Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Iron(III) Monoglycerolate as a New Biocompatible Precursor in the Synthesis of Bioactive Nanocomposite Glycerohydrogels

Author(s): Tat’yana Grigor’evna Khonina*, Denis Sergeevich Tishin, Leonid Petrovich Larionov, Artur Vasil’evich Osipenko, Maria Nikolaevna Dobrinskaya, Ekaterina Anatol’evna Bogdanova, Maxim Sergeevich Karabanalov, Maria Alekseevna Bulatova, Elena Vladimirovna Shadrina and Oleg Nikolaevich Chupakhin

Volume 25, Issue 15, 2024

Published on: 17 January, 2024

Page: [2022 - 2031] Pages: 10

DOI: 10.2174/0113892010269503231229100317

Price: $65

Abstract

Background: Nanocomposite glycerohydrogels based on biocompatible elementcontaining glycerolates are of practicular interest for biomedical applications.

Objective: Using two biocompatible precursors, silicon and iron glycerolates, a new bioactive nanocomposite silicon‒iron glycerolates hydrogel was obtained by sol-gel method.

Methods: The composition and structural features of the hydrogel were studied using a complex of modern analytical techniques, including TEM, XRD, and AES. On the example of experimental animals hemostatic activity of the hydrogel was studied, as well as primary toxicological studies were carried out.

Results: The composition of dispersed phase and dispersion medium of silicon‒iron glycerolates hydrogel was determined. The structural features of hydrogel were revealed and its structure model was proposed. It was shown that silcon-iron glycerolates hydrogel is nontoxic, and exhibits pronounced hemostatic activity.

Conclusion: Silicon-iron glycerolates hydrogel is a potential hemostatic agent for topical application in medical and veterinary practice.

Graphical Abstract

[1]
Sakka, S. Handbook of Sol-gel Science and Technology: Applications of Sol-gel Technology; Kluwer Academic Publishers: Boston, 2005.
[2]
Levy, D.; Zayat, M. The sol-gel handbook: Synthesis and processing; Wiley-VCH Verlag GmbH & Co: Weinheim, 2015.
[http://dx.doi.org/10.1002/9783527670819]
[3]
Owens, G.J.; Singh, R.K.; Foroutan, F.; Alqaysi, M.; Han, C.M.; Mahapatra, C.; Kim, H.W.; Knowles, J.C. Sol-gel based materials for biomedical applications. Prog. Mater. Sci., 2016, 77, 1-79.
[http://dx.doi.org/10.1016/j.pmatsci.2015.12.001]
[4]
Zheng, K.; Boccaccini, A.R. Sol-gel processing of bioactive glass nanoparticles: A review. Adv. Colloid Interface Sci., 2017, 249, 363-373.
[http://dx.doi.org/10.1016/j.cis.2017.03.008] [PMID: 28364954]
[5]
Bokov, D.; Turki Jalil, A.; Chupradit, S.; Suksatan, W.; Javed Ansari, M.; Shewael, I.H.; Valiev, G.H.; Kianfar, E. Nanomaterial by sol-gel method: Synthesis and application. Adv. Mater. Sci. Eng., 2021, 2021, 1-21.
[http://dx.doi.org/10.1155/2021/5102014]
[6]
Fernández-Hernán, J.P.; Torres, B.; López, A.J.; Rams, J. The role of the sol-gel synthesis process in the biomedical field and its use to enhance the performance of bioabsorbable magnesium implants. Gels, 2022, 8(7), 426.
[http://dx.doi.org/10.3390/gels8070426] [PMID: 35877511]
[7]
Brinker, C.J.; Scherer, G.W. Sol-gel science: the physics and chemistry of sol-gel processing; Academic Press: Boston, 1990.
[8]
Klein, L.; Aparicio, M.; Jitianu, A. Handbook of Sol-Gel Science and Technology; Springer International Publishing AG: Cham, 2018.
[http://dx.doi.org/10.1007/978-3-319-32101-1]
[9]
Pierre, A.C. Introduction to Sol-Gel Processing; Springer International Publishing: Cham, 2020.
[http://dx.doi.org/10.1007/978-3-030-38144-8]
[10]
Coradin, T.; Boissière, M.; Livage, J. Sol-gel chemistry in medicinal science. Curr. Med. Chem., 2006, 13(1), 99-108.
[http://dx.doi.org/10.2174/092986706789803044] [PMID: 16457642]
[11]
Reddy, B. Ed.; Advances in nanocomposites: synthesis, characterization and industrial applications; InTech: Rijeka, 2011.
[http://dx.doi.org/10.5772/604]
[12]
Guglielmi, M.; Kickelbick, G.; Martucci, A. Sol-Gel Nanocomposites; Springer New York: New York, 2014.
[http://dx.doi.org/10.1007/978-1-4939-1209-4]
[13]
Nagrath, M.; Rahimnejad Yazdi, A.; Rafferty, A.; Daly, D.; Rahman, S.U.; Gallant, R.C.; Ni, H.; Arany, P.R.; Towler, M.R. Tantalum-containing meso-porous glass fibres for hemostatic applications. Mater. Today Commun., 2021, 27, 102260.
[http://dx.doi.org/10.1016/j.mtcomm.2021.102260]
[14]
Pavoski, G.; Baldisserotto, D.L.S.; Maraschin, T.; Brum, L.F.W.; dos Santos, C.; dos Santos, J.H.Z.; Brandelli, A.; Galland, G.B. Silver nanoparticles encapsulated in silica: Synthesis, characterization and application as antibacterial fillers in the ethylene polymerization. Eur. Polym. J., 2019, 117, 38-54.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.04.055]
[15]
Yao, Y.; Shen, L.; Wei, A.; Wang, T.; Chen, S. Facile synthesis, microstructure, photo-catalytic activity, and anti-bacterial property of the novel Ag@gelatin-silica hybrid nanofiber membranes. J. Sol-Gel Sci. Technol., 2019, 89(3), 651-662.
[http://dx.doi.org/10.1007/s10971-018-04914-z]
[16]
Timaeva, O.I.; Pashkin, I.I.; Kuz’micheva, G.M.; Sadovskaya, N.V. Synthesis and structure of new composite hydrogels based on poly(N-vinyl caprolactam) with nanosized anatase. Mendeleev Commun., 2019, 29(6), 646-647.
[http://dx.doi.org/10.1016/j.mencom.2019.11.013]
[17]
Rodrigues, M.C.; Rolim, W.R.; Viana, M.M.; Souza, T.R.; Gonçalves, F.; Tanaka, C.J.; Bueno-Silva, B.; Seabra, A.B. Biogenic synthesis and antimicrobial activity of silica-coated silver nanoparticles for esthetic dental applications. J. Dent., 2020, 96, 103327.
[http://dx.doi.org/10.1016/j.jdent.2020.103327] [PMID: 32229160]
[18]
Nagrath, M.; Alhalawani, A.; Rahimnejad, Y.A.; Towler, M.R. Bioactive glass fiber fabrication via a combination of sol-gel process with electro-spinning technique. Mater. Sci. Eng. C, 2019, 101, 521-538.
[http://dx.doi.org/10.1016/j.msec.2019.04.003] [PMID: 31029347]
[19]
Zheng, K.; Niu, W.; Lei, B.; Boccaccini, A.R. Immunomodulatory bioactive glasses for tissue regeneration. Acta Biomater., 2021, 133, 168-186.
[http://dx.doi.org/10.1016/j.actbio.2021.08.023] [PMID: 34418539]
[20]
Innocenzi, P. Mesoporous Ordered Silica Films; Springer International Publishing: New York, 2022.
[http://dx.doi.org/10.1007/978-3-030-89536-5]
[21]
Brook, M.A.; Chen, Y.; Guo, K.; Zhang, Z.; Brennan, J.D. Sugar-modified silanes: Precursors for silica monoliths. J. Mater. Chem., 2004, 14(9), 1469-1479.
[http://dx.doi.org/10.1039/B401278J]
[22]
Chen, Y.; Yi, Y.; Brennan, J.D.; Brook, M.A. Development of macroporous titania monoliths using a biocompatible method. Part 1: Material fabrication and characterization. Chem. Mater., 2006, 18(22), 5326-5335.
[http://dx.doi.org/10.1021/cm060948d]
[23]
Brandhuber, D.; Torma, V.; Raab, C.; Peterlik, H.; Kulak, A.; Hüsing, N. Glycol-modified silanes in the synthesis of mesoscopically organized silica monoliths with hierarchical porosity. Chem. Mater., 2005, 17(16), 4262-4271.
[http://dx.doi.org/10.1021/cm048483j]
[24]
Hartmann, S.; Brandhuber, D.; Hüsing, N. Glycol-modified silanes: Novel possibilities for the synthesis of hierarchically organized (hybrid) porous materials. Acc. Chem. Res., 2007, 40(9), 885-894.
[http://dx.doi.org/10.1021/ar6000318] [PMID: 17518437]
[25]
Wang, G.H.; Zhang, L.M. Manipulating formation and drug-release behavior of new sol-gel silica matrix by hydroxypropyl guar gum. J. Phys. Chem. B, 2007, 111(36), 10665-10670.
[http://dx.doi.org/10.1021/jp070370a] [PMID: 17711328]
[26]
Wang, G.H.; Zhang, L.M. A biofriendly silica gel for in situ protein entrapment: biopolymer-assisted formation and its kinetic mechanism. J. Phys. Chem. B, 2009, 113(9), 2688-2694.
[http://dx.doi.org/10.1021/jp810736v] [PMID: 19708206]
[27]
Shchipunov, Y.A.; Karpenko, T.Y.; Krekoten, A.V.; Postnova, I.V. Gelling of otherwise nongelable polysaccharides. J. Colloid Interface Sci., 2005, 287(2), 373-378.
[http://dx.doi.org/10.1016/j.jcis.2005.02.004] [PMID: 15925600]
[28]
Chen, Y.; Brook, M.A. Starch-directed synthesis of worm-shaped silica microtubes. Materials, 2023, 16(7), 2831.
[http://dx.doi.org/10.3390/ma16072831] [PMID: 37049125]
[29]
Feinle, A.; Elsaesser, M.S.; Hüsing, N. Sol-gel synthesis of monolithic materials with hierarchical porosity. Chem. Soc. Rev., 2016, 45(12), 3377-3399.
[http://dx.doi.org/10.1039/C5CS00710K] [PMID: 26563577]
[30]
Wang, G.H.; Zhang, L.M. Electroactive polyaniline/silica hybrid gels: Controllable sol-gel transition adjusted by chitosan derivatives. Carbohydr. Polym., 2018, 202, 523-529.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.139] [PMID: 30287031]
[31]
Shchipunov, Y.; Postnova, I. Cellulose mineralization as a route for novel functional materials. Adv. Funct. Mater., 2018, 28(27), 1705042.
[http://dx.doi.org/10.1002/adfm.201705042]
[32]
Postnova, I.; Shchipunov, Y. Tannic acid as a versatile template for silica monoliths engineering with catalytic gold and silver nanoparticles. Nanomaterials, 2022, 12(23), 4320.
[http://dx.doi.org/10.3390/nano12234320] [PMID: 36500940]
[33]
Lavrova, D.G.; Zvonarev, A.N.; Alferov, V.A.; Khonina, T.G.; Shadrina, E.V.; Alferov, S.V.; Ponamoreva, O.N. Biocompatible silica-polyethylene glycol-based composites for immobilization of microbial cells by sol-gel synthesis. Polymers , 2023, 15(2), 458.
[http://dx.doi.org/10.3390/polym15020458] [PMID: 36679338]
[34]
Khonina, T.G.; Shadrina, E.V.; Boyko, A.A.; Chupakhin, O.N.; Larionov, L.P.; Volkov, A.A.; Burda, V.D. Synthesis of hydrogels based on silicon polyolates. Russ. Chem. Bull., 2010, 59(1), 75-80.
[http://dx.doi.org/10.1007/s11172-010-0047-x]
[35]
Khonina, T.G.; Safronov, A.P.; Shadrina, E.V.; Ivanenko, M.V.; Suvorova, A.I.; Chupakhin, O.N. Mechanism of structural networking in hydrogels based on silicon and titanium glycerolates. J. Colloid Interface Sci., 2012, 365(1), 81-89.
[http://dx.doi.org/10.1016/j.jcis.2011.09.018] [PMID: 21978403]
[36]
Khonina, T.G.; Safronov, A.P.; Ivanenko, M.V.; Shadrina, E.V.; Chupakhin, O.N. Features of silicon- and titanium-polyethylene glycol precursors in sol-gel synthesis of new hydrogels. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(27), 5490-5500.
[http://dx.doi.org/10.1039/C5TB00480B] [PMID: 32262520]
[37]
Khonina, T.G.; Ivanenko, M.V.; Chupakhin, O.N.; Safronov, A.P.; Bogdanova, E.A.; Karabanalov, M.S.; Permikin, V.V.; Larionov, L.P.; Drozdova, L.I. Silicon-zinc-glycerol hydrogel, a potential immunotropic agent for topical application. Eur. J. Pharm. Sci., 2017, 107, 197-202.
[http://dx.doi.org/10.1016/j.ejps.2017.07.012] [PMID: 28709910]
[38]
Khonina, T.G.; Kungurov, N.V.; Zilberberg, N.V.; Evstigneeva, N.P.; Kokhan, MM.; Polishchuk, A.I.; Shadrina, E.V.; Nikitina, E.Y.; Permikin, V.V.; Chupakhin, O.N. Structural features and antimicrobial activity of hydrogels obtained by the sol-gel method from silicon, zinc, and boron glycerolates. J. Sol-Gel Sci. Technol., 2020, 95(3), 682-692.
[http://dx.doi.org/10.1007/s10971-020-05328-6]
[39]
Dziuba, E.V.; Nagaeva, M.O.; Khonina, T.G.; Shadrina, E.V.; Zhdanova, E.V. Preparation for the complex treatment of inflammatory periodontal and oral mucosa diseases. R.U. Patent 2,781,848, 2022.
[40]
Bukharin, O.V.; Perunova, N.B.; Ivanova, E.V.; Danilova, E.I.; Chelpachenko, O.E.; Stadnikov, A.A.; Khonina, T.G.; Shadrina, E.V.; Chupakhin, O.N.; Larionov, L.P. Agent for treating inflammatory diseases of the joints. R.U. Patent 2,707,278, 2019.
[41]
Grigorev, S.S.; Larionov, L.P.; Sablina, S.N.; Shadrina, E.V.; Tishin, D.S.; Babicheva, T.S.; Shipovskaia, A.B.; Khonina, T.G.; Chupakhin, O.N. Agent for local treatment of periodontitis and method of treatment of periodontitis. R.U. Patent 2,802,822, 2023.
[42]
Khonina, T.G.; Nikitina, E.Y.; Germov, A.Y.; Goloborodsky, B.Y.; Mikhalev, K.N.; Bogdanova, E.A.; Tishin, D.S.; Demin, A.M.; Krasnov, V.P.; Chupakhin, O.N.; Charushin, V.N. Individual iron(III) glycerolate: synthesis and characterisation. RSC Advances, 2022, 12(7), 4042-4046.
[http://dx.doi.org/10.1039/D1RA08485B] [PMID: 35425460]
[43]
Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci., 2014, 19(2), 164-174.
[PMID: 24778671]
[44]
Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem., 2019, 195, 120-129.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.03.013] [PMID: 30939379]
[45]
Sánchez, M.; Sabio, L.; Gálvez, N.; Capdevila, M.; Dominguez-Vera, J.M. Iron chemistry at the service of life. IUBMB Life, 2017, 69(6), 382-388.
[http://dx.doi.org/10.1002/iub.1602] [PMID: 28150902]
[46]
Nielsen, F.H. Update on the possible nutritional importance of silicon. J. Trace Elem. Med. Biol., 2014, 28(4), 379-382.
[http://dx.doi.org/10.1016/j.jtemb.2014.06.024] [PMID: 25081495]
[47]
Rondanelli, M.; Faliva, M.A.; Peroni, G.; Gasparri, C.; Perna, S.; Riva, A.; Petrangolini, G.; Tartara, A. Silicon: A neglected micronutrient essential for bone health. Exp. Biol. Med., 2021, 246(13), 1500-1511.
[http://dx.doi.org/10.1177/1535370221997072] [PMID: 33715532]
[48]
Walsh, C.T.; Sandstead, H.H.; Prasad, A.S.; Newberne, P.M.; Fraker, P.J. Zinc: health effects and research priorities for the 1990s. Environ. Health Perspect., 1994, 102(S2), 5-46.
[http://dx.doi.org/10.1289/ehp.941025] [PMID: 7925188]
[49]
Glutsch, V.; Hamm, H.; Goebeler, M. Zink und Haut: Ein Update. J. Dtsch. Dermatol. Ges., 2019, 17(6), 589-596.
[http://dx.doi.org/10.1111/ddg.13811_g] [PMID: 31241838]
[50]
Nielsen, F.H. Update on human health effects of boron. J. Trace Elem. Med. Biol., 2014, 28(4), 383-387.
[http://dx.doi.org/10.1016/j.jtemb.2014.06.023] [PMID: 25063690]
[51]
Khaliq, H.; Juming, Z.; Ke-Mei, P. The physiological role of boron on health. Biol. Trace Elem. Res., 2018, 186(1), 31-51.
[http://dx.doi.org/10.1007/s12011-018-1284-3] [PMID: 29546541]
[52]
Bruylants, P.; Munaut, A.; Poncelet, G.; Ladriere, J.; Meyers, J.; Fripiat, J. IR and Mössbauer study of iron glycerolates. J. Inorg. Nucl. Chem., 1980, 42(11), 1603-1611.
[http://dx.doi.org/10.1016/0022-1902(80)80324-1]
[53]
Bartůněk, V.; Průcha, D.; Švecová, M.; Ulbrich, P.; Huber, Š.; Sedmidubský, D.; Jankovský, O. Ultrafine ferromagnetic iron oxide nanoparticles: Facile synthesis by low temperature decomposition of iron glycerolate. Mater. Chem. Phys., 2016, 180, 272-278.
[http://dx.doi.org/10.1016/j.matchemphys.2016.06.007]
[54]
Gonçalves, J.M.; Hennemann, A.L.; Ruiz-Montoya, J.G.; Martins, P.R.; Araki, K.; Angnes, L.; Shahbazian-Yassar, R. Metal-glycerolates and their derivatives as electrode materials: A review on recent developments, challenges, and future perspectives. Coord. Chem. Rev., 2023, 477, 214954.
[http://dx.doi.org/10.1016/j.ccr.2022.214954]
[55]
Wang, M.; Jiang, J.; Ai, L. Layered bimetallic iron-nickel alkoxide microspheres as high-performance electrocatalysts for oxygen evolution reaction in alkaline media. ACS Sustain. Chem.& Eng., 2018, 6(5), 6117-6125.
[http://dx.doi.org/10.1021/acssuschemeng.7b04784]
[56]
Lau, P.C.; Kwong, T.L.; Yung, K.F. Effective heterogeneous transition metal glycerolates catalysts for one-step biodiesel production from low grade non-refined Jatropha oil and crude aqueous bioethanol. Sci. Rep., 2016, 6(1), 23822.
[http://dx.doi.org/10.1038/srep23822] [PMID: 27029238]
[57]
Liu, X.; Gong, M.; Deng, S.; Zhao, T.; Zhang, J.; Wang, D. Recent advances on metal alkoxide-based electrocatalysts for water splitting. Mater. Energy Sustain., 2020, 8(20), 10130-10149.
[http://dx.doi.org/10.1039/D0TA03044A]
[58]
Larcher, D.; Sudant, G.; Patrice, R.; Tarascon, J.M. Some insights on the use of polyols-based metal alkoxides powders as precursors for tailored metal-oxides particles. Chem. Mater., 2003, 15(18), 3543-3551.
[http://dx.doi.org/10.1021/cm030048m]
[59]
Crețu, B.E.B.; Dodi, G.; Shavandi, A.; Gardikiotis, I.; Șerban, I.L.; Balan, V. Imaging constructs: The rise of iron oxide nanoparticles. Molecules, 2021, 26(11), 3437-3482.
[http://dx.doi.org/10.3390/molecules26113437] [PMID: 34198906]
[60]
Li, H.; Wang, R.; Hong, R.; Li, Y. Preparation, biocompatibility and imaging performance of ultrasmall iron oxide magnetic fluids for T1/T2-weighted MRI. Colloids Surf. A Physicochem. Eng. Asp., 2022, 648, 129360.
[http://dx.doi.org/10.1016/j.colsurfa.2022.129360]
[61]
Popa, C.L.; Prodan, A.M.; Chapon, P.; Turculet, C.; Predoi, D. Inhibitory effect evaluation of glycerol-iron oxide thin films on methicillin-resistant staphylococcus aureus. J. Nanomater., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/465034]
[62]
Khonina, T.G.; Demin, A.M.; Tishin, D.S.; Germov, A.Y.; Uimin, M.A.; Mekhaev, A.V.; Minin, A.S.; Karabanalov, M.S.; Mysik, A.A.; Bogdanova, E.A.; Krasnov, V.P. Magnetic nanocomposite materials based on Fe3O4 nanoparticles with iron and silica glycerolates shell: Synthesis and characterization. Int. J. Mol. Sci., 2023, 24(15), 12178.
[http://dx.doi.org/10.3390/ijms241512178] [PMID: 37569552]
[63]
Matter, M.T.; Starsich, F.; Galli, M.; Hilber, M.; Schlegel, A.A.; Bertazzo, S.; Pratsinis, S.E.; Herrmann, I.K. Developing a tissue glue by engineering the adhesive and hemostatic properties of metal oxide nanoparticles. Nanoscale, 2017, 9(24), 8418-8426.
[http://dx.doi.org/10.1039/C7NR01176H] [PMID: 28604885]
[64]
Nuvvula, S.; Bandi, M.; Mallineni, S.K. Clinical applications of ferric sulfate in dentistry: A narrative review. J. Conserv. Dent., 2017, 20(4), 278-281.
[http://dx.doi.org/10.4103/JCD.JCD_259_16] [PMID: 29259368]
[65]
Shabanova, E.M.; Drozdov, A.S.; Fakhardo, A.F.; Dudanov, I.P.; Kovalchuk, M.S.; Vinogradov, V.V. Thrombin@Fe3O4 nanoparticles for use as a hemostatic agent in internal bleeding. Sci. Rep., 2018, 8(1), 233.
[http://dx.doi.org/10.1038/s41598-017-18665-4] [PMID: 29321571]
[66]
Khoshmohabat, H.; Paydar, S.; Kazemi, H.M.; Dalfardi, B. Overview of agents used for emergency hemostasis. Trauma Mon., 2016, 21(1), e26023.
[http://dx.doi.org/10.5812/traumamon.26023] [PMID: 27218055]
[67]
Han, W.; Wang, S. Advances in hemostatic hydrogels that can adhere to wet surfaces. Gels, 2022, 9(1), 2.
[http://dx.doi.org/10.3390/gels9010002] [PMID: 36661770]
[68]
Khonina, T.G.; Tishin, D.S.; Larionov, L.P.; Dobrinskaya, M.N.; Antropova, I.P.; Izmozherova, N.V.; Osipenko, A.V.; Shadrina, E.V.; Nikitina, E.Y.; Bogdanova, E.A.; Karabanalov, M.S.; Evstigneeva, N.P.; Kokhan, M.M.; Chupakhin, O.N. Bioactive silicon-iron-containing glycerohydrogel synthesized by the sol—gel method in the presence of chitosan. Russ. Chem. Bull., 2022, 71(11), 2342-2351.
[http://dx.doi.org/10.1007/s11172-022-3661-5]
[69]
Fan, P.; Zeng, Y.; Zaldivar-Silva, D.; Agüero, L.; Wang, S. Chitosan-based hemostatic hydrogels: The concept, mechanism, application, and prospects. Molecules, 2023, 28(3), 1473.
[http://dx.doi.org/10.3390/molecules28031473] [PMID: 36771141]
[70]
Gheorghiță, D.; Moldovan, H.; Robu, A.; Bița, A.I.; Grosu, E.; Antoniac, A.; Corneschi, I.; Antoniac, I.; Bodog, A.D.; Băcilă, C.I. Chitosan-based biomaterials for hemostatic applications: A review of recent advances. Int. J. Mol. Sci., 2023, 24(13), 10540.
[http://dx.doi.org/10.3390/ijms241310540] [PMID: 37445718]
[71]
Hu, Z.; Zhang, D.Y.; Lu, S.T.; Li, P.W.; Li, S.D. Chitosan-based composite materials for prospective hemostatic applications. Mar. Drugs, 2018, 16(8), 273.
[http://dx.doi.org/10.3390/md16080273] [PMID: 30081571]
[72]
Song, F.; Kong, Y.; Shao, C.; Cheng, Y.; Lu, J.; Tao, Y.; Du, J.; Wang, H. Chitosan-based multifunctional flexible hemostatic bio-hydrogel. Acta Biomater., 2021, 136, 170-183.
[http://dx.doi.org/10.1016/j.actbio.2021.09.056] [PMID: 34610476]
[73]
Mironov, A.N. Guidelines for preclinical trials of drugs; Grif i K: Moscow, 2012.
[74]
Al-Afifi, N.A.; Alabsi, A.M.; Bakri, M.M.; Ramanathan, A. Acute and sub-acute oral toxicity of Dracaena cinnabari resin methanol extract in rats. BMC Complement. Altern. Med., 2018, 18(1), 50.
[http://dx.doi.org/10.1186/s12906-018-2110-3] [PMID: 29402248]
[75]
Nalimu, F.; Oloro, J.; Peter, E.L.; Ogwang, P.E. Acute and sub-acute oral toxicity of aqueous whole leaf and green rind extracts of Aloe vera in Wistar rats. BMC Complement. Med. Ther., 2022, 22(1), 16.
[http://dx.doi.org/10.1186/s12906-021-03470-4] [PMID: 35031035]
[76]
Zainal, Z.; Ong, A.; Yuen May, C.; Chang, S.K.; Abdul Rahim, A.; Khaza’ai, H. Acute and subchronic oral toxicity of oil palm puree in sprague-dawley rats. Int. J. Environ. Res. Public Health, 2020, 17(10), 3404.
[http://dx.doi.org/10.3390/ijerph17103404] [PMID: 32414159]
[77]
Qu, J.; Pei, L.; Wang, X.; Fu, S.; Yong, L.; Xiao, X.; Xie, Q.; Fan, B.; Song, Y. Acute and subchronic oral toxicity of anthraquinone in sprague dawley rats. Int. J. Environ. Res. Public Health, 2022, 19(16), 10413.
[http://dx.doi.org/10.3390/ijerph191610413] [PMID: 36012048]
[78]
Khonina, T.G.; Chupakhin, O.N.; Larionov, L.P.; Boyakovskaya, T.G.; Suvorov, A.L.; Shadrina, E.V. Synthesis, toxicity, and percutaneous activity of silicon glycerolates and related hydrogels. Pharm. Chem. J., 2008, 42(11), 609-613.
[http://dx.doi.org/10.1007/s11094-009-0199-x]
[79]
Kochan, J.; Schmidtová, Ľ.; Sadloňová, I.; Murányi, A.; Zigová, J.; Múčková, M. Hemostatic effect and distribution of new rhThrombin formulations in rats. Interdiscip. Toxicol., 2014, 7(4), 219-222.
[http://dx.doi.org/10.2478/intox-2014-0032] [PMID: 26109904]
[80]
Krishnadoss, V.; Melillo, A.; Kanjilal, B.; Hannah, T.; Ellis, E.; Kapetanakis, A.; Hazelton, J.; San Roman, J.; Masoumi, A.; Leijten, J.; Noshadi, I. Bioionic liquid conjugation as universal approach to engineer hemostatic bioadhesives. ACS Appl. Mater. Interfaces, 2019, 11(42), 38373-38384.
[http://dx.doi.org/10.1021/acsami.9b08757] [PMID: 31523968]
[81]
Sener, D.; Kocak, M.; Saracoglu, R.; Deveci, U.; Karadag, M. Histopathological effects of Algan hemostatic agent (AHA) in liver injury model in rats. Hepatol Forum, 2022, 3(1), 16-20.
[http://dx.doi.org/10.14744/hf.2021.2021.0040]
[82]
Gao, Y.; Ikeda-Imafuku, M.; Zhao, Z.; Joshi, M.; Mitragotri, S. A polymer‐based systemic hemostat for managing uncontrolled bleeding. Bioeng. Transl. Med., 2023, 8(3), e10516.
[http://dx.doi.org/10.1002/btm2.10516] [PMID: 37206230]
[83]
Kopec, A.K.; Joshi, N.; Luyendyk, J.P. Role of hemostatic factors in hepatic injury and disease: animal models de‐liver. J. Thromb. Haemost., 2016, 14(7), 1337-1349.
[http://dx.doi.org/10.1111/jth.13327] [PMID: 27060337]
[84]
Gonçalves, J.M.; Ghorbani, A.; Ritter, T.G.; Lima, I.S.; Tamadoni Saray, M.; Phakatkar, A.H.; Silva, V.D.; Pereira, R.S.; Yarin, A.L.; Angnes, L.; Shahbazian-Yassar, R. Multimetallic glycerolate as a precursor template of spherical porous high-entropy oxide microparticles. J. Colloid Interface Sci., 2023, 641, 643-652.
[http://dx.doi.org/10.1016/j.jcis.2023.03.089] [PMID: 36963257]
[85]
Tran, H.D.N.; Moonshi, S.S.; Xu, Z.P.; Ta, H.T. Influence of nanoparticles on the haemostatic balance: between thrombosis and haemorrhage. Biomater. Sci., 2021, 10(1), 10-50.
[http://dx.doi.org/10.1039/D1BM01351C] [PMID: 34775503]
[86]
Charushin, V.N.; Kungurov, N.V.; Chupakhin, O.N.; Khonina, T.G.; Evstigneeva, N.P.; Kokhan, M.M.; Zilberberg, N.V.; Gerasimova, N.A.; Tishin, D.S.; Shadrina, E.V.; Nikitina, E.Yu.; Permikin, V.V.; Starikov, N.M.; Larionov, L.P.; Osipenko, A.V.; Dobrinskaya, M.N.; Sementsova, E.A.; Kotikova, A.Yu.; Mandra, Yu.V.; Bulatova, M.A. Silicon-iron(zinc, boron)containing glycerohydrogel for topical use, having hemostatic and antimicrobial activity (options). R.U. Patent 2,797,966, 2023.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy