Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Deciphering Immune-related Gene Signatures in Diabetic Retinopathy: Insights from In silico Analysis and In vitro Experiment

Author(s): Nan Xia, Qingsong Zhao, Jinmei Xu and Zhifeng Cheng*

Volume 25, Issue 15, 2024

Published on: 17 January, 2024

Page: [2032 - 2045] Pages: 14

DOI: 10.2174/0113892010276304240103084841

Price: $65

Abstract

Background: Diabetes retinopathy (DR) is one of the most common microvascular consequences of diabetes, and the economic burden is increasing. Our aim is to decipher the relevant mechanisms of immune-related gene features in DR and explore biomarkers targeting DR. Provide a basis for the treatment and prevention of DR.

Methods: The immune infiltration enrichment score of DR patients was evaluated from the single- cell RNA sequencing dataset, and the samples were divided into low immune subgroups and high immune subgroups based on this result. Through weighted gene correlation network analysis, differentially expressed genes (DEGs) between two subgroups were identified and crossed with genes with the strongest immune association, resulting in significant key genes. Then divide the DR individuals into two immune related differentially expressed gene (IDEG) clusters, A and B. Submit cross DEGs between two clusters through Gene Set Enrichment Analysis (GSEA) to further explore their functions. A protein-protein interaction (PPI) network of IDEG was established to further identify central genes associated with DR. Use the discovered central genes to predict the regulatory network involved in the pathogenesis of DR. Then, the role of the identified hub gene in the pathogenesis of DR was further studied through in vitro experiments.

Results: We found that the immune scores of DR and control groups were different, and 27 IDEGs were found in the DR subgroup. Compared with cluster A, the proportion of cytotoxic lymphocytes, B lineage, monocyte lineage, and fibroblasts in DR patients in cluster B is significantly enriched. GSEA indicates that these genes are associated with T cell activation, regulation of immune response processes, lymphocyte-mediated immunity, TNF signaling pathway, and other signaling pathways. The PPI network subsequently identified 10 hub genes in DR, including SIGLEC10, RGS10, PENK, FGD2, LILRA6, CIITA, EGR2, SIGLEC7, LILRB1, and CD300LB. The upstream regulatory network and lncRNA miRNA mRNA ceRNA network of these hub genes were ultimately constructed. The discovery and identification of these genes will provide biomarkers for targeted prediction and treatment of DR.

Conclusion: By integrating bioinformatics analysis and in vitro experiments, we have identified a set of central genes, indicating that these genes can serve as potential biomarkers for DR, which may be promising targets for future DR immunotherapy interventions.

« Previous
Graphical Abstract

[1]
Hainsworth, D.P.; Bebu, I.; Aiello, L.P.; Sivitz, W.; Gubitosi-Klug, R.; Malone, J.; White, N.H.; Danis, R.; Wallia, A.; Gao, X.; Barkmeier, A.J.; Das, A.; Patel, S.; Gardner, T.W.; Lachin, J.M. Risk factors for retinopathy in type 1 diabetes: The DCCT/EDIC study. Diabetes Care, 2019, 42(5), 875-882.
[http://dx.doi.org/10.2337/dc18-2308] [PMID: 30833368]
[2]
Song, K.H.; Jeong, J.S.; Kim, M.K.; Kwon, H.S.; Baek, K.H.; Ko, S.H.; Ahn, Y.B. Discordance in risk factors for the progression of diabetic retinopathy and diabetic nephropathy in patients with type 2 diabetes mellitus. J. Diabetes Investig., 2019, 10(3), 745-752.
[http://dx.doi.org/10.1111/jdi.12953] [PMID: 30300472]
[3]
Leasher, J.L.; Bourne, R.R.A.; Flaxman, S.R.; Jonas, J.B.; Keeffe, J.; Naidoo, K.; Pesudovs, K.; Price, H.; White, R.A.; Wong, T.Y.; Resnikoff, S.; Taylor, H.R. Global estimates on the number of people blind or visually impaired by diabetic retinopathy: A meta-analysis from 1990 to 2010. Diabetes Care, 2016, 39(9), 1643-1649.
[http://dx.doi.org/10.2337/dc15-2171] [PMID: 27555623]
[4]
Takao, T.; Suka, M.; Yanagisawa, H.; Kasuga, M. Combined effect of diabetic retinopathy and diabetic kidney disease on all‐cause, cancer, vascular and non‐cancer non‐vascular mortality in patients with type 2 diabetes: A real‐world longitudinal study. J. Diabetes Investig., 2020, 11(5), 1170-1180.
[http://dx.doi.org/10.1111/jdi.13265] [PMID: 32267626]
[5]
Wong, T.Y.; Cheung, C.M.G.; Larsen, M.; Sharma, S.; Simó, R. Diabetic retinopathy. Nat. Rev. Dis. Primers, 2016, 2(1), 16012.
[http://dx.doi.org/10.1038/nrdp.2016.12] [PMID: 27159554]
[6]
Kobayashi, S.; Nagao, M.; Asai, A.; Fukuda, I.; Oikawa, S.; Sugihara, H. Severity and multiplicity of microvascular complications are associated with QT interval prolongation in patients with type 2 diabetes. J. Diabetes Investig., 2018, 9(4), 946-951.
[http://dx.doi.org/10.1111/jdi.12772] [PMID: 29095573]
[7]
Filardi, T.; Ghinassi, B.; Di Baldassarre, A.; Tanzilli, G.; Morano, S.; Lenzi, A.; Basili, S.; Crescioli, C. Cardiomyopathy associated with diabetes: The central role of the cardiomyocyte. Int. J. Mol. Sci., 2019, 20(13), 3299.
[http://dx.doi.org/10.3390/ijms20133299] [PMID: 31284374]
[8]
Zaccardi, F.; Webb, D.R.; Yates, T.; Davies, M.J. Pathophysiology of type 1 and type 2 diabetes mellitus: A 90-year perspective. Postgrad. Med. J., 2016, 92(1084), 63-69.
[http://dx.doi.org/10.1136/postgradmedj-2015-133281] [PMID: 26621825]
[9]
Semeraro, F.; Cancarini, A.; dell’Omo, R.; Rezzola, S.; Romano, M.R.; Costagliola, C. Diabetic retinopathy: Vascular and inflammatory disease. J. Diabetes Res., 2015, 2015, 1-16.
[http://dx.doi.org/10.1155/2015/582060] [PMID: 26137497]
[10]
Barrett, T.; Troup, D.B.; Wilhite, S.E.; Ledoux, P.; Rudnev, D.; Evangelista, C.; Kim, I.F.; Soboleva, A.; Tomashevsky, M.; Edgar, R. NCBI GEO: Mining tens of millions of expression profiles--database and tools update. Nucleic Acids Res., 2007, 35(Database), D760-D765.
[http://dx.doi.org/10.1093/nar/gkl887] [PMID: 17099226]
[11]
Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 2013, 14(1), 7.
[http://dx.doi.org/10.1186/1471-2105-14-7] [PMID: 23323831]
[12]
Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9(1), 559.
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[13]
Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics, 2010, 26(12), 1572-1573.
[http://dx.doi.org/10.1093/bioinformatics/btq170] [PMID: 20427518]
[14]
Rody, A.; Holtrich, U.; Pusztai, L.; Liedtke, C.; Gaetje, R.; Ruckhaeberle, E.; Solbach, C.; Hanker, L.; Ahr, A.; Metzler, D.; Engels, K.; Karn, T.; Kaufmann, M. T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. Breast Cancer Res., 2009, 11(2), R15.
[http://dx.doi.org/10.1186/bcr2234] [PMID: 19272155]
[15]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[16]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[17]
Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; Harris, M.A.; Hill, D.P.; Issel-Tarver, L.; Kasarskis, A.; Lewis, S.; Matese, J.C.; Richardson, J.E.; Ringwald, M.; Rubin, G.M.; Sherlock, G. Gene Ontology: Tool for the unification of biology. Nat. Genet., 2000, 25(1), 25-29.
[http://dx.doi.org/10.1038/75556] [PMID: 10802651]
[18]
Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 1999, 27(1), 29-34.
[http://dx.doi.org/10.1093/nar/27.1.29] [PMID: 9847135]
[19]
Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst., 2015, 1(6), 417-425.
[http://dx.doi.org/10.1016/j.cels.2015.12.004] [PMID: 26771021]
[20]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[21]
Chin, CH.; Chen, SH.; Wu, HH.; Ho, CW.; Ko, MT. Lin, CY cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol., 2014, 8(S4), S11.
[22]
Franz, M.; Rodriguez, H.; Lopes, C.; Zuberi, K.; Montojo, J.; Bader, G.D.; Morris, Q. GeneMANIA update 2018. Nucleic Acids Res., 2018, 46(W1), W60-W64.
[http://dx.doi.org/10.1093/nar/gky311] [PMID: 29912392]
[23]
Kursa, M.B. Robustness of random forest-based gene selection methods. BMC Bioinformatics, 2014, 15(1), 8.
[http://dx.doi.org/10.1186/1471-2105-15-8] [PMID: 24410865]
[24]
Clarke, D.J.B.; Kuleshov, M.V.; Schilder, B.M.; Torre, D.; Duffy, M.E.; Keenan, A.B.; Lachmann, A.; Feldmann, A.S.; Gundersen, G.W.; Silverstein, M.C.; Wang, Z.; Ma’ayan, A. eXpression2Kinases (X2K) Web: Linking expression signatures to upstream cell signaling networks. Nucleic Acids Res., 2018, 46(W1), W171-W179.
[http://dx.doi.org/10.1093/nar/gky458] [PMID: 29800326]
[25]
Ru, Y.; Kechris, K.J.; Tabakoff, B.; Hoffman, P.; Radcliffe, R.A.; Bowler, R.; Mahaffey, S.; Rossi, S.; Calin, G.A.; Bemis, L.; Theodorescu, D.; Theodorescu, D. The multiMiR R package and database: Integration of microRNA–target interactions along with their disease and drug associations. Nucleic Acids Res., 2014, 42(17), e133.
[http://dx.doi.org/10.1093/nar/gku631] [PMID: 25063298]
[26]
Li, J.H.; Liu, S.; Zhou, H.; Qu, L.H.; Yang, J.H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res., 2014, 42(D1), D92-D97.
[http://dx.doi.org/10.1093/nar/gkt1248] [PMID: 24297251]
[27]
Beltramo, E.; Porta, M. Pericyte loss in diabetic retinopathy: Mechanisms and consequences. Curr. Med. Chem., 2013, 20(26), 3218-3225.
[http://dx.doi.org/10.2174/09298673113209990022] [PMID: 23745544]
[28]
Mrugacz, M.; Bryl, A.; Zorena, K. Retinal vascular endothelial cell dysfunction and neuroretinal degeneration in diabetic patients. J. Clin. Med., 2021, 10(3), 458.
[http://dx.doi.org/10.3390/jcm10030458] [PMID: 33504108]
[29]
Kadłubowska, J.; Malaguarnera, L.; Wąż, P.; Zorena, K. Neurodegeneration and neuroinflammation in diabetic retinopathy: Potential approaches to delay neuronal loss. Curr. Neuropharmacol., 2016, 14(8), 831-839.
[http://dx.doi.org/10.2174/1570159X14666160614095559] [PMID: 27306035]
[30]
dell’Omo, R.; Semeraro, F.; Bamonte, G.; Cifariello, F.; Romano, M.R.; Costagliola, C. Vitreous mediators in retinal hypoxic diseases. Mediators Inflamm., 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/935301] [PMID: 23365490]
[31]
Yoshida, S.; Yoshida, A.; Ishibashi, T. Induction of IL-8, MCP-1, and bFGF by TNF-α in retinal glial cells: Implications for retinal neovascularization during post-ischemic inflammation. Graefes Arch. Clin. Exp. Ophthalmol., 2004, 242(5), 409-413.
[http://dx.doi.org/10.1007/s00417-004-0874-2] [PMID: 15029502]
[32]
Zhang, W.; Liu, H.; Rojas, M.; Caldwell, R.W.; Caldwell, R.B. Anti-inflammatory therapy for diabetic retinopathy. Immunotherapy, 2011, 3(5), 609-628.
[http://dx.doi.org/10.2217/imt.11.24] [PMID: 21554091]
[33]
Stitt, A.W.; Curtis, T.M.; Chen, M.; Medina, R.J.; McKay, G.J.; Jenkins, A.; Gardiner, T.A.; Lyons, T.J.; Hammes, H.P.; Simó, R.; Lois, N. The progress in understanding and treatment of diabetic retinopathy. Prog. Retin. Eye Res., 2016, 51, 156-186.
[http://dx.doi.org/10.1016/j.preteyeres.2015.08.001] [PMID: 26297071]
[34]
Tang, J.; Kern, T.S. Inflammation in diabetic retinopathy. Prog. Retin. Eye Res., 2011, 30(5), 343-358.
[http://dx.doi.org/10.1016/j.preteyeres.2011.05.002] [PMID: 21635964]
[35]
Wooff, Y.; Man, S.M.; Aggio-Bruce, R.; Natoli, R.; Fernando, N. IL-1 family members mediate cell death, inflammation and angiogenesis in retinal degenerative diseases. Front. Immunol., 2019, 10, 1618.
[http://dx.doi.org/10.3389/fimmu.2019.01618] [PMID: 31379825]
[36]
Moratz, C.; Harrison, K.; Kehrl, J.H. Regulation of chemokine-induced lymphocyte migration by RGS proteins. Methods Enzymol., 2004, 389, 15-32.
[http://dx.doi.org/10.1016/S0076-6879(04)89002-5] [PMID: 15313557]
[37]
Jakobsdottir, J.; Conley, Y.P.; Weeks, D.E.; Mah, T.S.; Ferrell, R.E.; Gorin, M.B. Susceptibility genes for age-related maculopathy on chromosome 10q26. Am. J. Hum. Genet., 2005, 77(3), 389-407.
[http://dx.doi.org/10.1086/444437] [PMID: 16080115]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy