Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Extrusion and Co-extrusion: A Technology in Probiotic Encapsulation with Alternative Materials

Author(s): Aziz Homayouni-Rad, Amir M. Mortazavian, Hadi Pourjafar and Saba Kamalledin Moghadam*

Volume 25, Issue 15, 2024

Published on: 24 January, 2024

Page: [1986 - 2000] Pages: 15

DOI: 10.2174/0113892010264234231219073231

Price: $65

Abstract

Encapsulation, in particular extrusion and co-extrusion, is a common practice to protect probiotics from the harsh conditions of the digestive tract as well as processing. Hydrocolloids, including proteins and carbohydrates, natural or modified, are a group of ingredients used as the wall material in extrusion. Hydrocolloids, due to their specific properties, can significantly improve the probiotic survivability of the final powder during the microencapsulation process and storage. The present article will discuss the different kinds of hydrocolloids used for microencapsulation of probiotics by extrusion and co-extrusion, along with new sources of novel gums and their potential as wall material.

Graphical Abstract

[1]
Solanki, HK; Pawar, DD; Shah, DA; Prajapati, VD; Jani, GK; Mulla, AM Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. BioMed research international, 2013, 2013.
[http://dx.doi.org/10.1155/2013/620719]
[2]
Lapsiri, W.; Bhandari, B.; Wanchaitanawong, P. Viability of Lactobacillus plantarum TISTR 2075 in different protectants during spray drying and storage. Dry. Technol., 2012, 30(13), 1407-1412.
[http://dx.doi.org/10.1080/07373937.2012.684226]
[3]
Burgain, J.; Gaiani, C.; Linder, M.; Scher, J. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J. Food Eng., 2011, 104(4), 467-483.
[http://dx.doi.org/10.1016/j.jfoodeng.2010.12.031]
[4]
Corona-Hernandez, R.I. Álvarez-Parrilla, E.; Lizardi-Mendoza, J.; Islas-Rubio, A.R.; de la Rosa, L.A.; Wall-Medrano, A. Structural stability and viability of microencapsulated probiotic bacteria: a review. Compr. Rev. Food Sci. Food Saf., 2013, 12(6), 614-628.
[http://dx.doi.org/10.1111/1541-4337.12030] [PMID: 33412721]
[5]
De Prisco, A.; Mauriello, G. Probiotication of foods: A focus on microencapsulation tool. Trends Food Sci. Technol., 2016, 48, 27-39.
[http://dx.doi.org/10.1016/j.tifs.2015.11.009]
[6]
Anandharamakrishnan, C. Spray drying techniques for food ingredient encapsulation; John Wiley & Sons, 2015.
[http://dx.doi.org/10.1002/9781118863985]
[7]
Yao, M.; Xie, J.; Du, H.; McClements, D.J.; Xiao, H.; Li, L. Progress in microencapsulation of probiotics: A review. Compr. Rev. Food Sci. Food Saf., 2020, 19(2), 857-874.
[http://dx.doi.org/10.1111/1541-4337.12532] [PMID: 33325164]
[8]
Nedovic, V.; Kalusevic, A.; Manojlovic, V.; Levic, S.; Bugarski, B. An overview of encapsulation technologies for food applications. Procedia Food Sci., 2011, 1, 1806-1815.
[http://dx.doi.org/10.1016/j.profoo.2011.09.265]
[9]
Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int., 2007, 40(9), 1107-1121.
[http://dx.doi.org/10.1016/j.foodres.2007.07.004]
[10]
Zheng, D.W.; Li, R.Q.; An, J.X.; Xie, T.Q.; Han, Z.Y.; Xu, R.; Fang, Y.; Zhang, X.Z. Prebiotics‐encapsulated probiotic spores regulate gut microbiota and suppress colon cancer. Adv. Mater., 2020, 32(45), 2004529.
[http://dx.doi.org/10.1002/adma.202004529] [PMID: 33006175]
[11]
Fangmeier, M.; Lehn, D.N.; Maciel, M.J.; Volken de Souza, C.F. Encapsulation of bioactive ingredients by extrusion with vibrating technology: advantages and challenges. Food Bioprocess Technol., 2019, 12(9), 1472-1486.
[http://dx.doi.org/10.1007/s11947-019-02326-7]
[12]
How, Y.H.; Lai, K.W.; Pui, L.P.; In, L.L.A. Co‐extrusion and extrusion microencapsulation: Effect on microencapsulation efficiency, survivability through gastrointestinal digestion and storage. J. Food Process Eng., 2022, 45(3), e13985.
[http://dx.doi.org/10.1111/jfpe.13985]
[13]
Bamidele, O.P.; Emmambux, M.N. Encapsulation of bioactive compounds by “extrusion” technologies: a review. Crit. Rev. Food Sci. Nutr., 2021, 61(18), 3100-3118.
[http://dx.doi.org/10.1080/10408398.2020.1793724] [PMID: 32729723]
[14]
Widaningrum; Miskiyah; Indrasti, D.; Hidaya, H.C. Improvement of viability of lactobacillus casei and bifidobacterium longum with several encapsulating materials using extrusion method. J. Ilmu Ternak Vet., 2019, 23(4), 189-201.
[http://dx.doi.org/10.14334/jitv.v23i4.1547]
[15]
Chávarri M.; Marañón, I.; Ares, R.; Ibáñez, F.C.; Marzo, F.; Villarán, M.C. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int. J. Food Microbiol., 2010, 142(1-2), 185-189.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.06.022] [PMID: 20659775]
[16]
Helmig, J.; Behr, M.; Elgeti, S. Boundary-conforming finite element methods for twin-screw extruders: Unsteady - temperature-dependent - non-Newtonian simulations. Comput. Fluids, 2019, 190, 322-336.
[http://dx.doi.org/10.1016/j.compfluid.2019.06.028]
[17]
Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Application of extrusion technology in plant food processing byproducts: An overview. Compr. Rev. Food Sci. Food Saf., 2020, 19(1), 218-246.
[http://dx.doi.org/10.1111/1541-4337.12514] [PMID: 33319515]
[18]
dos Santos, J.; da Silva, G.S.; Velho, M.C.; Beck, R.C.R. Eudragit®: A versatile family of polymers for hot melt extrusion and 3D printing processes in pharmaceutics. Pharmaceutics, 2021, 13(9), 1424.
[http://dx.doi.org/10.3390/pharmaceutics13091424] [PMID: 34575500]
[19]
Ravishankar, P; Khang, A; Laredo, M; Balachandran, K Using dimensionless numbers to predict centrifugal jet-spun nanofiber morphology. Journal of Nanomaterials, 2019, 2019.
[http://dx.doi.org/10.1155/2019/4639658]
[20]
Low, K.G.; Lim, S.F. Study on electrostatic extrusion method for synthesizing calcium alginate encapsulated iron oxide. Journal of Applied Science & Process Engineering., 2014, 1(1), 9-27.
[21]
Ng, S.L.; Lai, K.W.; Nyam, K.L.; Pui, L.P. Microencapsulation of Lactobacillus plantarum 299v incorporated with oligofructose in chitosan coated-alginate beads and its storage stability in ambarella juice. Malays. J. Microbiol., 2019, 15(5)
[22]
Sakai, T. Screw extrusion technology — past, present and future. Polimery, 2013, 58(11/12), 847-857.
[http://dx.doi.org/10.14314/polimery.2013.847]
[23]
Yao, S.; Guo, T.; Liu, T.; Xi, Z.; Xu, Z.; Zhao, L. Good extrusion foaming performance of long‐chain branched PET induced by its enhanced crystallization property. J. Appl. Polym. Sci., 2020, 137(41), 49268.
[http://dx.doi.org/10.1002/app.49268]
[24]
Silva, E.J.N.L. Carapiá, M.F.; Lopes, R.M.; Belladonna, F.G.; Senna, P.M.; Souza, E.M.; De-Deus, G. Comparison of apically extruded debris after large apical preparations by full‐sequence rotary and single‐file reciprocating systems. Int. Endod. J., 2016, 49(7), 700-705.
[http://dx.doi.org/10.1111/iej.12503] [PMID: 26174577]
[25]
Nemethova, V.; Lacik, I.; Razga, F. Vibration technology for microencapsulation: The restrictive role of viscosity. J. Bioprocess. Biotech., 2015, 5(1), 1.
[http://dx.doi.org/10.4172/2155-9821.1000199]
[26]
Silva, M.P.; Tulini, F.L.; Martins, E.; Penning, M. Fávaro-Trindade, C.S.; Poncelet, D. Comparison of extrusion and co-extrusion encapsulation techniques to protect Lactobacillus acidophilus LA3 in simulated gastrointestinal fluids. Lebensm. Wiss. Technol., 2018, 89, 392-399.
[http://dx.doi.org/10.1016/j.lwt.2017.11.008]
[27]
Gbassi, G.K.; Vandamme, T. Probiotic encapsulation technology: From microencapsulation to release into the gut. Pharmaceutics, 2012, 4(1), 149-163.
[http://dx.doi.org/10.3390/pharmaceutics4010149] [PMID: 24300185]
[28]
Heinzen, C.; Berger, A.; Marison, I. Use of vibration technology for jet break-up for encapsulation of cells and liquids in monodisperse microcapsules. Fundamentals of cell immobilisation biotechnology; Springer, 2004, pp. 257-275.
[29]
Chew, S.C.; Nyam, K.L. Microencapsulation of kenaf seed oil by co-extrusion technology. J. Food Eng., 2016, 175, 43-50.
[http://dx.doi.org/10.1016/j.jfoodeng.2015.12.002]
[30]
Wandrey, C.; Bartkowiak, A.; Harding, S.E. Materials for encapsulation. Encapsulation technologies for active food ingredients and food processing; Springer, 2010, pp. 31-100.
[http://dx.doi.org/10.1007/978-1-4419-1008-0_3]
[31]
Agnihotri, N.; Mishra, R.; Goda, C.; Arora, M. Microencapsulation–a novel approach in drug delivery: a review. Indo Global Journal of Pharmaceutical Sciences, 2012, 2(1), 01-20.
[http://dx.doi.org/10.35652/IGJPS.2012.01]
[32]
Cortés-Morales, E.A.; Mendez-Montealvo, G.; Velazquez, G. Interactions of the molecular assembly of polysaccharide-protein systems as encapsulation materials. A review. Adv. Colloid Interface Sci., 2021, 295, 102398.
[http://dx.doi.org/10.1016/j.cis.2021.102398] [PMID: 33931199]
[33]
Etim, R.K.; Ijimdiya, T.S.; Eberemu, A.O.; Osinubi, K.J. Compatibility interaction of landfill leachate with lateritic soil bio-treated with Bacillus megaterium: Criterion for barrier material in municipal solid waste containment. Cleaner Materials, 2022, 5, 100110.
[http://dx.doi.org/10.1016/j.clema.2022.100110]
[34]
Rathore, S.; Desai, P.M.; Liew, C.V.; Chan, L.W.; Heng, P.W.S. Microencapsulation of microbial cells. J. Food Eng., 2013, 116(2), 369-381.
[http://dx.doi.org/10.1016/j.jfoodeng.2012.12.022]
[35]
Doublier, J-L.; Garnier, C.; Cuvelier, G. Gums and hydrocolloids: functional aspects. Carbohydrates in food; CRC Press, 2017, pp. 307-354.
[36]
Phillips, G.O.; Williams, P.A. Handbook of hydrocolloids; Elsevier, 2009.
[http://dx.doi.org/10.1533/9781845695873]
[37]
Burey, P.; Bhandari, B.R.; Howes, T.; Gidley, M.J. Hydrocolloid gel particles: Formation, characterization, and application. Crit. Rev. Food Sci. Nutr., 2008, 48(5), 361-377.
[http://dx.doi.org/10.1080/10408390701347801] [PMID: 18464027]
[38]
Li, C.; Hu, Y. New definition of resistant starch types from the gut microbiota perspectives–a review. Crit. Rev. Food Sci. Nutr., 2022, 1-11.
[39]
dos Anjos, L.; Pandey, P.K.; Moraes, T.A.; Feil, R.; Lunn, J.E.; Stitt, M. Feedback regulation by trehalose 6‐phosphate slows down starch mobilization below the rate that would exhaust starch reserves at dawn in Arabidopsis leaves. Plant Direct, 2018, 2(8), e00078.
[http://dx.doi.org/10.1002/pld3.78] [PMID: 31245743]
[40]
Kumar, L.; Brennan, M.; Zheng, H.; Brennan, C. The effects of dairy ingredients on the pasting, textural, rheological, freeze-thaw properties and swelling behaviour of oat starch. Food Chem., 2018, 245, 518-524.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.125] [PMID: 29287403]
[41]
Semyonov, D.; Ramon, O.; Kaplun, Z.; Levin-Brener, L.; Gurevich, N.; Shimoni, E. Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Res. Int., 2010, 43(1), 193-202.
[http://dx.doi.org/10.1016/j.foodres.2009.09.028]
[42]
Agave juice as an agent for probiotic encapsulation by spray drying. Cortés-Arminio, C.; López-Malo, A.; Palou, E.; Jiménez, M., Eds.; 17th World Congress of International Commission of Agricultural and Biosystems Engineering conference proceedings; Quebec City, 2010.
[43]
Fongin, S.; Alvino Granados, A.E.; Harnkarnsujarit, N.; Hagura, Y.; Kawai, K. Effects of maltodextrin and pulp on the water sorption, glass transition, and caking properties of freeze-dried mango powder. J. Food Eng., 2019, 247, 95-103.
[http://dx.doi.org/10.1016/j.jfoodeng.2018.11.027]
[44]
Paim, D.R.S.F.; Costa, S.D.O.; Walter, E.H.M.; Tonon, R.V. Microencapsulation of probiotic jussara (Euterpe edulis M.) juice by spray drying. Lebensm. Wiss. Technol., 2016, 74, 21-25.
[http://dx.doi.org/10.1016/j.lwt.2016.07.022]
[45]
Eichhorn, S.J.; Etale, A.; Wang, J.; Berglund, L.A.; Li, Y.; Cai, Y.; Chen, C.; Cranston, E.D.; Johns, M.A.; Fang, Z.; Li, G.; Hu, L.; Khandelwal, M.; Lee, K-Y.; Oksman, K.; Pinitsoontorn, S.; Quero, F.; Sebastian, A.; Titirici, M.M.; Xu, Z.; Vignolini, S.; Frka-Petesic, B. Current international research into cellulose as a functional nanomaterial for advanced applications. J. Mater. Sci., 2022, 57(10), 5697-5767.
[http://dx.doi.org/10.1007/s10853-022-06903-8]
[46]
Fathi, M. Martín, Á.; McClements, D.J. Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends Food Sci. Technol., 2014, 39(1), 18-39.
[http://dx.doi.org/10.1016/j.tifs.2014.06.007]
[47]
Wang, Y. Prebiotics: Present and future in food science and technology. Food Res. Int., 2009, 42(1), 8-12.
[http://dx.doi.org/10.1016/j.foodres.2008.09.001]
[48]
Rodríguez-Huezo, M.E.; Durán-Lugo, R.; Prado-Barragán, L.A.; Cruz-Sosa, F.; Lobato-Calleros, C.; Alvarez-Ramírez, J.; Vernon-Carter, E.J. Pre-selection of protective colloids for enhanced viability of Bifidobacterium bifidum following spray-drying and storage, and evaluation of aguamiel as thermoprotective prebiotic. Food Res. Int., 2007, 40(10), 1299-1306.
[http://dx.doi.org/10.1016/j.foodres.2007.09.001]
[49]
Homayouni Rad, A.; Delshadian, Z.; Arefhosseini, S.R.; Alipour, B.; Asghari Jafarabadi, M. Effect of inulin and stevia on some physical properties of chocolate milk. Health Promot. Perspect., 2012, 2(1), 42-47.
[PMID: 24688916]
[50]
Figueroa-González, I.; Quijano, G.; Ramírez, G.; Cruz-Guerrero, A. Probiotics and prebiotics-perspectives and challenges. J. Sci. Food Agric., 2011, 91(8), 1341-1348.
[http://dx.doi.org/10.1002/jsfa.4367] [PMID: 21445871]
[51]
Kalyani Nair, K.; Kharb, S.; Thompkinson, D.K. Inulin dietary fiber with functional and health attributes—a review. Food Rev. Int., 2010, 26(2), 189-203.
[http://dx.doi.org/10.1080/87559121003590664]
[52]
Nazzaro, F.; Orlando, P.; Fratianni, F.; Coppola, R. Microencapsulation in food science and biotechnology. Curr. Opin. Biotechnol., 2012, 23(2), 182-186.
[http://dx.doi.org/10.1016/j.copbio.2011.10.001] [PMID: 22024623]
[53]
Barclay, T.; Ginic-Markovic, M.; Cooper, P.; Petrovsky, N. Inulin-a versatile polysaccharide with multiple pharmaceutical and food chemical uses. J. Excip. Food Chem., 2016, 1(3)
[54]
Roberfroid, M.B. Inulin-type fructans: Functional food ingredients. J. Nutr., 2007, 137(11)(Suppl.), 2493S-2502S.
[http://dx.doi.org/10.1093/jn/137.11.2493S] [PMID: 17951492]
[55]
Adhikari, B.; Howes, T.; Wood, B.J.; Bhandari, B.R. The effect of low molecular weight surfactants and proteins on surface stickiness of sucrose during powder formation through spray drying. J. Food Eng., 2009, 94(2), 135-143.
[http://dx.doi.org/10.1016/j.jfoodeng.2009.01.022]
[56]
Pinto, S.S.; Fritzen-Freire, C.B.; Benedetti, S.; Murakami, F.S.; Petrus, J.C.C.; Prudêncio, E.S.; Amboni, R.D.M.C. Potential use of whey concentrate and prebiotics as carrier agents to protect Bifidobacterium-BB-12 microencapsulated by spray drying. Food Res. Int., 2015, 67, 400-408.
[http://dx.doi.org/10.1016/j.foodres.2014.11.038]
[57]
Rajam, R.; Anandharamakrishnan, C. Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. Lebensm. Wiss. Technol., 2015, 60(2), 773-780.
[http://dx.doi.org/10.1016/j.lwt.2014.09.062]
[58]
Beirão-da-Costa, S.; Duarte, C.; Bourbon, A.I.; Pinheiro, A.C.; Januلrio, M.I.N.; Vicente, A.A.; Beirمo-da-Costa, M.L.; Delgadillo, I. Inulin potential for encapsulation and controlled delivery of Oregano essential oil. Food Hydrocoll., 2013, 33(2), 199-206.
[http://dx.doi.org/10.1016/j.foodhyd.2013.03.009]
[59]
Nie, S.P.; Wang, C.; Cui, S.W.; Wang, Q.; Xie, M.Y.; Phillips, G.O. A further amendment to the classical core structure of gum arabic (Acacia senegal). Food Hydrocoll., 2013, 31(1), 42-48.
[http://dx.doi.org/10.1016/j.foodhyd.2012.09.014]
[60]
Bhosale, R.R.; Osmani, R.A.M.; Moin, A. Natural gums and mucilages: A review on multifaceted excipients in pharmaceutical science and research. International Journal of Pharmacognosy and Phytochemical Research., 2014, 15(6), 4.
[61]
Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106-126.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
[62]
Draget, K.I. Skjåk Bræk, G.; Smidsrød, O. Alginic acid gels: the effect of alginate chemical composition and molecular weight. Carbohydr. Polym., 1994, 25(1), 31-38.
[http://dx.doi.org/10.1016/0144-8617(94)90159-7]
[63]
Dong, Q.Y.; Chen, M.Y.; Xin, Y.; Qin, X.Y.; Cheng, Z.; Shi, L.E.; Tang, Z-X. Alginate‐based and protein‐based materials for probiotics encapsulation: a review. Int. J. Food Sci. Technol., 2013, 48(7), 1339-1351.
[http://dx.doi.org/10.1111/ijfs.12078]
[64]
Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V. Technology and potential applications of probiotic encapsulation in fermented milk products. J. Food Sci. Technol., 2015, 52(8), 4679-4696.
[http://dx.doi.org/10.1007/s13197-014-1516-2] [PMID: 26243890]
[65]
Mirzaei, H.; Pourjafar, H.; Rad, A.H. The effect of microencapsulation with calcium alginate and resistant starch on the Lactobacillus acidophilus (La5) survival rate in simulated gastrointestinal juice conditions. J. Vet. Res., 2011, 66(4), 337-377.
[66]
Shams, E.; Barzad, M.S.; Mohamadnia, S.; Tavakoli, O.; Mehrdadfar, A. A review on alginate-based bioinks, combination with other natural biomaterials and characteristics. J. Biomater. Appl., 2022, 37(2), 355-372.
[http://dx.doi.org/10.1177/08853282221085690] [PMID: 35510845]
[67]
Santa-Maria, M.; Scher, H.; Jeoh, T. Microencapsulation of bioactives in cross-linked alginate matrices by spray drying. J. Microencapsul., 2012, 29(3), 286-295.
[http://dx.doi.org/10.3109/02652048.2011.651494] [PMID: 22251237]
[68]
Agüero, L.; Zaldivar-Silva, D. Peña, L.; Dias, M.L. Alginate microparticles as oral colon drug delivery device: A review. Carbohydr. Polym., 2017, 168, 32-43.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.033] [PMID: 28457455]
[69]
Lee, B.B.; Ibrahim, R.; Chu, S.Y.; Zulkifli, N.A.; Ravindra, P. Alginate liquid core capsule formation using the simple extrusion dripping method. Journal of Polymer Engineering, 2015, 35(4), 311-318.
[http://dx.doi.org/10.1515/polyeng-2014-0174]
[70]
Zavareze, E.R.; Pinto, V.Z.; Klein, B.; El Halal, S.L.M.; Elias, M.C.; Prentice-Hernández, C.; Dias, A.R.G. Development of oxidised and heat–moisture treated potato starch film. Food Chem., 2012, 132(1), 344-350.
[http://dx.doi.org/10.1016/j.foodchem.2011.10.090] [PMID: 26434300]
[71]
Anal, A.K.; Singh, H. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci. Technol., 2007, 18(5), 240-251.
[http://dx.doi.org/10.1016/j.tifs.2007.01.004]
[72]
Mirzaei, H.; Pourjafar, H.; Homayouni, A. Effect of calcium alginate and resistant starch microencapsulation on the survival rate of Lactobacillus acidophilus La5 and sensory properties in Iranian white brined cheese. Food Chem., 2012, 132(4), 1966-1970.
[http://dx.doi.org/10.1016/j.foodchem.2011.12.033]
[73]
Homayouni, A.; Amini, A.; Keshtiban, A.K.; Mortazavian, A.M.; Esazadeh, K.; Pourmoradian, S. Resistant starch in food industry: A changing outlook for consumer and producer. Stärke, 2014, 66(1-2), 102-114.
[http://dx.doi.org/10.1002/star.201300110]
[74]
Mirhosseini, H.; Amid, B.T. A review study on chemical composition and molecular structure of newly plant gum exudates and seed gums. Food Res. Int., 2012, 46(1), 387-398.
[http://dx.doi.org/10.1016/j.foodres.2011.11.017]
[75]
Hesarinejad, M.A.; Razavi, S.M.A.; Koocheki, A. Alyssum homolocarpum seed gum: Dilute solution and some physicochemical properties. Int. J. Biol. Macromol., 2015, 81, 418-426.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.019] [PMID: 26277752]
[76]
Khazaei, N.; Esmaiili, M.; Djomeh, Z.E.; Ghasemlou, M.; Jouki, M. Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydr. Polym., 2014, 102, 199-206.
[http://dx.doi.org/10.1016/j.carbpol.2013.10.062] [PMID: 24507273]
[77]
Osano, J.P.; Hosseini-Parvar, S.H.; Matia-Merino, L.; Golding, M. Emulsifying properties of a novel polysaccharide extracted from basil seed (Ocimum bacilicum L.): Effect of polysaccharide and protein content. Food Hydrocoll., 2014, 37, 40-48.
[http://dx.doi.org/10.1016/j.foodhyd.2013.09.008]
[78]
Zameni, A.; Kashaninejad, M.; Aalami, M.; Salehi, F. Effect of thermal and freezing treatments on rheological, textural and color properties of basil seed gum. J. Food Sci. Technol., 2015, 52(9), 5914-5921.
[http://dx.doi.org/10.1007/s13197-014-1679-x] [PMID: 26345008]
[79]
Razavi, S.M.A.; Mortazavi, S.A.; Matia-Merino, L.; Hosseini-Parvar, S.H.; Motamedzadegan, A.; Khanipour, E. Optimisation study of gum extraction from Basil seeds (Ocimum basilicum L.). Int. J. Food Sci. Technol., 2009, 44(9), 1755-1762.
[http://dx.doi.org/10.1111/j.1365-2621.2009.01993.x]
[80]
Kurd, F.; Fathi, M.; Shekarchizadeh, H. Basil seed mucilage as a new source for electrospinning: Production and physicochemical characterization. Int. J. Biol. Macromol., 2017, 95, 689-695.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.116] [PMID: 27919814]
[81]
Saha, A.; Tyagi, S.; Gupta, R.K.; Tyagi, Y.K. Natural gums of plant origin as edible coatings for food industry applications. Crit. Rev. Biotechnol., 2017, 37(8), 959-973.
[http://dx.doi.org/10.1080/07388551.2017.1286449] [PMID: 28423942]
[82]
Naji-Tabasi, S.; Razavi, S.M.A.; Mehditabar, H. Fabrication of basil seed gum nanoparticles as a novel oral delivery system of glutathione. Carbohydr. Polym., 2017, 157, 1703-1713.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.052] [PMID: 27987886]
[83]
Koocheki, A.; Mortazavi, S.A.; Shahidi, F.; Razavi, S.M.A.; Taherian, A.R. Rheological properties of mucilage extracted from Alyssum homolocarpum seed as a new source of thickening agent. J. Food Eng., 2009, 91(3), 490-496.
[http://dx.doi.org/10.1016/j.jfoodeng.2008.09.028]
[84]
Monjazeb Marvdashti, L.; Koocheki, A.; Yavarmanesh, M. Alyssum homolocarpum seed gum-polyvinyl alcohol biodegradable composite film: Physicochemical, mechanical, thermal and barrier properties. Carbohydr. Polym., 2017, 155, 280-293.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.123] [PMID: 27702514]
[85]
Prata, A.S.; Garcia, L.; Tonon, R.V.; Hubinger, M.D. Wall material selection for encapsulation by spray drying. Journal of Colloid Science and Biotechnology, 2013, 2(2), 86-92.
[http://dx.doi.org/10.1166/jcsb.2013.1039]
[86]
Koocheki, A.; Mortazavi, S.A.; Shahidi, F.; Razavi, S.M.A.; Kadkhodaee, R.; Milani, J.M. Optimization of mucilage extraction from Qodume shirazi seed (Alyssum homolocarpum) using response surface methodology. J. Food Process Eng., 2010, 33(5), 861-882.
[http://dx.doi.org/10.1111/j.1745-4530.2008.00312.x]
[87]
Anvari, M.; Tabarsa, M.; Cao, R.; You, S.; Joyner, H.S.; Behnam, S. Compositional characterization and rheological properties of an anionic gum from Alyssum homolocarpum seeds. Food Hydrocoll., 2016, 52, 766-773.
[http://dx.doi.org/10.1016/j.foodhyd.2015.07.030]
[88]
Khoshakhlagh, K.; Koocheki, A.; Mohebbi, M.; Allafchian, A. Development and characterization of electrosprayed Alyssum homolocarpum seed gum nanoparticles for encapsulation of d-limonene. J. Colloid Interface Sci., 2017, 490, 562-575.
[http://dx.doi.org/10.1016/j.jcis.2016.11.067] [PMID: 27923141]
[89]
Segura-Campos, MR; Ciau-Solís, N; Rosado-Rubio, G; Chel-Guerrero, L; Betancur-Ancona, D Chemical and functional properties of chia seed (Salvia hispanica L.) gum. International journal of food science, 2014, 2014.
[90]
Ali, NM; Yeap, SK; Ho, WY; Beh, BK; Tan, SW; Tan, SG The promising future of chia, Salvia hispanica L. Journal of Biomedicine and Biotechnology, 2012, 2012.
[91]
Timilsena, Y.P.; Adhikari, R.; Kasapis, S.; Adhikari, B. Molecular and functional characteristics of purified gum from Australian chia seeds. Carbohydr. Polym., 2016, 136, 128-136.
[http://dx.doi.org/10.1016/j.carbpol.2015.09.035] [PMID: 26572338]
[92]
Goh, K.K.T.; Matia-Merino, L.; Chiang, J.H.; Quek, R.; Soh, S.J.B.; Lentle, R.G. The physico-chemical properties of chia seed polysaccharide and its microgel dispersion rheology. Carbohydr. Polym., 2016, 149, 297-307.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.126] [PMID: 27261754]
[93]
Muñoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia seeds: Microstructure, mucilage extraction and hydration. J. Food Eng., 2012, 108(1), 216-224.
[http://dx.doi.org/10.1016/j.jfoodeng.2011.06.037]
[94]
Avila-de la Rosa, G.; Alvarez-Ramirez, J.; Vernon-Carter, E.J.; Carrillo-Navas, H.; Pérez-Alonso, C. Viscoelasticity of chia (Salvia hispanica L.) seed mucilage dispersion in the vicinity of an oil-water interface. Food Hydrocoll., 2015, 49, 200-207.
[http://dx.doi.org/10.1016/j.foodhyd.2015.03.017]
[95]
Bustamante, M.; Oomah, B.D.; Rubilar, M.; Shene, C. Effective lactobacillus plantarum and bifidobacterium infantis encapsulation with chia seed (Salvia hispanica L.) and flaxseed (Linum usitatissimum L.) mucilage and soluble protein by spray drying. Food Chem., 2017, 216, 97-105.
[http://dx.doi.org/10.1016/j.foodchem.2016.08.019] [PMID: 27596397]
[96]
Timilsena, Y.P.; Wang, B.; Adhikari, R.; Adhikari, B. Preparation and characterization of chia seed protein isolate–chia seed gum complex coacervates. Food Hydrocoll., 2016, 52, 554-563.
[http://dx.doi.org/10.1016/j.foodhyd.2015.07.033]
[97]
Behrouzian, F.; Razavi, S.M.A.; Phillips, G.O. Cress seed (Lepidium sativum) mucilage, an overview. Bioactive Carbohydrates and Dietary Fibre, 2014, 3(1), 17-28.
[http://dx.doi.org/10.1016/j.bcdf.2014.01.001]
[98]
Karazhiyan, H.; Razavi, S.M.A.; Phillips, G.O.; Fang, Y.; Al-Assaf, S.; Nishinari, K. Physicochemical aspects of hydrocolloid extract from the seeds of Lepidium sativum. Int. J. Food Sci. Technol., 2011, 46(5), 1066-1072.
[http://dx.doi.org/10.1111/j.1365-2621.2011.02583.x]
[99]
Naji, S.; Razavi, S.M.A.; Karazhiyan, H. Effect of thermal treatments on functional properties of cress seed (Lepidium sativum) and xanthan gums: A comparative study. Food Hydrocoll., 2012, 28(1), 75-81.
[http://dx.doi.org/10.1016/j.foodhyd.2011.11.012]
[100]
Karazhiyan, H.; Razavi, S.M.A.; Phillips, G.O. Extraction optimization of a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology. Food Hydrocoll., 2011, 25(5), 915-920.
[http://dx.doi.org/10.1016/j.foodhyd.2010.08.022]
[101]
Jouki, M.; Khazaei, N.; Ghasemlou, M. HadiNezhad, M. Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Carbohydr. Polym., 2013, 96(1), 39-46.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.077] [PMID: 23688452]
[102]
Jafari, S.M.; Mahdavi-Khazaei, K.; Hemmati-Kakhki, A. Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydr. Polym., 2016, 140, 20-25.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.079] [PMID: 26876823]
[103]
Prajapati, V.D.; Maheriya, P.M.; Jani, G.K.; Patil, P.D.; Patel, B.N. Lepidium sativum Linn.: A current addition to the family of mucilage and its applications. Int. J. Biol. Macromol., 2014, 65, 72-80.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.01.008] [PMID: 24418343]
[104]
Bustamante, M.; Villarroel, M.; Rubilar, M.; Shene, C. Lactobacillus acidophilus La-05 encapsulated by spray drying: Effect of mucilage and protein from flaxseed (Linum usitatissimum L.). Lebensm. Wiss. Technol., 2015, 62(2), 1162-1168.
[http://dx.doi.org/10.1016/j.lwt.2015.02.017]
[105]
Wang, Y.; Wang, L.J.; Li, D.; Xue, J.; Mao, Z.H. Effects of drying methods on rheological properties of flaxseed gum. Carbohydr. Polym., 2009, 78(2), 213-219.
[http://dx.doi.org/10.1016/j.carbpol.2009.03.025]
[106]
Chen, H.H.; Xu, S.Y.; Wang, Z. Gelation properties of flaxseed gum. J. Food Eng., 2006, 77(2), 295-303.
[http://dx.doi.org/10.1016/j.jfoodeng.2005.06.033]
[107]
Hadad, S.; Goli, S.A.H. Fabrication and characterization of electrospun nanofibers using flaxseed (Linum usitatissimum) mucilage. Int. J. Biol. Macromol., 2018, 114, 408-414.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.154] [PMID: 29596931]
[108]
Lai, K.; How, Y.; Pui, L. Microencapsulation of Lactobacillus rhamnosus GG with flaxseed mucilage using co-extrusion technique. J. Microencapsul., 2021, 38(2), 134-148.
[http://dx.doi.org/10.1080/02652048.2020.1863490] [PMID: 33306440]
[109]
Huq, T.; Khan, A.; Khan, R.A.; Riedl, B.; Lacroix, M. Encapsulation of probiotic bacteria in biopolymeric system. Crit. Rev. Food Sci. Nutr., 2013, 53(9), 909-916.
[http://dx.doi.org/10.1080/10408398.2011.573152] [PMID: 23768183]
[110]
Livney, Y.D. Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci., 2010, 15(1-2), 73-83.
[http://dx.doi.org/10.1016/j.cocis.2009.11.002]
[111]
Gbassi, G.; Vandamme, T.; Ennahar, S.; Marchioni, E. Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins. Int. J. Food Microbiol., 2009, 129(1), 103-105.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2008.11.012] [PMID: 19059666]
[112]
Abd El-Salam, M.H.; El-Shibiny, S.; El-Shibiny, S. Preparation and properties of milk proteins-based encapsulated probiotics: a review. Dairy Sci. Technol., 2015, 95(4), 393-412.
[http://dx.doi.org/10.1007/s13594-015-0223-8]
[113]
Anandharamakrishnan, C.; Rielly, C.D.; Stapley, A.G.F. Effects of process variables on the denaturation of whey proteins during spray drying. Dry. Technol., 2007, 25(5), 799-807.
[http://dx.doi.org/10.1080/07373930701370175]
[114]
Rajam, R.; Karthik, P.; Parthasarathi, S.; Joseph, G.S.; Anandharamakrishnan, C. Effect of whey protein – alginate wall systems on survival of microencapsulated Lactobacillus plantarum in simulated gastrointestinal conditions. J. Funct. Foods, 2012, 4(4), 891-898.
[http://dx.doi.org/10.1016/j.jff.2012.06.006]
[115]
Gunasekaran, S.; Ko, S.; Xiao, L. Use of whey proteins for encapsulation and controlled delivery applications. J. Food Eng., 2007, 83(1), 31-40.
[http://dx.doi.org/10.1016/j.jfoodeng.2006.11.001]
[116]
Fu, N.; Chen, X.D. Towards a maximal cell survival in convective thermal drying processes. Food Res. Int., 2011, 44(5), 1127-1149.
[http://dx.doi.org/10.1016/j.foodres.2011.03.053]
[117]
Tavares, G.M.; Croguennec, T.; Carvalho, A.F.; Bouhallab, S. Milk proteins as encapsulation devices and delivery vehicles: Applications and trends. Trends Food Sci. Technol., 2014, 37(1), 5-20.
[http://dx.doi.org/10.1016/j.tifs.2014.02.008]
[118]
Mortazavian, A.; Razavi, S.H.; Ehsani, M.R.; Sohrabvandi, S. Principles and methods of microencapsulation of probiotic microorganisms. Iran. J. Biotechnol., 2007, 5(1), 1-18.
[119]
Estevinho, B.N.; Rocha, F.; Santos, L.; Alves, A. Microencapsulation with chitosan by spray drying for industry applications – A review. Trends Food Sci. Technol., 2013, 31(2), 138-155.
[http://dx.doi.org/10.1016/j.tifs.2013.04.001]
[120]
Li, H.; Cheng, F.; Wei, X.; Yi, X.; Tang, S.; Wang, Z.; Zhang, Y.S.; He, J.; Huang, Y. Injectable, self-healing, antibacterial, and hemostatic N,O-carboxymethyl chitosan/oxidized chondroitin sulfate composite hydrogel for wound dressing. Mater. Sci. Eng. C, 2021, 118, 111324.
[http://dx.doi.org/10.1016/j.msec.2020.111324] [PMID: 33254961]
[121]
Cheng, F.; Xu, L.; Dai, J.; Yi, X.; He, J.; Li, H. N Ocarboxymethyl chitosan/oxidized cellulose composite sponge containing ε-poly-l-lysine as a potential wound dressing for the prevention and treatment of postoperative adhesion. Int. J. Biol. Macromol., 2022, 209(Pt B), 2151-2164.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.04.195] [PMID: 35500774]
[122]
Kim, J.U.; Kim, B.; Shahbaz, H.M.; Lee, S.H.; Park, D.; Park, J. Encapsulation of probiotic Lactobacillus acidophilus by ionic gelation with electrostatic extrusion for enhancement of survival under simulated gastric conditions and during refrigerated storage. Int. J. Food Sci. Technol., 2017, 52(2), 519-530.
[http://dx.doi.org/10.1111/ijfs.13308]
[123]
Lim, G.P.; Ong, H.Y.; Lee, B.B.; Ahmad, M.S.; Singh, H.; Ravindra, P. Effects of process variables on size of chitosan-alginate capsules through extrusion-dripping method. Adv. Mat. Res., 2014, 925, 8-12.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.925.8]
[124]
Alizadeh-Sani, M.; Ehsani, A.; Moghaddas Kia, E.; Khezerlou, A. Microbial gums: Introducing a novel functional component of edible coatings and packaging. Appl. Microbiol. Biotechnol., 2019, 103(17), 6853-6866.
[http://dx.doi.org/10.1007/s00253-019-09966-x] [PMID: 31289906]
[125]
Poli, F.; Momodu, D.; Spina, G.E.; Terella, A.; Mutuma, B.K.; Focarete, M.L.; Manyala, N.; Soavi, F. Pullulan-ionic liquid-based supercapacitor: A novel, smart combination of components for an easy-to-dispose device. Electrochim. Acta, 2020, 338, 135872.
[http://dx.doi.org/10.1016/j.electacta.2020.135872]
[126]
Fialho, A.M.; Moreira, L.M.; Granja, A.T.; Popescu, A.O.; Hoffmann, K. Sá-Correia, I. Occurrence, production, and applications of gellan: Current state and perspectives. Appl. Microbiol. Biotechnol., 2008, 79(6), 889-900.
[http://dx.doi.org/10.1007/s00253-008-1496-0] [PMID: 18506441]
[127]
Kia, E.M.; Ghasempour, Z.; Ghanbari, S.; Pirmohammadi, R.; Ehsani, A. Development of probiotic yogurt by incorporation of milk protein concentrate (MPC) and‎ microencapsulated Lactobacillus paracasei in gellan-caseinate mixture. Br. Food J., 2018.
[128]
Aquinas, N.; Bhat, M.R.; Selvaraj, S. A review presenting production, characterization, and applications of biopolymer curdlan in food and pharmaceutical sectors. Polym. Bull., 2021, 1-23.
[129]
Nishinari, K.; Zhang, H.; Funami, T. Curdlan. Handbook of hydrocolloids; Elsevier, 2021, pp. 887-921.
[http://dx.doi.org/10.1016/B978-0-12-820104-6.00005-X]
[130]
Shi, Y.; Liu, J.; Yan, Q.; You, X.; Yang, S.; Jiang, Z. In vitro digestibility and prebiotic potential of curdlan (1 → 3)-β- d -glucan oligosaccharides in Lactobacillus species. Carbohydr. Polym., 2018, 188, 17-26.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.085] [PMID: 29525154]
[131]
Putra, A.; Kakugo, A.; Furukawa, H.; Gong, J.P.; Osada, Y.; Uemura, T.; Yamamoto, M. Production of bacterial cellulose with well oriented fibril on PDMS substrate. Polym. J., 2008, 40(2), 137-142.
[http://dx.doi.org/10.1295/polymj.PJ2007180]
[132]
Retegi, A.; Gabilondo, N. Peña, C.; Zuluaga, R.; Castro, C.; Gañan, P.; de la Caba, K.; Mondragon, I. Bacterial cellulose films with controlled microstructure–mechanical property relationships. Cellulose, 2010, 17(3), 661-669.
[http://dx.doi.org/10.1007/s10570-009-9389-7]
[133]
Palaniraj, A.; Jayaraman, V. Production, recovery and applications of xanthan gum by Xanthomonas campestris. J. Food Eng., 2011, 106(1), 1-12.
[http://dx.doi.org/10.1016/j.jfoodeng.2011.03.035]
[134]
Ding, W.K.; Shah, N.P. Effect of various encapsulating materials on the stability of probiotic bacteria. J. Food Sci., 2009, 74(2), M100-M107.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01067.x] [PMID: 19323757]
[135]
Tantratian, S.; Wattanaprasert, S.; Suknaisilp, S. Effect of partial substitution of milk-non-fat with xanthan gum on encapsulation of a probiotic Lactobacillus. J. Food Process. Preserv., 2018, 42(7), e13673.
[http://dx.doi.org/10.1111/jfpp.13673]
[136]
Assadpour, E.; Jafari, S.M. Advances in spray-drying encapsulation of food bioactive ingredients: From microcapsules to nanocapsules. Annu. Rev. Food Sci. Technol., 2019, 10(1), 103-131.
[http://dx.doi.org/10.1146/annurev-food-032818-121641] [PMID: 30649963]
[137]
Jacobsen, C. García-Moreno, P.J.; Mendes, A.C.; Mateiu, R.V.; Chronakis, I.S. Use of electrohydrodynamic processing for encapsulation of sensitive bioactive compounds and applications in food. Annu. Rev. Food Sci. Technol., 2018, 9(1), 525-549.
[http://dx.doi.org/10.1146/annurev-food-030117-012348] [PMID: 29400995]
[138]
Okuro, P.K.; de Matos, F.E. Junior; Favaro-Trindade, C.S. Technological challenges for spray chilling encapsulation of functional food ingredients. Food Technol. Biotechnol., 2013, 51(2), 171.
[139]
Fang, Z.; Bhandari, B. Spray drying, freeze drying and related processes for food ingredient and nutraceutical encapsulation. Encapsulation technologies and delivery systems for food ingredients and nutraceuticals; Elsevier, 2012, pp. 73-109.
[140]
McClements, D.J.; Jafari, S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci., 2018, 251, 55-79.
[http://dx.doi.org/10.1016/j.cis.2017.12.001] [PMID: 29248154]
[141]
Aloys, H.; Korma, S.A.; Alice, T.M.; Chantal, N.; Ali, A.H.; Abed, S.M. Microencapsulation by complex coacervation: Methods, techniques, benefits, and applications-A review. Amer. J. Food Sci. Nutrit. Res., 2016, 3(6), 188-192.
[142]
Sohail, A.; Turner, M.S.; Coombes, A.; Bostrom, T.; Bhandari, B. Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method. Int. J. Food Microbiol., 2011, 145(1), 162-168.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.12.007] [PMID: 21276627]
[143]
Lai, P.Y.; How, Y.H. Pui, LP Microencapsulation of Bifidobacterium lactis Bi-07 with galactooligosaccharides using co-extrusion technique. J. Microbiol. Biotechnol. Food Sci., 2022, 11(6), 2416.
[http://dx.doi.org/10.55251/jmbfs.2416]
[144]
Yong, A.K.L.; Lai, K.W.; Mohamad Ghazali, H.; Chang, L.S.; Pui, L.P. Microencapsulation of Bifidobacterium animalis subsp. lactis BB-12 with mannitol. Asia Pac. J. Mol. Biol. Biotechnol., 2020, 28(2), 32-42.
[http://dx.doi.org/10.35118/apjmbb.2020.028.2.04]
[145]
Farias, T.G.S.; Ladislau, H.F.L.; Stamford, T.C.M.; Medeiros, J.A.C.; Soares, B.L.M.; Stamford Arnaud, T.M.; Stamford, T.L.M. Viabilities of Lactobacillus rhamnosus ASCC 290 and Lactobacillus casei ATCC 334 (in free form or encapsulated with calcium alginate-chitosan) in yellow mombin ice cream. Lebensm. Wiss. Technol., 2019, 100, 391-396.
[http://dx.doi.org/10.1016/j.lwt.2018.10.084]
[146]
Shinde, T.; Sun-Waterhouse, D.; Brooks, J. Co-extrusion encapsulation of probiotic Lactobacillus acidophilus alone or together with apple skin polyphenols: An aqueous and value-added delivery system using alginate. Food Bioprocess Technol., 2014, 7(6), 1581-1596.
[http://dx.doi.org/10.1007/s11947-013-1129-1]
[147]
Silva, M.P.; Tulini, F.L.; Ribas, M.M.; Penning, M. Fávaro-Trindade, C.S.; Poncelet, D. Microcapsules loaded with the probiotic Lactobacillus paracasei BGP-1 produced by co-extrusion technology using alginate/shellac as wall material: Characterization and evaluation of drying processes. Food Res. Int., 2016, 89(Pt 1), 582-590.
[http://dx.doi.org/10.1016/j.foodres.2016.09.008] [PMID: 28460954]
[148]
Lee, Y.; Ji, Y.R.; Lee, S.; Choi, M-J. Cho, Y Microencapsulation of probiotic Lactobacillus acidophilus KBL409 by extrusion technology to enhance survival under simulated intestinal and freeze-drying conditions. J. Microbiol. Biotechnol., 2019, 29(5), 721-730.
[http://dx.doi.org/10.4014/jmb.1903.03018]
[149]
Gul, O.; Dervisoglu, M. Application of multicriteria decision technique to determine optimum sodium alginate concentration for microencapsulation of Lactobacillus casei Shirota by extrusion and emulsification. J. Food Process Eng., 2017, 40(3), e12481.
[http://dx.doi.org/10.1111/jfpe.12481]
[150]
Shi, L.E.; Li, Z.H.; Li, D.T.; Xu, M.; Chen, H.Y.; Zhang, Z.L.; Tang, Z-X. Encapsulation of probiotic Lactobacillus bulgaricus in alginate–milk microspheres and evaluation of the survival in simulated gastrointestinal conditions. J. Food Eng., 2013, 117(1), 99-104.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.02.012]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy