Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Emerging Therapeutic Approaches Targeting Ferroptosis in Cancer: Focus on Immunotherapy and Nanotechnology

Author(s): Zongchao Yu, Zhongcheng Mo, Yuan Qiu, Hengzhe Lu, Biao Zheng and Longfei Liu*

Volume 25, Issue 15, 2024

Published on: 26 January, 2024

Page: [2012 - 2021] Pages: 10

DOI: 10.2174/0113892010276664231228124157

Price: $65

Abstract

Ferroptosis is a newly discovered form of programmed cell death characterized by iron overload, ROS accumulation, and lipid peroxidation. It is distinguished by unique morphological, biochemical, and genetic features and stands apart from other known regulated cell death mechanisms. Studies have demonstrated a close association between ferroptosis and various cancers, including liver cancer, lung cancer, renal cell carcinoma, colorectal cancer, pancreatic cancer, and ovarian cancer. Inducing ferroptosis has shown promising results in inhibiting tumor growth and reversing tumor progression. However, the challenge lies in regulating ferroptosis in vivo due to the scarcity of potent compounds that can activate it. Integrating emerging biomedical discoveries and technological innovations with conventional therapies is imperative. Notably, considerable progress has been made in cancer treatment by leveraging immunotherapy and nanotechnology to trigger ferroptosis. This review explores the relationship between ferroptosis and emerging immunotherapies and nanotechnologies, along with their potential underlying mechanisms, offering valuable insights for developing novel cancer treatment strategies.

Graphical Abstract

[1]
Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol., 2015, 35, S185-S198.
[2]
Wellenstein, M.D.; de Visser, K.E. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity, 2018, 48(3), 399-416.
[http://dx.doi.org/10.1016/j.immuni.2018.03.004] [PMID: 29562192]
[3]
Okusaka, T.; Furuse, J. Recent advances in chemotherapy for pancreatic cancer: evidence from Japan and recommendations in guidelines. J. Gastroenterol., 2020, 55(4), 369-382.
[http://dx.doi.org/10.1007/s00535-020-01666-y] [PMID: 31997007]
[4]
Pugh, T.J.; Nguyen, B.N.; Kanke, J.E.; Johnson, J.L.; Hoffman, K.E. Radiation therapy modalities in prostate cancer. J. Natl. Compr. Canc. Netw., 2013, 11(4), 414-421.
[http://dx.doi.org/10.6004/jnccn.2013.0056] [PMID: 23584344]
[5]
Wang, L.; Qin, W.; Huo, Y.J.; Li, X.; Shi, Q.; Rasko, J.E.J.; Janin, A.; Zhao, W.L. Advances in targeted therapy for malignant lymphoma. Signal Transduct. Target. Ther., 2020, 5(1), 15.
[http://dx.doi.org/10.1038/s41392-020-0113-2] [PMID: 32296035]
[6]
Tang, Z.; Zeng, Q.; Li, Y.; Zhang, X.; Ma, J.; Suto, M.J.; Xu, B.; Yi, N. Development of a radiosensitivity gene signature for patients with soft tissue sarcoma. Oncotarget, 2017, 8(16), 27428-27439.
[http://dx.doi.org/10.18632/oncotarget.16194] [PMID: 28404969]
[7]
Zraik, I.M.; Heß-Busch, Y. Management of chemotherapy side effects and their long-term sequelae. Urologe A, 2021, 60(7), 862-871.
[http://dx.doi.org/10.1007/s00120-021-01569-7] [PMID: 34185118]
[8]
Lev, S. Targeted therapy and drug resistance in triple-negative breast cancer: the EGFR axis. Biochem. Soc. Trans., 2020, 48(2), 657-665.
[http://dx.doi.org/10.1042/BST20191055] [PMID: 32311020]
[9]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[10]
Dolma, S.; Lessnick, S.L.; Hahn, W.C.; Stockwell, B.R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell, 2003, 3(3), 285-296.
[http://dx.doi.org/10.1016/S1535-6108(03)00050-3] [PMID: 12676586]
[11]
Yang, W.S.; Stockwell, B.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol., 2008, 15(3), 234-245.
[http://dx.doi.org/10.1016/j.chembiol.2008.02.010] [PMID: 18355723]
[12]
Yu, H.; Guo, P.; Xie, X.; Wang, Y.; Chen, G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J. Cell. Mol. Med., 2017, 21(4), 648-657.
[http://dx.doi.org/10.1111/jcmm.13008] [PMID: 27860262]
[13]
Djulbegovic, M.B.; Uversky, V.N. Ferroptosis – An iron- and disorder-dependent programmed cell death. Int. J. Biol. Macromol., 2019, 135, 1052-1069.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.221] [PMID: 31175900]
[14]
Cotter, T.G. Apoptosis and cancer: The genesis of a research field. Nat. Rev. Cancer, 2009, 9(7), 501-507.
[http://dx.doi.org/10.1038/nrc2663] [PMID: 19550425]
[15]
Czabotar, P.E.; Lessene, G.; Strasser, A.; Adams, J.M. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat. Rev. Mol. Cell Biol., 2014, 15(1), 49-63.
[http://dx.doi.org/10.1038/nrm3722] [PMID: 24355989]
[16]
Luna-Vargas, M.P.A.; Chipuk, J.E. Physiological and pharmacological control of BAK, BAX, and beyond. Trends Cell Biol., 2016, 26(12), 906-917.
[http://dx.doi.org/10.1016/j.tcb.2016.07.002] [PMID: 27498846]
[17]
Murphy, J.M.; Czabotar, P.E.; Hildebrand, J.M.; Lucet, I.S.; Zhang, J.G.; Alvarez-Diaz, S.; Lewis, R.; Lalaoui, N.; Metcalf, D.; Webb, A.I.; Young, S.N.; Varghese, L.N.; Tannahill, G.M.; Hatchell, E.C.; Majewski, I.J.; Okamoto, T.; Dobson, R.C.J.; Hilton, D.J.; Babon, J.J.; Nicola, N.A.; Strasser, A.; Silke, J.; Alexander, W.S. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity, 2013, 39(3), 443-453.
[http://dx.doi.org/10.1016/j.immuni.2013.06.018] [PMID: 24012422]
[18]
Xu, D.; Zou, C.; Yuan, J. Genetic regulation of RIPK1 and necroptosis. Annu. Rev. Genet., 2021, 55(1), 235-263.
[http://dx.doi.org/10.1146/annurev-genet-071719-022748] [PMID: 34813352]
[19]
Zhang, T.; Wang, Y.; Inuzuka, H.; Wei, W. Necroptosis pathways in tumorigenesis. Semin. Cancer Biol., 2022, 86(Pt 3), 32-40.
[http://dx.doi.org/10.1016/j.semcancer.2022.07.007] [PMID: 35908574]
[20]
Jorgensen, I.; Miao, E.A. Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev., 2015, 265(1), 130-142.
[http://dx.doi.org/10.1111/imr.12287] [PMID: 25879289]
[21]
Miao, E.A.; Leaf, I.A.; Treuting, P.M.; Mao, D.P.; Dors, M.; Sarkar, A.; Warren, S.E.; Wewers, M.D.; Aderem, A. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol., 2010, 11(12), 1136-1142.
[http://dx.doi.org/10.1038/ni.1960] [PMID: 21057511]
[22]
Galluzzi, L.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Bravo-San Pedro, J.M.; Cecconi, F.; Choi, A.M.; Chu, C.T.; Codogno, P.; Colombo, M.I.; Cuervo, A.M.; Debnath, J.; Deretic, V.; Dikic, I.; Eskelinen, E.L.; Fimia, G.M.; Fulda, S.; Gewirtz, D.A.; Green, D.R.; Hansen, M.; Harper, J.W.; Jäättelä, M.; Johansen, T.; Juhasz, G.; Kimmelman, A.C.; Kraft, C.; Ktistakis, N.T.; Kumar, S.; Levine, B.; Lopez-Otin, C.; Madeo, F.; Martens, S.; Martinez, J.; Melendez, A.; Mizushima, N.; Münz, C.; Murphy, L.O.; Penninger, J.M.; Piacentini, M.; Reggiori, F.; Rubinsztein, D.C.; Ryan, K.M.; Santambrogio, L.; Scorrano, L.; Simon, A.K.; Simon, H.U.; Simonsen, A.; Tavernarakis, N.; Tooze, S.A.; Yoshimori, T.; Yuan, J.; Yue, Z.; Zhong, Q.; Kroemer, G. Molecular definitions of autophagy and related processes. EMBO J., 2017, 36(13), 1811-1836.
[http://dx.doi.org/10.15252/embj.201796697] [PMID: 28596378]
[23]
Pietrocola, F.; Izzo, V.; Niso-Santano, M.; Vacchelli, E.; Galluzzi, L.; Maiuri, M.C.; Kroemer, G. Regulation of autophagy by stress-responsive transcription factors. Semin. Cancer Biol., 2013, 23(5), 310-322.
[http://dx.doi.org/10.1016/j.semcancer.2013.05.008] [PMID: 23726895]
[24]
Wang, H.; Liu, C.; Zhao, Y.; Gao, G. Mitochondria regulation in ferroptosis. Eur. J. Cell Biol., 2020, 99(1), 151058.
[http://dx.doi.org/10.1016/j.ejcb.2019.151058] [PMID: 31810634]
[25]
Li, Y.; Zeng, X.; Lu, D.; Yin, M.; Shan, M.; Gao, Y. Erastin induces ferroptosis via ferroportin-mediated iron accumulation in endometriosis. Hum. Reprod., 2021, 36(4), 951-964.
[http://dx.doi.org/10.1093/humrep/deaa363] [PMID: 33378529]
[26]
Haschka, D.; Hoffmann, A.; Weiss, G. Iron in immune cell function and host defense. Semin. Cell Dev. Biol., 2021, 115, 27-36.
[http://dx.doi.org/10.1016/j.semcdb.2020.12.005] [PMID: 33386235]
[27]
Zhu, J.; Xiong, Y.; Zhang, Y.; Wen, J.; Cai, N.; Cheng, K.; Liang, H.; Zhang, W. The molecular mechanisms of regulating oxidative stress-induced ferroptosis and therapeutic strategy in tumors. Oxid. Med. Cell. Longev., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/8810785] [PMID: 33425217]
[28]
Xie, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: Process and function. Cell Death Differ., 2016, 23(3), 369-379.
[http://dx.doi.org/10.1038/cdd.2015.158] [PMID: 26794443]
[29]
Dixon, S.J.; Pratt, D.A. Ferroptosis: A flexible constellation of related biochemical mechanisms. Mol. Cell, 2023, 83(7), 1030-1042.
[http://dx.doi.org/10.1016/j.molcel.2023.03.005] [PMID: 36977413]
[30]
Koppula, P.; Zhuang, L.; Gan, B. Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell, 2021, 12(8), 599-620.
[http://dx.doi.org/10.1007/s13238-020-00789-5] [PMID: 33000412]
[31]
Dixon, S.J.; Winter, G.E.; Musavi, L.S.; Lee, E.D.; Snijder, B.; Rebsamen, M.; Superti-Furga, G.; Stockwell, B.R. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol., 2015, 10(7), 1604-1609.
[http://dx.doi.org/10.1021/acschembio.5b00245] [PMID: 25965523]
[32]
Friedmann Angeli, J.P.; Schneider, M.; Proneth, B.; Tyurina, Y.Y.; Tyurin, V.A.; Hammond, V.J.; Herbach, N.; Aichler, M.; Walch, A.; Eggenhofer, E.; Basavarajappa, D.; Rådmark, O.; Kobayashi, S.; Seibt, T.; Beck, H.; Neff, F.; Esposito, I.; Wanke, R.; Förster, H.; Yefremova, O.; Heinrichmeyer, M.; Bornkamm, G.W.; Geissler, E.K.; Thomas, S.B.; Stockwell, B.R.; O’Donnell, V.B.; Kagan, V.E.; Schick, J.A.; Conrad, M. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol., 2014, 16(12), 1180-1191.
[http://dx.doi.org/10.1038/ncb3064] [PMID: 25402683]
[33]
Li, Y.; Feng, D.; Wang, Z.; Zhao, Y.; Sun, R.; Tian, D.; Liu, D.; Zhang, F.; Ning, S.; Yao, J.; Tian, X. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ., 2019, 26(11), 2284-2299.
[http://dx.doi.org/10.1038/s41418-019-0299-4] [PMID: 30737476]
[34]
Liu, W.; Östberg, N.; Yalcinkaya, M.; Dou, H.; Endo-Umeda, K.; Tang, Y.; Hou, X.; Xiao, T.; Fidler, T.P.; Abramowicz, S.; Yang, Y.G.; Soehnlein, O.; Tall, A.R.; Wang, N. Erythroid lineage Jak2V617F expression promotes atherosclerosis through erythrophagocytosis and macrophage ferroptosis. J. Clin. Invest., 2022, 132(13), e155724.
[http://dx.doi.org/10.1172/JCI155724] [PMID: 35587375]
[35]
Derry, P.J.; Hegde, M.L.; Jackson, G.R.; Kayed, R.; Tour, J.M.; Tsai, A.L.; Kent, T.A. Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer’s disease from a ferroptosis perspective. Prog. Neurobiol., 2020, 184, 101716.
[http://dx.doi.org/10.1016/j.pneurobio.2019.101716] [PMID: 31604111]
[36]
Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol., 2021, 22(4), 266-282.
[http://dx.doi.org/10.1038/s41580-020-00324-8] [PMID: 33495651]
[37]
Stockwell, B.R.; Jiang, X.; Gu, W. Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol., 2020, 30(6), 478-490.
[38]
Yang, W.S. SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; Brown, L.M.; Girotti, A.W.; Cornish, V.W.; Schreiber, S.L.; Stockwell, B.R. Regulation of ferroptotic cancer cell death by GPX4. Cell, 2014, 156(1-2), 317-331.
[http://dx.doi.org/10.1016/j.cell.2013.12.010] [PMID: 24439385]
[39]
Dixon, S.J.; Patel, D.N.; Welsch, M.; Skouta, R.; Lee, E.D.; Hayano, M.; Thomas, A.G.; Gleason, C.E.; Tatonetti, N.P.; Slusher, B.S.; Stockwell, B.R. Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife, 2014, 3, e02523.
[http://dx.doi.org/10.7554/eLife.02523] [PMID: 24844246]
[40]
Toyokuni, S.; Ito, F.; Yamashita, K.; Okazaki, Y.; Akatsuka, S. Iron and thiol redox signaling in cancer: An exquisite balance to escape ferroptosis. Free Radic. Biol. Med., 2017, 108, 610-626.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.04.024] [PMID: 28433662]
[41]
Lin, R.; Zhang, Z.; Chen, L.; Zhou, Y.; Zou, P.; Feng, C.; Wang, L.; Liang, G. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Lett., 2016, 381(1), 165-175.
[http://dx.doi.org/10.1016/j.canlet.2016.07.033] [PMID: 27477901]
[42]
Devisscher, L.; Van Coillie, S.; Hofmans, S.; Van Rompaey, D.; Goossens, K.; Meul, E.; Maes, L.; De Winter, H.; Van Der Veken, P.; Vandenabeele, P.; Berghe, T.V.; Augustyns, K. Discovery of novel, drug-like ferroptosis inhibitors with in vivo efficacy. J. Med. Chem., 2018, 61(22), 10126-10140.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01299] [PMID: 30354101]
[43]
Niki, E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic. Biol. Med., 2014, 66, 3-12.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.03.022] [PMID: 23557727]
[44]
Doll, S.; Proneth, B.; Tyurina, Y.Y.; Panzilius, E.; Kobayashi, S.; Ingold, I.; Irmler, M.; Beckers, J.; Aichler, M.; Walch, A.; Prokisch, H.; Trümbach, D.; Mao, G.; Qu, F.; Bayir, H.; Füllekrug, J.; Scheel, C.H.; Wurst, W.; Schick, J.A.; Kagan, V.E.; Angeli, J.P.F.; Conrad, M. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol., 2017, 13(1), 91-98.
[http://dx.doi.org/10.1038/nchembio.2239] [PMID: 27842070]
[45]
Louandre, C.; Ezzoukhry, Z.; Godin, C.; Barbare, J.C.; Mazière, J.C.; Chauffert, B.; Galmiche, A. Iron‐dependent cell death of hepatocellular carcinoma cells exposed to sorafenib. Int. J. Cancer, 2013, 133(7), 1732-1742.
[http://dx.doi.org/10.1002/ijc.28159] [PMID: 23505071]
[46]
Ye, L.F.; Chaudhary, K.R.; Zandkarimi, F.; Harken, A.D.; Kinslow, C.J.; Upadhyayula, P.S.; Dovas, A.; Higgins, D.M.; Tan, H.; Zhang, Y.; Buonanno, M.; Wang, T.J.C.; Hei, T.K.; Bruce, J.N.; Canoll, P.D.; Cheng, S.K.; Stockwell, B.R. Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem. Biol., 2020, 15(2), 469-484.
[http://dx.doi.org/10.1021/acschembio.9b00939] [PMID: 31899616]
[47]
Li, Y.; Wei, X.; Tao, F.; Deng, C.; Lv, C.; Chen, C.; Cheng, Y. The potential application of nanomaterials for ferroptosis-based cancer therapy. Biomed. Mater., 2021, 16(4), 042013.
[http://dx.doi.org/10.1088/1748-605X/ac058a] [PMID: 34038885]
[48]
Lang, X.; Green, M.D.; Wang, W.; Yu, J.; Choi, J.E.; Jiang, L.; Liao, P.; Zhou, J.; Zhang, Q.; Dow, A.; Saripalli, A.L.; Kryczek, I.; Wei, S.; Szeliga, W.; Vatan, L.; Stone, E.M.; Georgiou, G.; Cieslik, M.; Wahl, D.R.; Morgan, M.A.; Chinnaiyan, A.M.; Lawrence, T.S.; Zou, W. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov., 2019, 9(12), 1673-1685.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0338] [PMID: 31554642]
[49]
Li, Z.; Rong, L. Cascade reaction-mediated efficient ferroptosis synergizes with immunomodulation for high-performance cancer therapy. Biomater. Sci., 2020, 8(22), 6272-6285.
[http://dx.doi.org/10.1039/D0BM01168A] [PMID: 33016289]
[50]
Hao, X.; Zheng, Z.; Liu, H.; Zhang, Y.; Kang, J.; Kong, X.; Rong, D.; Sun, G.; Sun, G.; Liu, L.; Yu, H.; Tang, W.; Wang, X. Inhibition of APOC1 promotes the transformation of M2 into M1 macrophages via the ferroptosis pathway and enhances anti-PD1 immunotherapy in hepatocellular carcinoma based on single-cell RNA sequencing. Redox Biol., 2022, 56, 102463.
[http://dx.doi.org/10.1016/j.redox.2022.102463] [PMID: 36108528]
[51]
Liao, P.; Wang, W.; Wang, W.; Kryczek, I.; Li, X.; Bian, Y.; Sell, A.; Wei, S.; Grove, S.; Johnson, J.K.; Kennedy, P.D.; Gijón, M.; Shah, Y.M.; Zou, W. CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell, 2022, 40(4), 365-378.e6.
[http://dx.doi.org/10.1016/j.ccell.2022.02.003] [PMID: 35216678]
[52]
Wang, W.; Green, M.; Choi, J.E.; Gijón, M.; Kennedy, P.D.; Johnson, J.K.; Liao, P.; Lang, X.; Kryczek, I.; Sell, A.; Xia, H.; Zhou, J.; Li, G.; Li, J.; Li, W.; Wei, S.; Vatan, L.; Zhang, H.; Szeliga, W.; Gu, W.; Liu, R.; Lawrence, T.S.; Lamb, C.; Tanno, Y.; Cieslik, M.; Stone, E.; Georgiou, G.; Chan, T.A.; Chinnaiyan, A.; Zou, W. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature, 2019, 569(7755), 270-274.
[http://dx.doi.org/10.1038/s41586-019-1170-y] [PMID: 31043744]
[53]
Tao, C.; Rouhi, J. A biosensor based on graphene oxide nanocomposite for determination of carcinoembryonic antigen in colorectal cancer biomarker. Environ. Res., 2023, 238(Pt 1), 117113.
[http://dx.doi.org/10.1016/j.envres.2023.117113] [PMID: 37696325]
[54]
Deng, S.; Gu, J.; Jiang, Z.; Cao, Y.; Mao, F.; Xue, Y.; Wang, J.; Dai, K.; Qin, L.; Liu, K.; Wu, K.; He, Q.; Cai, K. Application of nanotechnology in the early diagnosis and comprehensive treatment of gastrointestinal cancer. J. Nanobiotechnology, 2022, 20(1), 415.
[http://dx.doi.org/10.1186/s12951-022-01613-4] [PMID: 36109734]
[55]
Xiong, Y.; Xiao, C.; Li, Z.; Yang, X. Engineering nanomedicine for glutathione depletion-augmented cancer therapy. Chem. Soc. Rev., 2021, 50(10), 6013-6041.
[http://dx.doi.org/10.1039/D0CS00718H] [PMID: 34027953]
[56]
Xu, Y.; Qin, Z.; Ma, J.; Cao, W.; Zhang, P. Recent progress in nanotechnology based ferroptotic therapies for clinical applications. Eur. J. Pharmacol., 2020, 880, 173198.
[http://dx.doi.org/10.1016/j.ejphar.2020.173198] [PMID: 32473167]
[57]
Zhu, T.; Shi, L.; Yu, C.; Dong, Y.; Qiu, F.; Shen, L.; Qian, Q.; Zhou, G.; Zhu, X. Ferroptosis promotes photodynamic therapy: Supramolecular photosensitizer-inducer nanodrug for enhanced cancer treatment. Theranostics, 2019, 9(11), 3293-3307.
[http://dx.doi.org/10.7150/thno.32867] [PMID: 31244955]
[58]
Su, L.J.; Zhang, J.H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell. Longev., 2019, 2019, 1-13.
[http://dx.doi.org/10.1155/2019/5080843] [PMID: 31737171]
[59]
Valashedi, M.R.; Najafi-Ghalehlou, N.; Nikoo, A.; Bamshad, C.; Tomita, K.; Kuwahara, Y.; Sato, T.; Roushandeh, A.M.; Roudkenar, M.H. Cashing in on ferroptosis against tumor cells: Usher in the next chapter. Life Sci., 2021, 285, 119958.
[http://dx.doi.org/10.1016/j.lfs.2021.119958] [PMID: 34534562]
[60]
Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 2014, 94(3), 909-950.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[61]
Breuer, W.; Shvartsman, M.; Cabantchik, Z.I. Intracellular labile iron. Int. J. Biochem. Cell Biol., 2008, 40(3), 350-354.
[http://dx.doi.org/10.1016/j.biocel.2007.03.010] [PMID: 17451993]
[62]
Hassannia, B.; Vandenabeele, P.; Vanden, B.T. Targeting ferroptosis to iron out cancer. Cancer Cell, 2019, 35(6), 830-849.
[http://dx.doi.org/10.1016/j.ccell.2019.04.002] [PMID: 31105042]
[63]
Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.F.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; Kapralov, A.A.; Amoscato, A.A.; Jiang, J.; Anthonymuthu, T.; Mohammadyani, D.; Yang, Q.; Proneth, B.; Klein-Seetharaman, J.; Watkins, S.; Bahar, I.; Greenberger, J.; Mallampalli, R.K.; Stockwell, B.R.; Tyurina, Y.Y.; Conrad, M.; Bayır, H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol., 2017, 13(1), 81-90.
[http://dx.doi.org/10.1038/nchembio.2238] [PMID: 27842066]
[64]
Tsoi, J.; Robert, L.; Paraiso, K.; Galvan, C.; Sheu, K.M.; Lay, J.; Wong, D.J.L.; Atefi, M.; Shirazi, R.; Wang, X.; Braas, D.; Grasso, C.S.; Palaskas, N.; Ribas, A.; Graeber, T.G. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell, 2018, 33(5), 890-904.e5.
[http://dx.doi.org/10.1016/j.ccell.2018.03.017] [PMID: 29657129]
[65]
Conrad, M.; Pratt, D.A. The chemical basis of ferroptosis. Nat. Chem. Biol., 2019, 15(12), 1137-1147.
[http://dx.doi.org/10.1038/s41589-019-0408-1] [PMID: 31740834]
[66]
Golej, D.L.; Askari, B.; Kramer, F.; Barnhart, S.; Vivekanandan-Giri, A.; Pennathur, S.; Bornfeldt, K.E. Long-chain acyl-CoA synthetase 4 modulates prostaglandin E2 release from human arterial smooth muscle cells. J. Lipid Res., 2011, 52(4), 782-793.
[http://dx.doi.org/10.1194/jlr.M013292] [PMID: 21242590]
[67]
Yan, B.; Ai, Y.; Sun, Q.; Ma, Y.; Cao, Y.; Wang, J.; Zhang, Z.; Wang, X. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol. Cell, 2021, 81(2), 355-369.e10.
[http://dx.doi.org/10.1016/j.molcel.2020.11.024] [PMID: 33321093]
[68]
Zou, Y.; Li, H.; Graham, E.T.; Deik, A.A.; Eaton, J.K.; Wang, W.; Sandoval-Gomez, G.; Clish, C.B.; Doench, J.G.; Schreiber, S.L. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat. Chem. Biol., 2020, 16(3), 302-309.
[http://dx.doi.org/10.1038/s41589-020-0472-6] [PMID: 32080622]
[69]
Bersuker, K.; Hendricks, J.M.; Li, Z.; Magtanong, L.; Ford, B.; Tang, P.H.; Roberts, M.A.; Tong, B.; Maimone, T.J.; Zoncu, R.; Bassik, M.C.; Nomura, D.K.; Dixon, S.J.; Olzmann, J.A. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature, 2019, 575(7784), 688-692.
[http://dx.doi.org/10.1038/s41586-019-1705-2] [PMID: 31634900]
[70]
Kraft, V.A.N.; Bezjian, C.T.; Pfeiffer, S.; Ringelstetter, L.; Müller, C.; Zandkarimi, F.; Merl-Pham, J.; Bao, X.; Anastasov, N.; Kössl, J.; Brandner, S.; Daniels, J.D.; Schmitt-Kopplin, P.; Hauck, S.M.; Stockwell, B.R.; Hadian, K.; Schick, J.A. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent. Sci., 2020, 6(1), 41-53.
[http://dx.doi.org/10.1021/acscentsci.9b01063] [PMID: 31989025]
[71]
Mao, C.; Liu, X.; Zhang, Y.; Lei, G.; Yan, Y.; Lee, H.; Koppula, P.; Wu, S.; Zhuang, L.; Fang, B.; Poyurovsky, M.V.; Olszewski, K.; Gan, B. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature, 2021, 593(7860), 586-590.
[http://dx.doi.org/10.1038/s41586-021-03539-7] [PMID: 33981038]
[72]
Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; Noel, K.; Jiang, X.; Linkermann, A.; Murphy, M.E.; Overholtzer, M.; Oyagi, A.; Pagnussat, G.C.; Park, J.; Ran, Q.; Rosenfeld, C.S.; Salnikow, K.; Tang, D.; Torti, F.M.; Torti, S.V.; Toyokuni, S.; Woerpel, K.A.; Zhang, D.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2), 273-285.
[http://dx.doi.org/10.1016/j.cell.2017.09.021] [PMID: 28985560]
[73]
Liang, C.; Zhang, X.; Yang, M.; Dong, X. Recent progress in ferroptosis inducers for cancer therapy. Adv. Mater., 2019, 31(51), 1904197.
[http://dx.doi.org/10.1002/adma.201904197] [PMID: 31595562]
[74]
Guo, J.; Xu, B.; Han, Q.; Zhou, H.; Xia, Y.; Gong, C.; Dai, X.; Li, Z.; Wu, G. Ferroptosis: A novel anti-tumor action for cisplatin. Cancer Res. Treat., 2018, 50(2), 445-460.
[http://dx.doi.org/10.4143/crt.2016.572] [PMID: 28494534]
[75]
Ma, S.; Henson, E.S.; Chen, Y.; Gibson, S.B. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis., 2016, 7(7), e2307.
[http://dx.doi.org/10.1038/cddis.2016.208] [PMID: 27441659]
[76]
Sato, M.; Kusumi, R.; Hamashima, S.; Kobayashi, S.; Sasaki, S.; Komiyama, Y.; Izumikawa, T.; Conrad, M.; Bannai, S.; Sato, H. The ferroptosis inducer erastin irreversibly inhibits system xc− and synergizes with cisplatin to increase cisplatin’s cytotoxicity in cancer cells. Sci. Rep., 2018, 8(1), 968.
[http://dx.doi.org/10.1038/s41598-018-19213-4] [PMID: 29343855]
[77]
Viswanathan, V.S.; Ryan, M.J.; Dhruv, H.D.; Gill, S.; Eichhoff, O.M.; Seashore-Ludlow, B.; Kaffenberger, S.D.; Eaton, J.K.; Shimada, K.; Aguirre, A.J.; Viswanathan, S.R.; Chattopadhyay, S.; Tamayo, P.; Yang, W.S.; Rees, M.G.; Chen, S.; Boskovic, Z.V.; Javaid, S.; Huang, C.; Wu, X.; Tseng, Y.Y.; Roider, E.M.; Gao, D.; Cleary, J.M.; Wolpin, B.M.; Mesirov, J.P.; Haber, D.A.; Engelman, J.A.; Boehm, J.S.; Kotz, J.D.; Hon, C.S.; Chen, Y.; Hahn, W.C.; Levesque, M.P.; Doench, J.G.; Berens, M.E.; Shamji, A.F.; Clemons, P.A.; Stockwell, B.R.; Schreiber, S.L. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature, 2017, 547(7664), 453-457.
[http://dx.doi.org/10.1038/nature23007] [PMID: 28678785]
[78]
Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Broadening horizons: The role of ferroptosis in cancer. Nat. Rev. Clin. Oncol., 2021, 18(5), 280-296.
[http://dx.doi.org/10.1038/s41571-020-00462-0] [PMID: 33514910]
[79]
Hangauer, M.J.; Viswanathan, V.S.; Ryan, M.J.; Bole, D.; Eaton, J.K.; Matov, A.; Galeas, J.; Dhruv, H.D.; Berens, M.E.; Schreiber, S.L.; McCormick, F.; McManus, M.T. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature, 2017, 551(7679), 247-250.
[http://dx.doi.org/10.1038/nature24297] [PMID: 29088702]
[80]
Lei, G.; Zhang, Y.; Koppula, P.; Liu, X.; Zhang, J.; Lin, S.H.; Ajani, J.A.; Xiao, Q.; Liao, Z.; Wang, H.; Gan, B. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res., 2020, 30(2), 146-162.
[http://dx.doi.org/10.1038/s41422-019-0263-3] [PMID: 31949285]
[81]
Bai, X.; Ni, J.; Beretov, J.; Wasinger, V.C.; Wang, S.; Zhu, Y.; Graham, P.; Li, Y. Activation of the eIF2α/ATF4 axis drives triple-negative breast cancer radioresistance by promoting glutathione biosynthesis. Redox Biol., 2021, 43, 101993.
[http://dx.doi.org/10.1016/j.redox.2021.101993] [PMID: 33946018]
[82]
Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233.
[http://dx.doi.org/10.3390/ijms21093233] [PMID: 32370233]
[83]
Ravindran Menon, D.; Hammerlindl, H.; Torrano, J.; Schaider, H.; Fujita, M. Epigenetics and metabolism at the crossroads of stress-induced plasticity, stemness and therapeutic resistance in cancer. Theranostics, 2020, 10(14), 6261-6277.
[http://dx.doi.org/10.7150/thno.42523] [PMID: 32483452]
[84]
Zhang, M.X.; Wang, L.; Zeng, L.; Tu, Z.W. LCN2 is a potential biomarker for radioresistance and recurrence in nasopharyngeal carcinoma. Front. Oncol., 2021, 10, 605777.
[http://dx.doi.org/10.3389/fonc.2020.605777] [PMID: 33604288]
[85]
Demuynck, R.; Efimova, I.; Catanzaro, E.; Krysko, D.V. Ferroptosis: Friend or foe in cancer immunotherapy? OncoImmunology, 2023, 12(1), 2182992.
[http://dx.doi.org/10.1080/2162402X.2023.2182992] [PMID: 36875549]
[86]
Du, S.; Zeng, F.; Deng, G. Tumor neutrophils ferroptosis: A targetable immunosuppressive mechanism for cancer immunotherapy. Signal Transduct. Target. Ther., 2023, 8(1), 77.
[http://dx.doi.org/10.1038/s41392-023-01357-z] [PMID: 36813764]
[87]
Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer–immune set point. Nature, 2017, 541(7637), 321-330.
[http://dx.doi.org/10.1038/nature21349] [PMID: 28102259]
[88]
Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science, 2015, 348(6230), 56-61.
[http://dx.doi.org/10.1126/science.aaa8172] [PMID: 25838373]
[89]
Wei, S.C.; Levine, J.H.; Cogdill, A.P.; Zhao, Y.; Anang, N.A.A.S.; Andrews, M.C.; Sharma, P.; Wang, J.; Wargo, J.A.; Pe’er, D.; Allison, J.P. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell, 2017, 170(6), 1120-1133.e17.
[http://dx.doi.org/10.1016/j.cell.2017.07.024] [PMID: 28803728]
[90]
Morad, G.; Helmink, B.A.; Sharma, P.; Wargo, J.A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell, 2021, 184(21), 5309-5337.
[http://dx.doi.org/10.1016/j.cell.2021.09.020] [PMID: 34624224]
[91]
Yuen, V.W.H.; Chiu, D.K.C.; Law, C.T.; Cheu, J.W.S.; Chan, C.Y.K.; Wong, B.P.Y.; Goh, C.C.; Zhang, M.S.; Xue, H.D.G.; Tse, A.P.W.; Zhang, Y.; Lau, H.Y.H.; Lee, D.; Au-Yeung, R.K.H.; Wong, C.M.; Wong, C.C.L. Using mouse liver cancer models based on somatic genome editing to predict immune checkpoint inhibitor responses. J. Hepatol., 2023, 78(2), 376-389.
[http://dx.doi.org/10.1016/j.jhep.2022.10.037] [PMID: 36455783]
[92]
Bonaventura, P.; Shekarian, T.; Alcazer, V.; Valladeau-Guilemond, J.; Valsesia-Wittmann, S.; Amigorena, S.; Caux, C.; Depil, S. Cold tumors: A therapeutic challenge for immunotherapy. Front. Immunol., 2019, 10, 168.
[http://dx.doi.org/10.3389/fimmu.2019.00168] [PMID: 30800125]
[93]
Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov., 2019, 18(3), 197-218.
[http://dx.doi.org/10.1038/s41573-018-0007-y] [PMID: 30610226]
[94]
Zhang, J.; Huang, D.; Saw, P.E.; Song, E. Turning cold tumors hot: from molecular mechanisms to clinical applications. Trends Immunol., 2022, 43(7), 523-545.
[http://dx.doi.org/10.1016/j.it.2022.04.010] [PMID: 35624021]
[95]
Daei Sorkhabi, A.; Mohamed Khosroshahi, L.; Sarkesh, A.; Mardi, A.; Aghebati-Maleki, A.; Aghebati-Maleki, L.; Baradaran, B. The current landscape of CAR T-cell therapy for solid tumors: Mechanisms, research progress, challenges, and counterstrategies. Front. Immunol., 2023, 14, 1113882.
[http://dx.doi.org/10.3389/fimmu.2023.1113882] [PMID: 37020537]
[96]
Ma, S.; Li, X.; Wang, X.; Cheng, L.; Li, Z.; Zhang, C.; Ye, Z.; Qian, Q. Current progress in CAR-T cell therapy for solid tumors. Int. J. Biol. Sci., 2019, 15(12), 2548-2560.
[http://dx.doi.org/10.7150/ijbs.34213] [PMID: 31754328]
[97]
Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
[98]
Yin, W.; Chang, J.; Sun, J.; Zhang, T.; Zhao, Y.; Li, Y.; Dong, H. Nanomedicine-mediated ferroptosis targeting strategies for synergistic cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2023, 11(6), 1171-1190.
[http://dx.doi.org/10.1039/D2TB02161G] [PMID: 36650960]
[99]
Xie, S.; Sun, W.; Zhang, C.; Dong, B.; Yang, J.; Hou, M.; Xiong, L.; Cai, B.; Liu, X.; Xue, W. Metabolic control by heat stress determining cell fate to ferroptosis for effective cancer therapy. ACS Nano, 2021, 15(4), 7179-7194.
[http://dx.doi.org/10.1021/acsnano.1c00380] [PMID: 33861924]
[100]
An, Y.; Zhu, J.; Liu, F.; Deng, J.; Meng, X.; Liu, G.; Wu, H.; Fan, A.; Wang, Z.; Zhao, Y. Boosting the ferroptotic antitumor efficacy via site-specific amplification of tailored lipid peroxidation. ACS Appl. Mater. Interfaces, 2019, 11(33), 29655-29666.
[http://dx.doi.org/10.1021/acsami.9b10954] [PMID: 31359759]
[101]
Ma, P.; Xiao, H.; Yu, C.; Liu, J.; Cheng, Z.; Song, H.; Zhang, X.; Li, C.; Wang, J.; Gu, Z.; Lin, J. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett., 2017, 17(2), 928-937.
[http://dx.doi.org/10.1021/acs.nanolett.6b04269] [PMID: 28139118]
[102]
Yao, X.; Yang, P.; Jin, Z.; Jiang, Q.; Guo, R.; Xie, R.; He, Q.; Yang, W. Multifunctional nanoplatform for photoacoustic imaging-guided combined therapy enhanced by CO induced ferroptosis. Biomaterials, 2019, 197, 268-283.
[http://dx.doi.org/10.1016/j.biomaterials.2019.01.026] [PMID: 30677556]
[103]
Isola, A.L.; Chen, S. Exosomes: The messengers of health and disease. Curr. Neuropharmacol., 2017, 15(1), 157-165.
[http://dx.doi.org/10.2174/1570159X14666160825160421] [PMID: 27568544]
[104]
Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478), eaau6977.
[http://dx.doi.org/10.1126/science.aau6977] [PMID: 32029601]
[105]
Batrakova, E.V.; Kim, M.S. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Control. Release, 2015, 219, 396-405.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.030] [PMID: 26241750]
[106]
Liang, Y.; Duan, L.; Lu, J.; Xia, J. Engineering exosomes for targeted drug delivery. Theranostics, 2021, 11(7), 3183-3195.
[http://dx.doi.org/10.7150/thno.52570] [PMID: 33537081]
[107]
Qiu, X.; Li, Z.; Han, X.; Zhen, L.; Luo, C.; Liu, M.; Yu, K.; Ren, Y. Tumor-derived nanovesicles promote lung distribution of the therapeutic nanovector through repression of Kupffer cell-mediated phagocytosis. Theranostics, 2019, 9(9), 2618-2636.
[http://dx.doi.org/10.7150/thno.32363] [PMID: 31131057]
[108]
Du, J.; Wan, Z.; Wang, C.; Lu, F.; Wei, M.; Wang, D.; Hao, Q. Designer exosomes for targeted and efficient ferroptosis induction in cancer via chemo-photodynamic therapy. Theranostics, 2021, 11(17), 8185-8196.
[http://dx.doi.org/10.7150/thno.59121] [PMID: 34373736]
[109]
Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Ferroptosis in infection, inflammation, and immunity. J. Exp. Med., 2021, 218(6), e20210518.
[http://dx.doi.org/10.1084/jem.20210518] [PMID: 33978684]
[110]
Fang, X.; Ardehali, H.; Min, J.; Wang, F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat. Rev. Cardiol., 2023, 20(1), 7-23.
[http://dx.doi.org/10.1038/s41569-022-00735-4] [PMID: 35788564]
[111]
Stockwell, B.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell, 2022, 185(14), 2401-2421.
[http://dx.doi.org/10.1016/j.cell.2022.06.003] [PMID: 35803244]
[112]
Ma, L.; Hostetler, A.; Morgan, D.M.; Maiorino, L.; Sulkaj, I.; Whittaker, C.A.; Neeser, A.; Pires, I.S.; Yousefpour, P.; Gregory, J.; Qureshi, K.; Dye, J.; Abraham, W.; Suh, H.; Li, N.; Love, J.C.; Irvine, D.J.; Vaccine-boosted, C.A.R. Vaccine-boosted CAR T crosstalk with host immunity to reject tumors with antigen heterogeneity. Cell, 2023, 186(15), 3148-3165.e20.
[http://dx.doi.org/10.1016/j.cell.2023.06.002] [PMID: 37413990]
[113]
Feng, Y.; Dai, Y. APOL3-LDHA axis related immunity activation and cancer ferroptosis induction. Int. J. Biol. Sci., 2023, 19(5), 1401-1402.
[http://dx.doi.org/10.7150/ijbs.83342] [PMID: 37056935]
[114]
Dai, E.; Han, L.; Liu, J.; Xie, Y.; Kroemer, G.; Klionsky, D.J.; Zeh, H.J.; Kang, R.; Wang, J.; Tang, D. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy, 2020, 16(11), 2069-2083.
[http://dx.doi.org/10.1080/15548627.2020.1714209] [PMID: 31920150]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy