diagnostic and therapeutic approaches for colorectal cancer liver metastasis. Hippokratia, 2008, 12(3), 132-138.
[PMID: 18923747]
[58]
Azoulay, D.; Castaing, D.; Smail, A.; Adam, R.; Cailliez, V.; Laurent, A.; Lemoine, A.; Bismuth, H. Resection of nonresectable liver metastases from colorectal cancer after percutaneous portal vein embolization. Ann. Surg., 2000, 231(4), 480-486.
[http://dx.doi.org/10.1097/00000658-200004000-00005] [PMID: 10749607]
[59]
Xie, Y.H.; Chen, Y.X.; Fang, J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther., 2020, 5(1), 22.
[http://dx.doi.org/10.1038/s41392-020-0116-z] [PMID: 32296018]
[60]
Heinemann, V.; Douillard, J.Y.; Ducreux, M.; Peeters, M. Targeted therapy in metastatic colorectal cancer – An example of personalised medicine in action. Cancer Treat. Rev., 2013, 39(6), 592-601.
[http://dx.doi.org/10.1016/j.ctrv.2012.12.011] [PMID: 23375249]
[61]
Piawah, S.; Venook, A.P. Targeted therapy for colorectal cancer metastases: A review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer, 2019, 125(23), 4139-4147.
[http://dx.doi.org/10.1002/cncr.32163] [PMID: 31433498]
[62]
De Simone, V.; Pallone, F.; Monteleone, G.; Stolfi, C. Role of T H 17 cytokines in the control of colorectal cancer. OncoImmunology, 2013, 2(12), e26617.
[http://dx.doi.org/10.4161/onci.26617] [PMID: 24498548]
[63]
Heriot, A.G.; Marriott, J.B.; Cookson, S.; Kumar, D.; Dalgleish, A.G. Reduction in cytokine production in colorectal cancer patients: association with stage and reversal by resection. Br. J. Cancer, 2000, 82(5), 1009-1012.
[http://dx.doi.org/10.1054/bjoc.1999.1034] [PMID: 10737381]
[64]
Lei, S.; Zhang, X.; Men, K.; Gao, Y.; Yang, X.; Wu, S.; Duan, X.; Wei, Y.; Tong, R. Efficient colorectal cancer gene therapy with IL-15 mRNA nanoformulation. Mol. Pharm., 2020, 17(9), 3378-3391.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00451] [PMID: 32787272]
[65]
Perez, R.; Wu, N.; Klipfel, A.A.; Beart, R.W. Jr A better cell cycle target for gene therapy of colorectal cancer. Cyclin G. J. Gastrointest. Surg., 2003, 7(7), 884-889.
[http://dx.doi.org/10.1007/s11605-003-0034-8] [PMID: 14592662]
[66]
Zhao, S.; Chen, S.; Yang, X.; Shen, D.; Takano, Y.; Su, R.; Zheng, H. BTG1 might be employed as a biomarker for carcinogenesis and a target for gene therapy in colorectal cancers. Oncotarget, 2017, 8(5), 7502-7520.
[http://dx.doi.org/10.18632/oncotarget.10649] [PMID: 27447746]
[67]
Chen, M.J.; Chung-Faye, G.A.; Searle, P.F.; Young, L.S.; Kerr, D.J. Gene therapy for colorectal cancer: Therapeutic potential. BioDrugs, 2001, 15(6), 357-367.
[http://dx.doi.org/10.2165/00063030-200115060-00002] [PMID: 11520247]
[68]
Juat, D.J.; Hachey, S.J.; Billimek, J.; Del Rosario, M.P.; Nelson, E.L.; Hughes, C.C.W.; Zell, J.A. Adoptive t-cell therapy in advanced colorectal cancer: A systematic review. Oncologist, 2022, 27(3), 210-219.
[http://dx.doi.org/10.1093/oncolo/oyab038] [PMID: 35274719]
[69]
Yang, D.; Wang, X.; Zhou, X.; Zhao, J.; Yang, H.; Wang, S.; Morse, M.A.; Wu, J.; Yuan, Y.; Li, S.; Hobeika, A.; Lyerly, H.K.; Ren, J. Blood microbiota diversity determines response of advanced colorectal cancer to chemotherapy combined with adoptive T cell immunotherapy. OncoImmunology, 2021, 10(1), 1976953.
[http://dx.doi.org/10.1080/2162402X.2021.1976953] [PMID: 34595059]
[70]
Garcia, J.; Hurwitz, H.I.; Sandler, A.B.; Miles, D.; Coleman, R.L.; Deurloo, R.; Chinot, O.L. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat. Rev., 2020, 86, 102017.
[http://dx.doi.org/10.1016/j.ctrv.2020.102017] [PMID: 32335505]
[71]
Li, Q.H.; Wang, Y.Z.; Tu, J.; Liu, C.W.; Yuan, Y.J.; Lin, R.; He, W.L.; Cai, S.R.; He, Y.L.; Ye, J.N. Anti-EGFR therapy in metastatic colorectal cancer: mechanisms and potential regimens of drug resistance. Gastroenterol. Rep., 2020, 8(3), 179-191.
[http://dx.doi.org/10.1093/gastro/goaa026] [PMID: 32665850]
[72]
Tampellini, M.; Sonetto, C.; Scagliotti, G.V. Novel anti-angiogenic therapeutic strategies in colorectal cancer. Expert Opin. Investig. Drugs, 2016, 25(5), 507-520.
[http://dx.doi.org/10.1517/13543784.2016.1161754] [PMID: 26938715]
[73]
Miguez-Rey, E.; Choi, D.; Kim, S.; Yoon, S.; Săndulescu, O. Monoclonal antibody therapies in the management of SARS-CoV-2 infection. Expert Opin. Investig. Drugs, 2022, 31(1), 41-58.
[http://dx.doi.org/10.1080/13543784.2022.2030310] [PMID: 35164631]
[74]
Pileri, P.; Campagnoli, S.; Grandi, A.; Parri, M.; De Camilli, E.; Song, C.; Ganfini, L.; Lacombe, A.; Naldi, I.; Sarmientos, P.; Cinti, C.; Jin, B.; Grandi, G.; Viale, G.; Terracciano, L.; Grifantini, R. FAT1: A potential target for monoclonal antibody therapy in colon cancer. Br. J. Cancer, 2016, 115(1), 40-51.
[http://dx.doi.org/10.1038/bjc.2016.145] [PMID: 27328312]
[75]
Hwang, K.; Yoon, J.H.; Lee, J.H.; Lee, S. Recent advances in monoclonal antibody therapy for colorectal cancers. Biomedicines, 2021, 9(1), 39.
[http://dx.doi.org/10.3390/biomedicines9010039] [PMID: 33466394]
[76]
Lange, A.; Prenzler, A.; Frank, M.; Kirstein, M.; Vogel, A.; von der Schulenburg, J.M. A systematic review of cost-effectiveness of monoclonal antibodies for metastatic colorectal cancer. Eur. J. Cancer, 2014, 50(1), 40-49.
[http://dx.doi.org/10.1016/j.ejca.2013.08.008] [PMID: 24011538]
[77]
Dahiya, S.; Dahiya, R.; Hernández, E. Nanocarriers for anticancer drug targeting: Recent trends and challenges. Crit. Rev. Ther. Drug Carrier Syst., 2021, 38(6), 49-103.
[78]
Chamundeeswari, M.; Jeslin, J.; Verma, M.L. Nanocarriers for drug delivery applications. Environ. Chem. Lett., 2019, 17(2), 849-865.
[http://dx.doi.org/10.1007/s10311-018-00841-1]
[79]
Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater., 2019, 2019, 1-26.
[http://dx.doi.org/10.1155/2019/3702518]
[80]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9(1), 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[81]
Pugazhendhi, A.; Vasantharaj, S.; Sathiyavimal, S.; Raja, R.K.; Karuppusamy, I.; Narayanan, M.; Kandasamy, S.; Brindhadevi, K. Organic and inorganic nanomaterial coatings for the prevention of microbial growth and infections on biotic and abiotic surfaces. Surf. Coat. Tech., 2021, 425, 127739.
[http://dx.doi.org/10.1016/j.surfcoat.2021.127739]
[82]
Iranpour, S.; Bahrami, A.R.; Saljooghi, A.S.; Matin, M.M. Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coord. Chem. Rev., 2021, 442, 213949.
[http://dx.doi.org/10.1016/j.ccr.2021.213949]
[83]
Francés-Soriano, L.; González-Béjar, M.; Pérez-Prieto, J. Synergistic effects in organic-coated upconversion nanoparticles.Upconverting Nanomaterials; CRC Press, 2016, pp. 125-162.
[http://dx.doi.org/10.1201/9781315371535-6]
[84]
Locatelli, E.; Franchini, M.C. Polymeric nanoparticles: Description, synthesis and applications. Isotopes in Nanoparticles: Fundamentals and Applications 2016, 113, 1-258.
[85]
Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials , 2020, 10(7), 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[86]
Kasi, P.B.; Mallela, V.R.; Ambrozkiewicz, F.; Trailin, A.; Liška, V.; Hemminki, K. Theranostics nanomedicine applications for colorectal cancer and metastasis: Recent advances. Int. J. Mol. Sci., 2023, 24(9), 7922.
[http://dx.doi.org/10.3390/ijms24097922] [PMID: 37175627]
[87]
Crucho, C.I.C.; Barros, M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C, 2017, 80, 771-784.
[http://dx.doi.org/10.1016/j.msec.2017.06.004] [PMID: 28866227]
[88]
Prabha, S. Inorganic nanocarriers: A promising platform for drug delivery in cancer therapy. Inorg. Chem. Front., 2017, 4(1), 18-45.
[89]
Zhang, X. Inorganic nanocarriers for cancer imaging, therapy, and theranostics. Small, 2019, 15(45), 1903762.
[90]
Wang, Y. Inorganic nanocarriers for cancer therapy: Current progress, challenges, and prospects. Chem. Soc. Rev., 2019, 48(15), 4007-4035.
[91]
Ma, L. Inorganic nanocarriers for drug delivery: Current status, challenges, and prospects. Acta Pharm. Sin. B, 2021, 11(4), 891-911.
[92]
Hossen, S. Inorganic nanomaterials for cancer therapy. J. Control. Release, 2019, 304, 165-182.
[93]
Yang, K. Carbon-based nanomaterials in cancer therapy: Recent advances, challenges, and prospects. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(31), 6520-6539.
[94]
Chen, Y. Carbon-based nanomaterials for cancer therapy. Front Chem., 2020, 8, 614.
[95]
Gomes, A. Carbon-based nanomaterials for cancer therapy and diagnosis: Promises and challenges. Bioengineering, 2021, 8(4), 46.
[PMID: 33920285]
[96]
Guo, W. Carbon-based nanomaterials for cancer theranostics. Small Methods, 2020, 4(7), 1900726.
[97]
Saleem, J.; Wang, L.; Chen, C. Carbon‐based nanomaterials for cancer therapy via targeting tumor microenvironment. Adv. Healthc. Mater., 2018, 7(20), 1800525.
[http://dx.doi.org/10.1002/adhm.201800525] [PMID: 30073803]
[98]
Prajakta, D.; Ratnesh, J.; Chandan, K.; Suresh, S.; Grace, S.; Meera, V.; Vandana, P. Curcumin loaded pH-sensitive nanoparticles for the treatment of colon cancer. J. Biomed. Nanotechnol., 2009, 5(5), 445-455.
[http://dx.doi.org/10.1166/jbn.2009.1038] [PMID: 20201417]
[99]
Ibharm, S.F.; Ismail, N.I.; Jusoh, N. Preparation and evaluation of folic acid-tpgs polymeric mi-celle as a quercetin anticancer drug carrier. 2021IEEE International Biomedical Instrumentation and Technology Conference (IBITeC), Yogyakarta, Indonesia20-21 October 2021, pp. 1-6.
[100]
Al Sabbagh, C.; Seguin, J.; Agapova, E.; Kramerich, D.; Boudy, V.; Mignet, N. Thermosensitive hydrogels for local delivery of 5-fluorouracil as neoadjuvant or adjuvant therapy in colorectal cancer. Eur. J. Pharm. Biopharm., 2020, 157, 154-164.
[http://dx.doi.org/10.1016/j.ejpb.2020.10.011] [PMID: 33222768]
[101]
Shad, P.M.; Karizi, S.Z.; Javan, R.S.; Mirzaie, A.; Noorbazargan, H.; Akbarzadeh, I.; Rezaie, H. Folate conjugated hyaluronic acid coated alginate nanogels encapsulated oxaliplatin enhance antitumor and apoptosis efficacy on colorectal cancer cells (HT29 cell line). Toxicol. In Vitro, 2020, 65, 104756.
[http://dx.doi.org/10.1016/j.tiv.2019.104756] [PMID: 31884114]
[102]
Gugulothu, D.; Kulkarni, A.; Patravale, V.; Dandekar, P. pH-sensitive nanoparticles of curcumin-celecoxib combination: evaluating drug synergy in ulcerative colitis model. J. Pharm. Sci., 2014, 103(2), 687-696.
[http://dx.doi.org/10.1002/jps.23828] [PMID: 24375287]
[103]
Xiao, B.; Si, X.; Han, M.K.; Viennois, E.; Zhang, M.; Merlin, D. Co-delivery of camptothecin and curcumin by cationic polymeric nanoparticles for synergistic colon cancer combination chemotherapy. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(39), 7724-7733.
[http://dx.doi.org/10.1039/C5TB01245G] [PMID: 26617985]
[104]
Niebel, W.; Walkenbach, K.; Béduneau, A.; Pellequer, Y.; Lamprecht, A. Nanoparticle-based clodronate delivery mitigates murine experimental colitis. J. Control. Release, 2012, 160(3), 659-665.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.004] [PMID: 22445727]
[105]
Tummala, S.; Satish Kumar, M.N.; Prakash, A. Formulation and characterization of 5-Fluorouracil enteric coated nanoparticles for sustained and localized release in treating colorectal cancer. Saudi Pharm. J., 2015, 23(3), 308-314.
[http://dx.doi.org/10.1016/j.jsps.2014.11.010] [PMID: 26106279]
[106]
Pool, H.; Campos-Vega, R.; Herrera-Hernández, M.G.; García-Solis, P.; García-Gasca, T.; Sánchez, I.C.; Luna-Bárcenas, G.; Vergara-Castañeda, H. Development of genistein-PEGylated silica hybrid nanomaterials with enhanced antioxidant and antiproliferative properties on HT29 human colon cancer cells. Am. J. Transl. Res., 2018, 10(8), 2306-2323.
[PMID: 30210672]
[107]
Raj, P.M.; Raj, R.; Kaul, A.; Mishra, A.K.; Ram, A. Biodistribution and targeting potential assessment of mucoadhesive chitosan nanoparticles designed for ulcerative colitis via scintigraphy. RSC Advances, 2018, 8(37), 20809-20821.
[http://dx.doi.org/10.1039/C8RA01898G] [PMID: 35542340]
[108]
Jain, A.; Jain, P.; Soni, P. Design and characterization of silver nanoparticles of differ-ent species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29). In: J Gastrointest Cancer; , 2022; 54, pp. (1)90-95.
[http://dx.doi.org/10.1007/s12029-021-00788-7]
[109]
Pandey, A.N.; Rajpoot, K.; Jain, S.K. Using 5-fluorouracil-encored plga nanoparticles for the treatment of colorectal cancer: The in-vitro characterization and cytotoxicity studies. Nanomed. J., 2020, 7, 211-224.
[110]
Korani, M.; Ghaffari, S.; Attar, H.; Mashreghi, M.; Jaafari, M.R. Preparation and characterization of nanoliposomal bortezomib formulations and evaluation of their anti-cancer efficacy in mice bearing C26 colon carcinoma and B16F0 melanoma. Nanomedicine, 2019, 20, 102013.
[http://dx.doi.org/10.1016/j.nano.2019.04.016] [PMID: 31103736]
[111]
El-Gogary, R.I.; Nasr, M.; Rahsed, L.A.; Hamzawy, M.A. Ferulic acid nanocapsules as a promising treatment modality for colorectal cancer: Preparation and in vitro/in vivo appraisal. Life Sci., 2022, 298, 120500.
[http://dx.doi.org/10.1016/j.lfs.2022.120500] [PMID: 35341825]
[112]
Shahraki, N.; Mehrabian, A.; Amiri-Darban, S.; Moosavian, S.A.; Jaafari, M.R. Preparation and characterization of PEGylated liposomal Doxorubicin targeted with leptin-derived peptide and evaluation of their anti-tumor effects, in vitro and in vivo in mice bearing C26 colon carcinoma. Colloids Surf. B Biointerfaces, 2021, 200, 111589.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111589] [PMID: 33545570]
[113]
Tummala, S.; Kumar, M.S.; Gowthamarajan, K.; Prakash, A.; Rama, K.; Raju, S.; Mulukutla, S. Preparation, physicochemical characterization, and in vitro evaluation of oxaliplatin solid lipid nanoparticles for the treatment of colorectal cancer. Indo Am J Pharm Res., 2014, 4, 3579-3587.
[114]
Shi, J.; Ma, Z.; Pan, H.; Liu, Y.; Chu, Y.; Wang, J.; Chen, L. Biofilm-encapsulated nano drug delivery system for the treatment of colon cancer. J. Microencapsul., 2020, 37(7), 481-491.
[http://dx.doi.org/10.1080/02652048.2020.1797914] [PMID: 32700606]
[115]
Petersen, M.A.; Hillmyer, M.A.; Kokkoli, E. Bioresorbable polymersomes for targeted delivery of cisplatin. Bioconjug. Chem., 2013, 24(4), 533-543.
[http://dx.doi.org/10.1021/bc3003259] [PMID: 23521104]
[116]
Genc, S.; Taghizadehghalehjoughi, A.; Yeni, Y.; Jafarizad, A.; Hacimuftuoglu, A.; Nikitovic, D.; Docea, A.O.; Mezhuev, Y.; Tsatsakis, A. Fe3O4 Nanoparticles in combination with 5-FU Exert antitumor effects superior to those of the active drug in a colon cancer cell model. Pharmaceutics, 2023, 15(1), 245.
[http://dx.doi.org/10.3390/pharmaceutics15010245] [PMID: 36678874]
[117]
Feng, S.T.; Li, J.; Luo, Y.; Yin, T.; Cai, H.; Wang, Y.; Dong, Z.; Shuai, X.; Li, Z.P. pH-sensitive nanomicelles for controlled and efficient drug delivery to human colorectal carcinoma LoVo cells. PLoS One, 2014, 9(6), e100732.
[http://dx.doi.org/10.1371/journal.pone.0100732] [PMID: 24964012]
[118]
Gavas, S.; Quazi, S.; Karpiński, T.M. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett., 2021, 16(1), 173.
[http://dx.doi.org/10.1186/s11671-021-03628-6] [PMID: 34866166]
[119]
Mundekkad, D.; Cho, W.C. Nanoparticles in clinical translation for cancer therapy. Int. J. Mol. Sci., 2022, 23(3), 1685.
[http://dx.doi.org/10.3390/ijms23031685] [PMID: 35163607]
[120]
Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(3), 145-164.
[http://dx.doi.org/10.3322/caac.21601] [PMID: 32133645]
[121]
Duan, L.; Yang, W.; Wang, X.; Zhou, W.; Zhang, Y.; Liu, J.; Zhang, H.; Zhao, Q.; Hong, L.; Fan, D. Advances in prognostic markers for colorectal cancer. Expert Rev. Mol. Diagn., 2019, 19(4), 313-324.
[http://dx.doi.org/10.1080/14737159.2019.1592679] [PMID: 30907673]
[122]
Su, S.; M. Kang, P. Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics, 2020, 12(9), 837.
[http://dx.doi.org/10.3390/pharmaceutics12090837] [PMID: 32882875]
[123]
Rana, I.; Oh, J.; Baig, J.; Moon, J.H.; Son, S.; Nam, J. Nanocarriers for cancer nano-immunotherapy. Drug Deliv. Transl. Res., 2023, 13(7), 1936-1954.
[http://dx.doi.org/10.1007/s13346-022-01241-3] [PMID: 36190661]
[124]
Tuli, H.S.; Joshi, R.; Kaur, G.; Garg, V.K.; Sak, K.; Varol, M.; Kaur, J.; Alharbi, S.A.; Alahmadi, T.A.; Aggarwal, D.; Dhama, K.; Jaswal, V.S.; Mittal, S.; Sethi, G. Metal nanoparticles in cancer: From synthesis and metabolism to cellular interactions. J. Nanostructure Chem., 2023, 13(3), 321-348.
[http://dx.doi.org/10.1007/s40097-022-00504-2]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy