Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

The Astonishing Accomplishment of Biological Drug Delivery using Lipid Nanoparticles: An Ubiquitous Review

Author(s): Devesh Kapoor, Shirisha C. Chilkapalli, Bhupendra G. Prajapati*, Paul Rodriques, Ravish Patel, Sudarshan Singh* and Sankha Bhattacharya

Volume 25, Issue 15, 2024

Published on: 23 January, 2024

Page: [1952 - 1968] Pages: 17

DOI: 10.2174/0113892010268824231122041237

Price: $65

Abstract

Biotech drugs, including proteins, hormones, enzymes, DNA/RNA therapies, and cell-based treatments, are gaining popularity due to their effectiveness. However, effective delivery systems are needed to overcome administration challenges. Lipid nanoparticles (LNPs) have emerged as promising carriers for various therapies. LNPs are biocompatible, less likely to cause adverse reactions, and can stabilize delicate biological drugs, enhancing their stability and solubility. Scalable and cost-effective manufacturing processes make LNPs suitable for largescale production. Despite recent research efforts, challenges in stability, toxicity, and regulatory concerns have limited the commercial availability of LNP-based products. This review explores the applications, administration routes, challenges, and future directions of LNPs in delivering biopharmaceuticals.

Graphical Abstract

[1]
Tenchov, R.; Bird, R.; Curtze, A.E.; Zhou, Q. Lipid Nanoparticles—From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano, 2021, 15(11), 16982-17015.
[http://dx.doi.org/10.1021/acsnano.1c04996] [PMID: 34181394]
[2]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1), 238-IN27.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[3]
Batist, G.; Ramakrishnan, G.; Rao, C.S.; Chandrasekharan, A.; Gutheil, J.; Guthrie, T.; Shah, P.; Khojasteh, A.; Nair, M.K.; Hoelzer, K.; Tkaczuk, K.; Park, Y.C.; Lee, L.W. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J. Clin. Oncol., 2001, 19(5), 1444-1454.
[http://dx.doi.org/10.1200/JCO.2001.19.5.1444] [PMID: 11230490]
[4]
Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics, 2017, 9(4), 12.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[5]
Poovi, G.; Damodharan, N. Lipid nanoparticles: A challenging approach for oral delivery of BCS Class-II drugs. Future Journal of Pharmaceutical Sciences, 2018, 4(2), 191-205.
[http://dx.doi.org/10.1016/j.fjps.2018.04.001]
[6]
Jawa, V.; Terry, F.; Gokemeijer, J.; Mitra-Kaushik, S.; Roberts, B.J.; Tourdot, S.; De Groot, A.S. T-cell dependent immunogenicity of protein therapeutics pre-clinical assessment and mitigation–updated consensus and review 2020. Front. Immunol., 2020, 11, 1301.
[http://dx.doi.org/10.3389/fimmu.2020.01301] [PMID: 32695107]
[7]
Jones, G.B.; Wright, J.M. The economic imperatives for technology enabled wellness centered healthcare. J. Public Health Policy, 2022, 43(3), 456-468.
[http://dx.doi.org/10.1057/s41271-022-00356-8] [PMID: 35922479]
[8]
Trenfield, S.J.; Awad, A.; Madla, C.M.; Hatton, G.B.; Firth, J.; Goyanes, A.; Gaisford, S.; Basit, A.W. Shaping the future: Recent advances of 3D printing in drug delivery and healthcare. Expert Opin. Drug Deliv., 2019, 16(10), 1081-1094.
[http://dx.doi.org/10.1080/17425247.2019.1660318] [PMID: 31478752]
[9]
Kumar, R.; Dkhar, D.S.; Kumari, R. Divya; Mahapatra, S.; Dubey, V.K.; Chandra, P. Lipid based nanocarriers: Production techniques, concepts, and commercialization aspect. J. Drug Deliv. Sci. Technol., 2022, 74103526.
[http://dx.doi.org/10.1016/j.jddst.2022.103526]
[10]
Walsh, G. Biopharmaceuticals: Recent approvals and likely directions. Trends Biotechnol., 2005, 23(11), 553-558.
[http://dx.doi.org/10.1016/j.tibtech.2005.07.005] [PMID: 16051388]
[11]
Walsh, G. Second-generation biopharmaceuticals. European journal of pharmaceutics and biopharmaceutics Official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV., 2004, 58(2), 185-196.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.012]
[12]
Schwarz, C; Mehnert, W; Lucks, JS Müller RHJJoCR. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization., 1994, 30, 83-96.
[13]
Westesen, K.; Siekmann, B.; Koch, M.H.J. Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. Int. J. Pharm., 1993, 93(1-3), 189-199.
[http://dx.doi.org/10.1016/0378-5173(93)90177-H]
[14]
Morel, S.; Ugazio, E.; Cavalli, R.; Gasco, M.R. Thymopentin in solid lipid nanoparticles. Int. J. Pharm., 1996, 132(1-2), 259-261.
[http://dx.doi.org/10.1016/0378-5173(95)04388-8]
[15]
Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[16]
Mohammadi-Samani, S.; Ghasemiyeh, P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci., 2018, 13(4), 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[17]
Ganesan, P.; Narayanasamy, D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain. Chem. Pharm., 2017, 6, 37-56.
[http://dx.doi.org/10.1016/j.scp.2017.07.002]
[18]
Müller, RH; Alexiev, U; Sinambela, P Keck, CM Nanostructured lipid carriers (NLC): the second generation of solid lipid nanoparticles. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Nanocarriers., 2016, 161-185.
[19]
Alsaad, A.A.A.; Hussien, A.A.; Gareeb, M.M. Solid lipid nanoparticles (SLN) as a novel drug delivery system: A theoretical review. Syst. Rev. Pharm., 2020, 11, 259-273.
[20]
Paliwal, R.; Paliwal, S.R.; Kenwat, R.; Kurmi, B.D.; Sahu, M.K. Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opin. Ther. Pat., 2020, 30(3), 179-194.
[http://dx.doi.org/10.1080/13543776.2020.1720649] [PMID: 32003260]
[21]
Rai, VK; Gupta, GD; Pottoo, FH; Barkat, MA Potential of nano-structured drug delivery system for phytomedicine delivery. Nanophytomedicine: Concept to Clinic., 2020, 89-111.
[http://dx.doi.org/10.1007/978-981-15-4909-0_6]
[22]
Mondal, S.; Ravindren, R.; Shin, B.; Kim, S.; Lee, H.; Ganguly, S.; Das, N.C.; Nah, C. Electrical conductivity and electromagnetic interference shielding effectiveness of nano‐structured carbon assisted poly(methyl methacrylate) nanocomposites. Polym. Eng. Sci., 2020, 60(10), 2414-2427.
[http://dx.doi.org/10.1002/pen.25480]
[23]
Khairnar, S.V.; Pagare, P.; Thakre, A.; Nambiar, A.R.; Junnuthula, V.; Abraham, M.C.; Kolimi, P.; Nyavanandi, D.; Dyawanapelly, S. Review on the scale-up methods for the preparation of solid lipid nanoparticles. Pharmaceutics, 2022, 14(9), 1886.
[http://dx.doi.org/10.3390/pharmaceutics14091886] [PMID: 36145632]
[24]
Yaghmur, A.; Mu, H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm. Sin. B, 2021, 11(4), 871-885.
[http://dx.doi.org/10.1016/j.apsb.2021.02.013] [PMID: 33996404]
[25]
Sharma, N.; Sharma, S.; Singh, S.; Garg, K.; Singh, S.K.; Arora, S. Nano-structured lipid carriers: A promising strategy and current progress in rheumatoid arthritis and pain management. Plant Arch., 2020, 20(2), 2298-2308.
[26]
Irbaji, H.D. Synthesis of nano structured mixed metal chalcogenide thin films using spray pyrolysis technique for development of highly sensitive and ultra fast photo detector., 2023.
[27]
Viegas, C.; Patrício, A.B.; Prata, J.M.; Nadhman, A.; Chintamaneni, P.K.; Fonte, P. Solid Lipid Nanoparticles vs. Nanostructured Lipid Carriers: A Comparative Review. Pharmaceutics, 2023, 15(6), 1593.
[http://dx.doi.org/10.3390/pharmaceutics15061593] [PMID: 37376042]
[28]
Akbari, J.; Saeedi, M.; Ahmadi, F.; Hashemi, S.M.H.; Babaei, A.; Yaddollahi, S.; Rostamkalaei, S.S.; Asare-Addo, K.; Nokhodchi, A. Solid lipid nanoparticles and nanostructured lipid carriers: a review of the methods of manufacture and routes of administration. Pharm. Dev. Technol., 2022, 27(5), 525-544.
[http://dx.doi.org/10.1080/10837450.2022.2084554] [PMID: 35635506]
[29]
Lim, S.B.; Banerjee, A.; Önyüksel, H. Improvement of drug safety by the use of lipid-based nanocarriers. J. Control. Release, 2012, 163(1), 34-45.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.002] [PMID: 22698939]
[30]
Asadujjaman, M.; Mishuk, A.U. Novel approaches in lipid based drug delivery systems. J. Drug Deliv. Ther., 2013, 3(4), 124-130.
[http://dx.doi.org/10.22270/jddt.v3i4.578]
[31]
Singh, S; Dodiya, TR; Dodiya, R; Ushir, YV; Widodo, S Lipid nanoparticulate drug delivery systems: A revolution in dosage form design and development. 2012, 5, 107-40.
[32]
Singh, S.; Chunglok, W. Herbal bioactive: A booster dose for advanced pharmaceutical nanoscience. , 2022, pp. 53-75.
[33]
Patel, R.; Singh, S.; Singh, S.; Sheth, N.; Gendle, R. Development and characterization of curcumin loaded transfersome for transdermal delivery. J. Pharm. Sci. Res., 2009, 1(4), 71.
[34]
Kendre, P.N.; Kayande, D.R.; Jain, S.P.; Malge, T.G.; Zadpe, N.N.; Prajapati, B.G. Polymeric Nanoparticles: Prospective on the Synthesis, Characterization and Applications in Nose-to-Brain Drug Delivery. Curr. Nanosci., 2023, 19(5), 663-676.
[http://dx.doi.org/10.2174/1573413718666220929102013]
[35]
Paliwal, H.; Prajapati, B.G.; Parihar, A.; Ganugula, S.; Patel, J.K.; Chougule, M. Solid Lipid Nanoparticles in Malaria. Malarial Drug Delivery Systems: Advances in Treatment of Infectious Diseases; Springer, 2023, pp. 113-137.
[http://dx.doi.org/10.1007/978-3-031-15848-3_6]
[36]
Beconcini, D.; Felice, F.; Fabiano, A.; Sarmento, B.; Zambito, Y.; Di Stefano, R. Antioxidant and anti-inflammatory properties of cherry extract: nanosystems-based strategies to improve endothelial function and intestinal absorption. Foods, 2020, 9(2), 207.
[http://dx.doi.org/10.3390/foods9020207] [PMID: 32079234]
[37]
Anthony, A.A.; Mumuni, A.M.; Philip, F.B. Lipid Nanoparticulate Drug Delivery Systems: A Revolution in Dosage Form Design and Development. In: Recent Advances in Novel Drug Carrier Systems; S, Ali Demir, Ed.; Rijeka: IntechOpen, 2012; 107, p. 140.
[38]
Scioli Montoto, S; Muraca, G; Ruiz, ME Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front. Mol. Biosci., 2020, 7, 587997. Published 2020 Oct 30.
[http://dx.doi.org/10.3389/fmolb.2020.587997]
[39]
Momekova, D.B.; Gugleva, V.E.; Petrov, P.D. Nanoarchitectonics of multifunctional niosomes for advanced drug delivery. ACS Omega, 2021, 6(49), 33265-33273.
[http://dx.doi.org/10.1021/acsomega.1c05083] [PMID: 34926878]
[40]
Kumar, A.; Kumar, B.; Singh, S.K.; Kaur, B.; Singh, S. A review on phytosomes: Novel approach for herbal phytochemicals. Asian J. Pharm. Clin. Res., 2017, 10(10), 41-47.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i10.20424]
[41]
Gupta, R; Kaur, T; Sharma, S. Transfersomes for Escalating Effectiveness of Drugs via Transdermal and Topical Administration: A Review. Pharm. Biosci. J., 2022, 9-18.
[42]
Garg, V.; Singh, H.; Bimbrawh, S.; Singh, S.K.; Gulati, M.; Vaidya, Y.; Kaur, P. Ethosomes and transfersomes: Principles, perspectives and practices. Curr. Drug Deliv., 2017, 14(5), 613-633.
[PMID: 27199229]
[43]
Touitou, E.; Godin, B.; Weiss, C. Enhanced delivery of drugs into and across the skin by ethosomal carriers. Drug Dev. Res., 2000, 50(3-4), 406-415.
[http://dx.doi.org/10.1002/1098-2299(200007/08)50:3/4<406:AID-DDR23>3.0.CO;2-M]
[44]
Chauhan, N.; Vasava, P.; Khan, S.L.; Siddiqui, F.A.; Islam, F.; Chopra, H.; Emran, T.B. Ethosomes: A novel drug carrier. Ann. Med. Surg., 2022, 82104595.
[http://dx.doi.org/10.1016/j.amsu.2022.104595] [PMID: 36124209]
[45]
Mohite, P.; Rajput, T.; Pandhare, R.; Sangale, A.; Singh, S.; Prajapati, B.G. Nanoemulsion in management of colorectal cancer: Challenges and future prospects. Nanomanufacturing, 2023, 3(2), 139-166.
[http://dx.doi.org/10.3390/nanomanufacturing3020010]
[46]
Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater., 2019, 2019, 1-26.
[http://dx.doi.org/10.1155/2019/3702518]
[47]
Almeida, A.; Souto, E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev., 2007, 59(6), 478-490.
[http://dx.doi.org/10.1016/j.addr.2007.04.007] [PMID: 17543416]
[48]
Kaur, I.P.; Kakkar, V.; Deol, P.K.; Yadav, M.; Singh, M.; Sharma, I. Issues and concerns in nanotech product development and its commercialization. J. Control. Release, 2014, 193, 51-62.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.005]
[49]
Zhang, N.; Ping, Q.; Huang, G.; Xu, W.; Cheng, Y.; Han, X. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int. J. Pharm., 2006, 327(1-2), 153-159.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.026] [PMID: 16935443]
[50]
Yang, X.; Liu, Y.; Liu, C.; Zhang, N. Biodegradable solid lipid nanoparticle flocculates for pulmonary delivery of insulin. J. Biomed. Nanotechnol., 2012, 8(5), 834-842.
[http://dx.doi.org/10.1166/jbn.2012.1429] [PMID: 22888755]
[51]
Hu, F.; Hong, Y.; Yuan, H. Preparation and characterization of solid lipid nanoparticles containing peptide. Int. J. Pharm., 2004, 273(1-2), 29-35.
[http://dx.doi.org/10.1016/j.ijpharm.2003.12.016] [PMID: 15010127]
[52]
Yuan, H.; Jiang, S.P.; Du, Y.Z.; Miao, J.; Zhang, X.G.; Hu, F.Q. Strategic approaches for improving entrapment of hydrophilic peptide drugs by lipid nanoparticles. Colloids Surf. B Biointerfaces, 2009, 70(2), 248-253.
[http://dx.doi.org/10.1016/j.colsurfb.2008.12.031] [PMID: 19185474]
[53]
Del Curto, M.D.; Chicco, D.; D’Antonio, M.; Ciolli, V.; Dannan, H.; D’Urso, S. Lipid microparticles as sustained release system for a GnRH antagonist (Antide). J. Control. Release, 2003, 89(2), 297-310.
[54]
Gebril, A.M.; Lamprou, D.A.; Alsaadi, M.M.; Stimson, W.H.; Mullen, A.B.; Ferro, V.A. Assessment of the antigen-specific antibody response induced by mucosal administration of a GnRH conjugate entrapped in lipid nanoparticles. Nanomedicine, 2014, 10(5), e971-e979.
[http://dx.doi.org/10.1016/j.nano.2013.12.005] [PMID: 24374362]
[55]
He, Y.; Zhang, L.; Song, C. Luteinizing hormone-releasing hormone receptor-mediated delivery of mitoxantrone using LHRH analogs modified with PEGylated liposomes. Int. J. Nanomedicine, 2010, 5, 697-705.
[PMID: 20957221]
[56]
Kuo, Y.C.; Ko, H.F. Targeting delivery of saquinavir to the brain using 83-14 monoclonal antibody-grafted solid lipid nanoparticles. Biomaterials, 2013, 34(20), 4818-4830.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.013] [PMID: 23545288]
[57]
Kuo, Y.C.; Shih-Huang, C.Y. Solid lipid nanoparticles carrying chemotherapeutic drug across the blood–brain barrier through insulin receptor-mediated pathway. J. Drug Target., 2013, 21(8), 730-738.
[http://dx.doi.org/10.3109/1061186X.2013.812094] [PMID: 23815407]
[58]
Benhabbour, S.R.; Luft, J.C.; Kim, D.; Jain, A.; Wadhwa, S.; Parrott, M.C. In vitro and in vivo assessment of targeting lipid-based nanoparticles to the epidermal growth factor-receptor (EGFR) using a novel Heptameric ZEGFR domain. J. Control. Release, 2012, 158(1), 63-71.
[59]
Steichen, S.D.; Caldorera-Moore, M.; Peppas, N.A. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur. J. Pharm. Sci., 2013.
[http://dx.doi.org/10.1016/j.ejps.2012.12.006]
[60]
Kreuter, J. Drug delivery to the central nervous system by polymeric nanoparticles: What do we know? Adv. Drug Deliv. Rev., 2014, 71, 2-14.
[http://dx.doi.org/10.1016/j.addr.2013.08.008] [PMID: 23981489]
[61]
Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L.T.; Dilliard, S.A.; Siegwart, D.J. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol., 2020, 15(4), 313-320.
[http://dx.doi.org/10.1038/s41565-020-0669-6] [PMID: 32251383]
[62]
McGregor, P.K.; Catchpole, C.K.; Dabelsteen, T.; Falls, J.B.; Fusani, L.; Gerhardt, H.C. Design of playback experiments - the thornbridge hall nato arw consensus; Plenum Press Div Plenum Publishing Corp: New York, 1992, pp. 1-9.
[63]
Wang, W.; Wu, X.; Kevin Tang, K.W.; Pyatnitskiy, I.; Taniguchi, R.; Lin, P.; Zhou, R.; Capocyan, S.L.C.; Hong, G.; Wang, H. Ultrasound-triggered in situ photon emission for noninvasive optogenetics. J. Am. Chem. Soc., 2023, 145(2), 1097-1107.
[http://dx.doi.org/10.1021/jacs.2c10666] [PMID: 36606703]
[64]
Vighi, E.; Ruozi, B.; Montanari, M.; Battini, R.; Leo, E. pDNA condensation capacity and in vitro gene delivery properties of cationic solid lipid nanoparticles. Int. J. Pharm., 2010, 389(1-2), 254-261.
[http://dx.doi.org/10.1016/j.ijpharm.2010.01.030] [PMID: 20100555]
[65]
Akhtar, N; Akram, M; Asif, HMS; Usmanghani, K; Shah, SMA Rao, SA Gene therapy: A review article. 2011, 5, 1812-1817.
[66]
Walther, W.; Stein, U. Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs, 2000, 60(2), 249-271.
[http://dx.doi.org/10.2165/00003495-200060020-00002] [PMID: 10983732]
[67]
Nayerossadat, N.; Ali, P.A.; Maedeh, T. Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res., 2012, 1(1), 27.
[http://dx.doi.org/10.4103/2277-9175.98152] [PMID: 23210086]
[68]
van den Boorn, J.G.; Schlee, M.; Coch, C.; Hartmann, G. SiRNA delivery with exosome nanoparticles. Nat. Biotechnol., 2011, 29(4), 325-326.
[http://dx.doi.org/10.1038/nbt.1830] [PMID: 21478846]
[69]
Kumar, S.; Randhawa, J.K. High melting lipid based approach for drug delivery: Solid lipid nanoparticles. Mater. Sci. Eng. C, 2013, 33(4), 1842-1852.
[http://dx.doi.org/10.1016/j.msec.2013.01.037] [PMID: 23498204]
[70]
Wu, S.Y.; McMillan, N.A.J. Lipidic systems for in vivo siRNA delivery. AAPS J., 2009, 11(4), 639-652.
[http://dx.doi.org/10.1208/s12248-009-9140-1] [PMID: 19757082]
[71]
Alicia Rodríguez Gn, Ana del P-Rg, María Ángeles Ss. Non-Viral Delivery Systems in Gene Therapy. Francisco Martin M, Gene Therapy. Rijeka: IntechOpen; , 2013.
[72]
Carbone, C.; Tomasello, B.; Ruozi, B.; Renis, M.; Puglisi, G. Preparation and optimization of PIT solid lipid nanoparticles via statistical factorial design. Eur. J. Med. Chem., 2012, 49, 110-117.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.001] [PMID: 22244589]
[73]
de la Fuente, M.; Raviña, M.; Paolicelli, P.; Sanchez, A.; Seijo, B.; Alonso, M.J. Chitosan-based nanostructures: A delivery platform for ocular therapeutics. Adv. Drug Deliv. Rev., 2010, 62(1), 100-117.
[http://dx.doi.org/10.1016/j.addr.2009.11.026] [PMID: 19958805]
[74]
Delgado, D.; del Pozo-Rodríguez, A.; Solinís, M.Á.; Avilés-Triqueros, M.; Weber, B.H.; Fernández, E.; Gascón, A.R. Dextran and protamine-based solid lipid nanoparticles as potential vectors for the treatment of X-linked juvenile retinoschisis. Hum. Gene Ther., 2012, 23(4), 345-355.
[http://dx.doi.org/10.1089/hum.2011.115] [PMID: 22295905]
[75]
del Pozo-Rodríguez, A.; Pujals, S.; Delgado, D.; Solinís, M.A.; Gascón, A.R.; Giralt, E. A proline-rich peptide improves cell transfection of solid lipid nanoparticle-based non-viral vectors. J. Control. Release, 2009.
[http://dx.doi.org/10.1016/j.jconrel.2008.09.004]
[76]
Delgado, D.; del Pozo-Rodríguez, A.; Solinís, M.; Rodríguez-Gascón, A. Understanding the mechanism of protamine in solid lipid nanoparticle-based lipofection: the importance of the entry pathway. Eur. J. Pharm. Biopharm., 2011, 79(3), 495-502.
[http://dx.doi.org/10.1016/j.ejpb.2011.06.005]
[77]
Delgado, D.; Gascón, A.R.; del Pozo-Rodríguez, A.; Echevarría, E.; Ruiz de Garibay, A.P.; Rodríguez, J.M.; Solinís, M.Á. Dextran–protamine–solid lipid nanoparticles as a non-viral vector for gene therapy: In vitro characterization and in vivo transfection after intravenous administration to mice. Int. J. Pharm., 2012, 425(1-2), 35-43.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.052] [PMID: 22226874]
[78]
Delgado, D.; del Pozo-Rodríguez, A.; Angeles Solinís, M.; Bartkowiak, A.; Rodríguez-Gascón, A. New gene delivery system based on oligochitosan and solid lipid nanoparticles: ‘in vitro’ and ‘in vivo’ evaluation. Eur. J. Pharm. Sci., 2013, 50(3-4), 484-491.
[79]
Rudolph, C.; Schillinger, U.; Ortiz, A.; Tabatt, K.; Plank, C.; Müller, R.H.; Rosenecker, J. Application of novel solid lipid nanoparticle (SLN)-gene vector formulations based on a dimeric HIV-1 TAT-peptide in vitro and in vivo. Pharm. Res., 2004, 21(9), 1662-1669.
[http://dx.doi.org/10.1023/B:PHAM.0000041463.56768.ec] [PMID: 15497694]
[80]
Rudolph, C.; Rosenecker, J. Formation of solid lipid nanoparticle (SLN)-gene vector complexes for transfection of mammalian cells in vitro. Cold Spring Harb. Protoc., 2012, 2012(3), pdb.prot068122.
[http://dx.doi.org/10.1101/pdb.prot068122] [PMID: 22383641]
[81]
Akinc, A.; Maier, M.A.; Manoharan, M.; Fitzgerald, K.; Jayaraman, M.; Barros, S.; Ansell, S.; Du, X.; Hope, M.J.; Madden, T.D.; Mui, B.L.; Semple, S.C.; Tam, Y.K.; Ciufolini, M.; Witzigmann, D.; Kulkarni, J.A.; van der Meel, R.; Cullis, P.R. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol., 2019, 14(12), 1084-1087.
[http://dx.doi.org/10.1038/s41565-019-0591-y] [PMID: 31802031]
[82]
Müller, R.H.; Mäder, K. Gohla, S Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[83]
Doroud, D.; Vatanara, A.; Zahedifard, F.; Gholami, E.; Vahabpour, R. Rouholamini Najafabadi, A Cationic solid lipid nanoparticles loaded by cysteine proteinase genes as a novel anti-leishmaniasis DNA vaccine delivery system: characterization and in vitro evaluations. J. Pharm. Pharm. Sci., 2010, 13(3), 230-335.
[84]
Choi, S.H.; Jin, S.E.; Lee, M.K.; Lim, S.J.; Park, J.S.; Kim, B.G. Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells. Eur. J. Pharm. Biopharm., 2008, 68(3), 545-554.
[http://dx.doi.org/10.1016/j.ejpb.2007.07.011]
[85]
Crawford, N.W.; Bines, J.E.; Royle, J.; Buttery, J.P. Optimizing immunization in pediatric special risk groups. Expert Rev. Vaccines, 2011, 10(2), 175-186.
[http://dx.doi.org/10.1586/erv.10.157] [PMID: 21332267]
[86]
Kowalski, P.S.; Rudra, A.; Miao, L. Anderson, DG Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol. Ther., 2019, 27(4), 710-728.
[87]
Gómez-Aguado, I.; Rodríguez-Castejón, J.; Vicente-Pascual, M.; Rodríguez-Gascón, A.; Solinís, M.Á.; del Pozo-Rodríguez, A. Nanomedicines to Deliver mRNA: State of the Art and Future Perspectives. Nanomaterials, 2020, 10(2), 364.
[http://dx.doi.org/10.3390/nano10020364] [PMID: 32093140]
[88]
Grafals-Ruiz, N.; Rios-Vicil, C.I.; Lozada-Delgado, E.L.; Quiñones-Díaz, B.I.; Noriega-Rivera, R.A.; Martínez-Zayas, G.; Santana-Rivera, Y.; Santiago-Sánchez, G.S.; Valiyeva, F.; Vivas-Mejía, P.E. Brain Targeted Gold Liposomes Improve RNAi Delivery for Glioblastoma. Int. J. Nanomedicine, 2020, 15, 2809-2828.
[http://dx.doi.org/10.2147/IJN.S241055] [PMID: 32368056]
[89]
Abeyratne, E; Tharmarajah, K; Freitas, JR; Mostafavi, H; Mahalingam, S Zaid, A Liposomal Delivery of the RNA Genome of a Live- Attenuated Chikungunya Virus Vaccine Candidate Provides Local, but Not Systemic Protection After One Dose. 2020.
[http://dx.doi.org/10.3389/fimmu.2020.00304]
[90]
Dhaliwal, H.K.; Fan, Y.; Kim, J.; Amiji, M.M. Intranasal delivery and transfection of mRNA therapeutics in the brain using cationic liposomes. Mol. Pharm., 2020, 17(6), 1996-2005.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00170] [PMID: 32365295]
[91]
Evers, M.J.W.; van de Wakker, S.I.; de Groot, E.M.; de Jong, O.G.; Gitz-François, J.J.J.; Seinen, C.S.; Sluijter, J.P.G.; Schiffelers, R.M.; Vader, P. Functional siRNA delivery by extracellular vesicle–liposome hybrid nanoparticles. Adv. Healthc. Mater., 2022, 11(5), 2101202.
[http://dx.doi.org/10.1002/adhm.202101202] [PMID: 34382360]
[92]
Cho, R.; Sakurai, Y.; Jones, H.S.; Akita, H.; Hisaka, A.; Hatakeyama, H. Silencing of VEGFR2 by RGD-modified lipid nanoparticles enhanced the efficacy of Anti-PD-1 antibody by accelerating vascular normalization and infiltration of T cells in tumors. Cancers, 2020, 12(12), 3630.
[http://dx.doi.org/10.3390/cancers12123630] [PMID: 33291555]
[93]
Zhang, Y.; Xi, X.; Yu, H.; Yang, L.; Lin, J.; Yang, W.; Liu, J.; Fan, X.; Xu, Y. Chemically modified in-vitro-transcribed mRNA encoding thrombopoietin stimulates thrombopoiesis in mice. Mol. Ther. Nucleic Acids, 2022, 29, 657-671.
[http://dx.doi.org/10.1016/j.omtn.2022.08.017] [PMID: 36090760]
[94]
Yu, X.; Yang, Z.; Zhang, Y.; Xia, J.; Zhang, J.; Han, Q.; Yu, H.; Wu, C.; Xu, Y.; Xu, W.; Yang, W. Lipid nanoparticle delivery of chemically modified NGF R100W mRNA alleviates peripheral neuropathy. Adv. Healthc. Mater., 2023, 12(3), 2202127.
[http://dx.doi.org/10.1002/adhm.202202127] [PMID: 36325948]
[95]
Deng, Y.Q.; Zhang, N.N.; Zhang, Y.F.; Zhong, X.; Xu, S.; Qiu, H.Y.; Wang, T.C.; Zhao, H.; Zhou, C.; Zu, S.L.; Chen, Q.; Cao, T.S.; Ye, Q.; Chi, H.; Duan, X.H.; Lin, D.D.; Zhang, X.J.; Xie, L.Z.; Gao, Y.W.; Ying, B.; Qin, C.F. Lipid nanoparticle-encapsulated mRNA antibody provides long-term protection against SARS-CoV-2 in mice and hamsters. Cell Res., 2022, 32(4), 375-382.
[http://dx.doi.org/10.1038/s41422-022-00630-0] [PMID: 35210606]
[96]
Mucker, E.M.; Thiele-Suess, C.; Baumhof, P.; Hooper, J.W. Lipid nanoparticle delivery of unmodified mRNAs encoding multiple monoclonal antibodies targeting poxviruses in rabbits. Mol. Ther. Nucleic Acids, 2022, 28, 847-858.
[http://dx.doi.org/10.1016/j.omtn.2022.05.025] [PMID: 35664703]
[97]
Erasmus, J.H.; Archer, J.; Fuerte-Stone, J.; Khandhar, A.P.; Voigt, E.; Granger, B.; Bombardi, R.G.; Govero, J.; Tan, Q.; Durnell, L.A.; Coler, R.N.; Diamond, M.S.; Crowe, J.E., Jr; Reed, S.G.; Thackray, L.B.; Carnahan, R.H.; Van Hoeven, N. Intramuscular Delivery of Replicon RNA Encoding ZIKV-117 Human Monoclonal Antibody Protects against Zika Virus Infection. Mol. Ther. Methods Clin. Dev., 2020, 18, 402-414.
[http://dx.doi.org/10.1016/j.omtm.2020.06.011] [PMID: 32695842]
[98]
Hassett, K.J.; Benenato, K.E.; Jacquinet, E.; Lee, A.; Woods, A.; Yuzhakov, O.; Himansu, S.; Deterling, J.; Geilich, B.M.; Ketova, T.; Mihai, C.; Lynn, A.; McFadyen, I.; Moore, M.J.; Senn, J.J.; Stanton, M.G.; Almarsson, Ö.; Ciaramella, G.; Brito, L.A. Optimization of Lipid Nanoparticles for Intramuscular Administration of mRNA Vaccines. Mol. Ther. Nucleic Acids, 2019, 15, 1-11.
[http://dx.doi.org/10.1016/j.omtn.2019.01.013] [PMID: 30785039]
[99]
Alameh, M.G.; Tombácz, I.; Bettini, E.; Lederer, K.; Ndeupen, S.; Sittplangkoon, C.; Wilmore, J.R.; Gaudette, B.T.; Soliman, O.Y.; Pine, M.; Hicks, P.; Manzoni, T.B.; Knox, J.J.; Johnson, J.L.; Laczkó, D.; Muramatsu, H.; Davis, B.; Meng, W.; Rosenfeld, A.M.; Strohmeier, S.; Lin, P.J.C.; Mui, B.L.; Tam, Y.K.; Karikó, K.; Jacquet, A.; Krammer, F.; Bates, P.; Cancro, M.P.; Weissman, D.; Luning Prak, E.T.; Allman, D.; Igyártó, B.Z.; Locci, M.; Pardi, N. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity, 2021, 54(12), 2877-2892.e7.
[http://dx.doi.org/10.1016/j.immuni.2021.11.001] [PMID: 34852217]
[100]
Sharma, G.; Rath, G.; Goyal, A. Improved Biological Activity and Stability of enzyme L-Asparaginase in Solid Lipid Nanoparticles Formulation. J. Drug Deliv. Ther., 2019, 9(2-s), 325-329.
[101]
Do, T.T.; Do, T.P.; Nguyen, T.N.; Nguyen, T.C.; Vu, T.T.P.; Nguyen, T.G.A. Nanoliposomal L-Asparaginase and Its Antitumor Activities in Lewis Lung Carcinoma Tumor-Induced BALB/c Mice. Adv. Mater. Sci. Eng., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/3534807]
[102]
Zinger, A.; Koren, L.; Adir, O.; Poley, M.; Alyan, M.; Yaari, Z.; Noor, N.; Krinsky, N.; Simon, A.; Gibori, H.; Krayem, M.; Mumblat, Y.; Kasten, S.; Ofir, S.; Fridman, E.; Milman, N.; Lübtow, M.M.; Liba, L.; Shklover, J.; Shainsky-Roitman, J.; Binenbaum, Y.; Hershkovitz, D.; Gil, Z.; Dvir, T.; Luxenhofer, R.; Satchi-Fainaro, R.; Schroeder, A. Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano, 2019, 13(10), 11008-11021.
[http://dx.doi.org/10.1021/acsnano.9b02395] [PMID: 31503443]
[103]
Li, Y.; Tenchov, R.; Smoot, J.; Liu, C.; Watkins, S.; Zhou, Q. A comprehensive review of the global efforts on covid-19 vaccine development. ACS Cent. Sci., 2021, 7(4), 512-533.
[http://dx.doi.org/10.1021/acscentsci.1c00120] [PMID: 34056083]
[104]
Scioli Montoto, S.; Muraca, G.; Ruiz, M.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front. Mol. Biosci., 2020, 7587997.
[http://dx.doi.org/10.3389/fmolb.2020.587997] [PMID: 33195435]
[105]
Di, L.; Kerns, E.; Carter, G. Drug-like property concepts in pharmaceutical design. Curr. Pharm. Des., 2009, 15(19), 2184-2194.
[http://dx.doi.org/10.2174/138161209788682479] [PMID: 19601822]
[106]
Sharma, R.K.; Sharma, N.K.; Rana, S.; Shivkumar, H.G. Eds.; Solid lipid nanoparticles as a carrier of metformin for transdermal delivery; , 2013.
[107]
Kurakula, M.; Ahmed, O.A.A.; Fahmy, U.A.; Ahmed, T.A. Solid lipid nanoparticles for transdermal delivery of avanafil: optimization, formulation, in-vitro and ex-vivo studies. J. Liposome Res., 2016, 26(4), 288-296.
[http://dx.doi.org/10.3109/08982104.2015.1117490] [PMID: 26784833]
[108]
Bhalekar, M.R.; Madgulkar, A.R.; Desale, P.S.; Marium, G. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis. Drug Dev. Ind. Pharm., 2017, 43(6), 1003-1010.
[http://dx.doi.org/10.1080/03639045.2017.1291666] [PMID: 28161984]
[109]
Vaghasiya, H.; Kumar, A.; Sawant, K. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur. J. Pharm. Sci., 2013, 49(2), 311-322.
[http://dx.doi.org/10.1016/j.ejps.2013.03.013]
[110]
Geetha, T.; Kapila, M.; Prakash, O.; Deol, P.K.; Kakkar, V.; Kaur, I.P. Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer. J. Drug Target., 2015, 23(2), 159-169.
[http://dx.doi.org/10.3109/1061186X.2014.965717] [PMID: 25268273]
[111]
Ghanbarzadeh, S.; Hariri, R.; Kouhsoltani, M.; Shokri, J.; Javadzadeh, Y.; Hamishehkar, H. Enhanced stability and dermal delivery of hydroquinone using solid lipid nanoparticles. Colloids Surf. B Biointerfaces, 2015, 136, 1004-1010.
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.041] [PMID: 26579567]
[112]
Kang, J.H.; Chon, J.; Kim, Y.I.; Lee, H.J.; Oh, D.W.; Lee, H.G.; Han, C.S.; Kim, D.W.; Park, C.W. Preparation and evaluation of tacrolimus-loaded thermosensitive solid lipid nanoparticles for improved dermal distribution. Int. J. Nanomedicine, 2019, 14, 5381-5396.
[http://dx.doi.org/10.2147/IJN.S215153] [PMID: 31409994]
[113]
Ayloo, S.; Gu, C. Transcytosis at the blood–brain barrier. Curr. Opin. Neurobiol., 2019, 57, 32-38.
[http://dx.doi.org/10.1016/j.conb.2018.12.014] [PMID: 30708291]
[114]
Pardridge, W.M. Blood-brain barrier and delivery of protein and gene therapeutics to brain. Front. Aging Neurosci., 2020, 11, 373.
[http://dx.doi.org/10.3389/fnagi.2019.00373] [PMID: 31998120]
[115]
Xie, J.; Shen, Z.; Anraku, Y.; Kataoka, K.; Chen, X. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials, 2019, 224119491.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119491] [PMID: 31546096]
[116]
Patel, M.; Souto, E.B.; Singh, K.K. Advances in brain drug targeting and delivery: limitations and challenges of solid lipid nanoparticles. Expert Opin. Drug Deliv., 2013, 10(7), 889-905.
[http://dx.doi.org/10.1517/17425247.2013.784742] [PMID: 23550609]
[117]
Zabel, M.D.; Mollnow, L.; Bender, H. siRNA Therapeutics for Protein Misfolding Diseases of the Central Nervous System. In: Design and Delivery of SiRNA Therapeutics; Ditzel , H.J.; Tuttolomondo, M.; Kauppinen, S., Eds.; Springer US: New York, NY, 2021; pp. 377-394.
[118]
Zhang, Y.; Xiong, G.M.; Ali, Y.; Boehm, B.O.; Huang, Y.Y.; Venkatraman, S. Layer-by-layer coated nanoliposomes for oral delivery of insulin. Nanoscale, 2021, 13(2), 776-789.
[http://dx.doi.org/10.1039/D0NR06104B] [PMID: 33295926]
[119]
Liang, X.; Zhang, J.; Ou, H.; Chen, J.; Mitragotri, S.; Chen, M. Skin Delivery of siRNA using sponge spicules in combination with cationic flexible liposomes. Mol. Ther. Nucleic Acids, 2020, 20, 639-648.
[http://dx.doi.org/10.1016/j.omtn.2020.04.003] [PMID: 32380414]
[120]
Mai, Y.; Guo, J.; Zhao, Y.; Ma, S.; Hou, Y.; Yang, J. Intranasal delivery of cationic liposome-protamine complex mRNA vaccine elicits effective anti-tumor immunity. Cell. Immunol., 2020, 354104143.
[http://dx.doi.org/10.1016/j.cellimm.2020.104143] [PMID: 32563850]
[121]
Cullis, P.R.; Hope, M.J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther., 2017, 25(7), 1467-1475.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.013]
[122]
Mischler, R.; Metcalfe, I.C. Inflexal®V a trivalent virosome subunit influenza vaccine: production. Vaccine, 2002, 20(Suppl. 5), B17-B23.
[http://dx.doi.org/10.1016/S0264-410X(02)00512-1] [PMID: 12477413]
[123]
Komalla, V. Liposomes for Treatment of Inflammatory Diseases, 2020.
[124]
Chiechi, LM Estrasorb. IDrugs: The investigational drugs journal. 2004, 7(9), 860-864.
[125]
Keating, GM Dhillon, S Octocog alfa (Advate®): a guide to its use in hemophilia A. BioDrugs: clinical immunotherapeutics, biopharmaceuticals and gene therapy. 2012, 26(4), 269-73.
[126]
Silva, A.; Amaral, M.; Lobo, J.; Lopes, C. Lipid nanoparticles for the delivery of biopharmaceuticals. Curr. Pharm. Biotechnol., 2015, 16(4), 291-302.
[http://dx.doi.org/10.2174/1389201015666141229103709] [PMID: 25601601]
[127]
Wu, J.; Zheng, Y.; Liu, M.; Shan, W.; Zhang, Z.; Huang, Y. Biomimetic viruslike and charge reversible nanoparticles to sequentially overcome mucus and epithelial barriers for oral insulin delivery. ACS Appl. Mater. Interfaces, 2018, 10(12), 9916-9928.
[http://dx.doi.org/10.1021/acsami.7b16524] [PMID: 29504398]
[128]
Phan, T.N.Q.; Le-Vinh, B.; Efiana, N.A.; Bernkop-Schnürch, A. Oral self-emulsifying delivery systems for systemic administration of therapeutic proteins: science fiction? J. Drug Target., 2019, 27(9), 1017-1024.
[http://dx.doi.org/10.1080/1061186X.2019.1584200] [PMID: 30776924]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy