Generic placeholder image

Current Psychopharmacology

Editor-in-Chief

ISSN (Print): 2211-5560
ISSN (Online): 2211-5579

Mini-Review Article

Semaglutide’s Neuropharmacological Effects: From Glycemic Regulation and Weight Loss to Potential Implications in Substance Use Disorders – A Narrative Review

Author(s): Jes Sebastian Denis Völker*, Ioana Valentina Micluția and Ramona-Cristina Vinași

Volume 12, 2024

Published on: 30 December, 2023

Article ID: e301223225100 Pages: 8

DOI: 10.2174/0122115560282952231218061257

Price: $65

Abstract

This narrative review delves into the potential therapeutic implications of semaglutide, a Glucagon-Like Peptide-1 (GLP-1) receptor agonist, in the context of Substance Use Disorders (SUDs). By systematically exploring databases from 2011 to 2023, and incorporating foundational works from 2004, a total of 59 articles were identified as pertinent to the topic. Utilizing the SANRA scale for assessment, the quality and relevance of these studies were rigorously evaluated. Preliminary findings indicate that semaglutide may play a pivotal role in modulating behaviors associated with SUDs, potentially providing fresh perspectives on the neurobiological mechanisms underlying these disorders. While the precise pathways of action for semaglutide remain to be fully deciphered, its recurrent mention in the literature underscores its emerging importance in the field of SUD research. As the understanding of semaglutide's influence expands, it holds promise as a focal point in future studies, warranting further in-depth exploration to ascertain its full therapeutic potential.

[1]
Vadher K, Patel H, Mody R, et al. Efficacy of tirzepatide 5, 10 and 15 mg versus semaglutide 2 mg in patients with type 2 diabetes: An adjusted indirect treatment comparison. Diabetes Obes Metab 2022; 24(9): 1861-8.
[http://dx.doi.org/10.1111/dom.14775] [PMID: 35589616]
[2]
Jacobs GK, Capponi LCZ, Kindel ME. The use of semaglutide for weight loss: A literature review. II Seven International Congress Of Health.
[http://dx.doi.org/10.56238/homeIIsevenhealth-004]
[3]
Coulter AA, Rebello CJ, Greenway FL. Centrally acting agents for obesity: Past, present, and future. Drugs 2018; 78(11): 1113-32.
[http://dx.doi.org/10.1007/s40265-018-0946-y] [PMID: 30014268]
[4]
Fardone E, Montoya ID, Schackman BR, McCollister KE. Economic benefits of substance use disorder treatment: A systematic literature review of economic evaluation studies from 2003 to 2021. JSAT 2023; 152: 209084.
[http://dx.doi.org/10.1016/j.josat.2023.209084] [PMID: 37302488]
[5]
Hagemeier NE. Introduction to the opioid epidemic: The economic burden on the healthcare system and impact on quality of life. Am J Manag Care 2018; 24(10): S200-6.
[PMID: 29851449]
[6]
Milstein JL, Ferris HA. The brain as an insulin-sensitive metabolic organ. Mol Metab 2021; 52: 101234.
[http://dx.doi.org/10.1016/j.molmet.2021.101234] [PMID: 33845179]
[7]
Lennerz B, Lennerz JK. Food addiction, high-glycemic-index carbohydrates, and obesity. Clin Chem 2018; 64(1): 64-71.
[http://dx.doi.org/10.1373/clinchem.2017.273532] [PMID: 29158252]
[8]
Kullmann S, Kleinridders A, Small DM, et al. Central nervous pathways of insulin action in the control of metabolism and food intake. Lancet Diabetes Endocrinol 2020; 8(6): 524-34.
[http://dx.doi.org/10.1016/S2213-8587(20)30113-3] [PMID: 32445739]
[9]
Marty VN, Farokhnia M, Munier JJ, Mulpuri Y, Leggio L, Spigelman I. Long-acting glucagon-like peptide-1 receptor agonists suppress voluntary alcohol intake in male wistar rats. Front Neurosci 2020; 14: 599646.
[http://dx.doi.org/10.3389/fnins.2020.599646] [PMID: 33424537]
[10]
De R, Prasad F, Stogios N, et al. Promising translatable pharmacological interventions for body weight management in individuals with severe mental illness – a narrative review. Expert Opin Pharmacother 2023; 24(16): 1823-32. Epub ahead of print
[http://dx.doi.org/10.1080/14656566.2023.2254698] [PMID: 37653675]
[11]
Leslie M. Hot weight loss drugs tested against addiction. Science 2023; 381(6661): 930-1.
[http://dx.doi.org/10.1126/science.adk5720] [PMID: 37651529]
[12]
Baethge C, Goldbeck-Wood S, Mertens S. SANRA—a scale for the quality assessment of narrative review articles. Res Integr Peer Rev 2019; 4(1): 5.
[http://dx.doi.org/10.1186/s41073-019-0064-8] [PMID: 30962953]
[13]
Fritzlan L, Rumney A. Addiction therapy and treatment. Jefferson, NC: McFarland 2022.
[14]
Sevarino K, Ed. Treatment of substance use disorders. London, England: Routledge 2013.
[http://dx.doi.org/10.4324/9780203890363]
[15]
Brock E, Ed. Assessment and treatment of substance use disorders. USA: American Medical 2022.
[16]
Joseph JE, Kelly TH, Lile JA. The neurobiological basis of personality risk for addiction. In: Biological Research on Addiction. Elsevier 2013; pp. 401-12.
[http://dx.doi.org/10.1016/B978-0-12-398335-0.00040-6]
[17]
Fernández-Espejo E. [Neurobiological basis of drug addiction]. Rev Neurol 2002; 34(7): 659-64.
[PMID: 12080517]
[18]
Cadoni C, De Felice M, Corongiu S, et al. Role of genetic background in the effects of adolescent nicotine exposure on mesolimbic dopamine transmission. Addict Biol 2020; 25(5): e12803.
[http://dx.doi.org/10.1111/adb.12803] [PMID: 31342609]
[19]
Daurio AM, Deschaine SL, Modabbernia A, Leggio L. Parsing out the role of dopamine D4 receptor gene (DRD4) on alcohol‐related phenotypes: A meta‐analysis and systematic review. Addict Biol 2020; 25(3): e12770.
[http://dx.doi.org/10.1111/adb.12770] [PMID: 31149768]
[20]
Chiamulera C, West RJ. What role does dopamine really play in tobacco addiction? Addiction 2018; 113(8): 1379-80.
[http://dx.doi.org/10.1111/add.14235] [PMID: 29766605]
[21]
Richter A, Reinhard F, Kraemer B, Gruber O. A high-resolution fMRI approach to characterize functionally distinct neural pathways within dopaminergic midbrain and nucleus accumbens during reward and salience processing. Eur Neuropsychopharmacol 2020; 36: 137-50.
[http://dx.doi.org/10.1016/j.euroneuro.2020.05.005] [PMID: 32546416]
[22]
Luo SX, Huang EJ. Dopaminergic neurons and brain reward pathways: From neurogenesis to circuit assembly. Am J Pathol 2016; 186(3): 478-88.
[http://dx.doi.org/10.1016/j.ajpath.2015.09.023] [PMID: 26724386]
[23]
Rios A, Nonomura S, Kato S, et al. Reward expectation enhances action-related activity of nigral dopaminergic and two striatal output pathways. Commun Biol 2023; 6(1): 914.
[http://dx.doi.org/10.1038/s42003-023-05288-x] [PMID: 37673949]
[24]
Wikman P, Rinne T, Petkov CI. Reward cues readily direct monkeys’ auditory performance resulting in broad auditory cortex modulation and interaction with sites along cholinergic and dopaminergic pathways. Sci Rep 2019; 9(1): 3055.
[http://dx.doi.org/10.1038/s41598-019-38833-y] [PMID: 30816142]
[25]
Solinas M, Belujon P, Fernagut PO, Jaber M, Thiriet N. Dopamine and addiction: What have we learned from 40 years of research. J Neural Transm 2019; 126(4): 481-516.
[http://dx.doi.org/10.1007/s00702-018-1957-2] [PMID: 30569209]
[26]
Clay S, Allen J, Parran T. A review of addiction. Postgrad Med 2008; 120(2): E01-7.
[http://dx.doi.org/10.3810/pgm.2008.07.1802] [PMID: 18654058]
[27]
Tomkins DM, Sellers EM. Addiction and the brain: The role of neurotransmitters in the cause and treatment of drug dependence. CMAJ 2001; 164(6): 817-21.
[PMID: 11276551]
[28]
Colon-Perez L, Montesinos J, Monsivais M. The future of neuroimaging and gut-brain axis research for substance use disorders. Brain Res 2022; 1781: 147835.
[http://dx.doi.org/10.1016/j.brainres.2022.147835] [PMID: 35172178]
[29]
Tanabe J, Regner M, Sakai J, Martinez D, Gowin J. Neuroimaging reward, craving, learning, and cognitive control in substance use disorders: Review and implications for treatment. Br J Radiol 2019; 92(1101): 20180942.
[http://dx.doi.org/10.1259/bjr.20180942] [PMID: 30855982]
[30]
Adisetiyo V, Gray KM. Neuroimaging the neural correlates of increased risk for substance use disorders in attention-deficit/hyperactivity disorder-A systematic review. Am J Addict 2017; 26(2): 99-111.
[http://dx.doi.org/10.1111/ajad.12500] [PMID: 28106934]
[31]
Kurtzhals P, Flindt Kreiner F, Singh Bindra R. The role of weight control in the management of type 2 diabetes mellitus: Perspectives on semaglutide. Diabetes Res Clin Pract 2023; 203: 110881.
[http://dx.doi.org/10.1016/j.diabres.2023.110881] [PMID: 37591343]
[32]
Kanoski SE, Hayes MR, Skibicka KP. GLP-1 and weight loss: Unraveling the diverse neural circuitry. Am J Physiol Regul Integr Comp Physiol 2016; 310(10): R885-95.
[http://dx.doi.org/10.1152/ajpregu.00520.2015] [PMID: 27030669]
[33]
Gabery S, Salinas CG, Paulsen SJ, et al. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight 2020; 5(6): e133429.
[http://dx.doi.org/10.1172/jci.insight.133429] [PMID: 32213703]
[34]
Williams DL. Neural integration of satiation and food reward: Role of GLP-1 and orexin pathways. Physiol Behav 2014; 136: 194-9.
[http://dx.doi.org/10.1016/j.physbeh.2014.03.013] [PMID: 24650552]
[35]
Nakanishi S, Hikida T, Yawata S. Distinct dopaminergic control of the direct and indirect pathways in reward-based and avoidance learning behaviors. Neuroscience 2014; 282: 49-59.
[http://dx.doi.org/10.1016/j.neuroscience.2014.04.026] [PMID: 24769227]
[36]
Kawahara Y, Kaneko F, Yamada M, Kishikawa Y, Kawahara H, Nishi A. Food reward-sensitive interaction of ghrelin and opioid receptor pathways in mesolimbic dopamine system. Neuropharmacology 2013; 67: 395-402.
[http://dx.doi.org/10.1016/j.neuropharm.2012.11.022] [PMID: 23220294]
[37]
Barr M, Fitzgerald P, Farzan F, George T, Daskalakis Z. Transcranial magnetic stimulation to understand the pathophysiology and treatment of substance use disorders. Curr Drug Abuse Rev 2008; 1(3): 328-39.
[http://dx.doi.org/10.2174/1874473710801030328] [PMID: 19630729]
[38]
Klausen MK, Thomsen M, Wortwein G, Fink-Jensen A. The role of glucagon‐like peptide 1 (GLP‐1) in addictive disorders. Br J Pharmacol 2022; 179(4): 625-41.
[http://dx.doi.org/10.1111/bph.15677] [PMID: 34532853]
[39]
Richard JE, Anderberg RH, Göteson A, Gribble FM, Reimann F, Skibicka KP. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system. PLoS One 2015; 10(3): e0119034.
[http://dx.doi.org/10.1371/journal.pone.0119034] [PMID: 25793511]
[40]
Chuong V, Farokhnia M, Khom S, et al. The glucagon-like peptide-1 (GLP-1) analogue semaglutide reduces alcohol drinking and modulates central GABA neurotransmission. JCI Insight 2023; 8(12): e170671.
[http://dx.doi.org/10.1172/jci.insight.170671] [PMID: 37192005]
[41]
Sørensen G, Reddy IA, Weikop P, et al. The glucagon-like peptide 1 (GLP-1) receptor agonist exendin-4 reduces cocaine self-administration in mice. Physiol Behav 2015; 149: 262-8.
[http://dx.doi.org/10.1016/j.physbeh.2015.06.013] [PMID: 26072178]
[42]
Vallöf D, Vestlund J, Jerlhag E. Glucagon-like peptide-1 receptors within the nucleus of the solitary tract regulate alcohol-mediated behaviors in rodents. Neuropharmacology 2019; 149: 124-32.
[http://dx.doi.org/10.1016/j.neuropharm.2019.02.020] [PMID: 30772374]
[43]
Dixon TN, McNally GP, Ong ZY. Glucagon-like peptide-1 receptor signaling in the ventral tegmental area reduces alcohol self-administration in male rats. Alcohol Clin Exp Res 2020; 44(10): 2118-29.
[http://dx.doi.org/10.1111/acer.14437] [PMID: 33043520]
[44]
Colvin KJ, Killen HS, Kanter MJ, Halperin MC, Engel L, Currie PJ. Brain site-specific inhibitory effects of the GLP-1 analogue exendin-4 on alcohol intake and operant responding for palatable food. Int J Mol Sci 2020; 21(24): 9710.
[http://dx.doi.org/10.3390/ijms21249710] [PMID: 33352692]
[45]
Tuesta LM, Chen Z, Duncan A, et al. GLP-1 acts on habenular avoidance circuits to control nicotine intake. Nat Neurosci 2017; 20(5): 708-16.
[http://dx.doi.org/10.1038/nn.4540] [PMID: 28368384]
[46]
Bessesen DH, Van Gaal LF. Progress and challenges in anti-obesity pharmacotherapy. Lancet Diabetes Endocrinol 2018; 6(3): 237-48.
[http://dx.doi.org/10.1016/S2213-8587(17)30236-X] [PMID: 28919062]
[47]
Koshal P, Jamwal S, Kumar P. Glucagon-like peptide-1 (GLP-1) and neurotransmitters signaling in epilepsy: An insight review. Neuropharmacology 2018; 136(Pt B): 271-9.
[http://dx.doi.org/10.1016/j.neuropharm.2017.11.015] [PMID: 29129776]
[48]
Jerlhag E. The therapeutic potential of glucagon-like peptide-1 for persons with addictions based on findings from preclinical and clinical studies. Front Pharmacol 2023; 14: 1063033.
[http://dx.doi.org/10.3389/fphar.2023.1063033] [PMID: 37063267]
[49]
Eren-Yazicioglu CY, Yigit A, Dogruoz RE, Yapici-Eser H. Can GLP-1 be a target for reward system related disorders? A qualitative synthesis and systematic review analysis of studies on palatable food, drugs of abuse, and alcohol. Front Behav Neurosci 2021; 14: 614884.
[http://dx.doi.org/10.3389/fnbeh.2020.614884] [PMID: 33536884]
[50]
Sørensen G, Caine SB, Thomsen M. Effects of the GLP-1 agonist Exendin-4 on intravenous ethanol self-administration in mice. Alcohol Clin Exp Res 2016; 40(10): 2247-52.
[http://dx.doi.org/10.1111/acer.13199] [PMID: 27579999]
[51]
Dencker D, Egecioglu E, Jerlhag E. SY15-2 subchronic low dose exendin-4 pretreatment inhibits relapse to alcohol drinking in high alcohol prefering C57BL6 mice. Alcohol Alcohol 2015; 50: 117.4-8.
[52]
Vallöf D, Maccioni P, Colombo G. P-48the glucagon-like peptide 1 analogue liraglutide attenuates alcohol-induced reward, decreases alcohol intake and prevents relapse-like drinking to alcohol in outbred rodents as well as reduces operant alcohol selfadministration in Sardinian alcohol-preferring rats. Alcohol Alcohol 2015; 50: i57.3.
[53]
Vallöf D, Maccioni P, Colombo G, et al. The glucagon‐like peptide 1 receptor agonist liraglutide attenuates the reinforcing properties of alcohol in rodents. Addict Biol 2016; 21(2): 422-37.
[http://dx.doi.org/10.1111/adb.12295] [PMID: 26303264]
[54]
Blundell J, Finlayson G, Axelsen M, et al. Effects of once‐weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes Metab 2017; 19(9): 1242-51.
[http://dx.doi.org/10.1111/dom.12932] [PMID: 28266779]
[55]
Gibbons C, Blundell J, Tetens Hoff S, Dahl K, Bauer R, Bækdal T. Effects of oral semaglutide on energy intake, food preference, appetite, control of eating and body weight in subjects with type 2 diabetes. Diabetes Obes Metab 2021; 23(2): 581-8.
[http://dx.doi.org/10.1111/dom.14255] [PMID: 33184979]
[56]
Aaseth J, Ellefsen S, Alehagen U, Sundfør TM, Alexander J. Diets and drugs for weight loss and health in obesity – An update. Biomed Pharmacother 2021; 140: 111789.
[http://dx.doi.org/10.1016/j.biopha.2021.111789] [PMID: 34082399]
[57]
CTG labs - NCBI. Available from: https://www.clinical trials.gov/search?cond=Substance (Accessed on: September 9, 2023).
[58]
Smits MM, Van Raalte DH. Safety of semaglutide. Front Endocrinol 2021; 12: 645563.
[http://dx.doi.org/10.3389/fendo.2021.645563] [PMID: 34305810]
[59]
Christou GA, Katsiki N, Blundell J, Fruhbeck G, Kiortsis DN. Semaglutide as a promising antiobesity drug. Obes Rev 2019; 20(6): 805-15.
[http://dx.doi.org/10.1111/obr.12839] [PMID: 30768766]
[60]
Fallows E, Ells L, Anand V. Semaglutide and the future of obesity care in the UK. Lancet 2023; 401(10394): 2093-6.
[http://dx.doi.org/10.1016/S0140-6736(23)01083-8] [PMID: 37290459]
[61]
Wilding JPH, Batterham RL, Calanna S, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med 2021; 384(11): 989-1002.
[http://dx.doi.org/10.1056/NEJMoa2032183] [PMID: 33567185]
[62]
Teeters J, Lancaster C, Brown D, Back S. Substance use disorders in military veterans: Prevalence and treatment challenges. Subst Abuse Rehabil 2017; 8: 69-77.
[http://dx.doi.org/10.2147/SAR.S116720] [PMID: 28919834]
[63]
Alessi SM, Rash CJ, Pescatello LS. Reinforcing exercise to improve drug abuse treatment outcomes: A randomized controlled study in a substance use disorder outpatient treatment setting. Psychol Addict Behav 2020; 34(1): 52-64.
[http://dx.doi.org/10.1037/adb0000517] [PMID: 31599603]
[64]
Aly SM, Omran A, Gaulier JM, Allorge D. Substance abuse among children. Arch Pediatr 2020; 27(8): 480-4.
[http://dx.doi.org/10.1016/j.arcped.2020.09.006] [PMID: 33011026]
[65]
Ivan Ezquerra-Romano I, Lawn W, Krupitsky E, Morgan CJA. Ketamine for the treatment of addiction: Evidence and potential mechanisms. Neuropharmacology 2018; 142: 72-82.
[http://dx.doi.org/10.1016/j.neuropharm.2018.01.017] [PMID: 29339294]
[66]
Volkow ND, Michaelides M, Baler R. The neuroscience of drug reward and addiction. Physiol Rev 2019; 99(4): 2115-40.
[http://dx.doi.org/10.1152/physrev.00014.2018] [PMID: 31507244]
[67]
Fadus MC, Squeglia LM, Valadez EA, Tomko RL, Bryant BE, Gray KM. Adolescent substance use disorder treatment: An update on evidence-based strategies. Curr Psychiatry Rep 2019; 21(10): 96.
[http://dx.doi.org/10.1007/s11920-019-1086-0] [PMID: 31522280]
[68]
Hasin DS, O’Brien CP, Auriacombe M, et al. DSM-5 criteria for substance use disorders: Recommendations and rationale. Am J Psychiatry 2013; 170(8): 834-51.
[http://dx.doi.org/10.1176/appi.ajp.2013.12060782] [PMID: 23903334]
[69]
Rao WW, Zong QQ, Zhang JW, et al. Obesity increases the risk of depression in children and adolescents: Results from a systematic review and meta-analysis. J Affect Disord 2020; 267: 78-85.
[http://dx.doi.org/10.1016/j.jad.2020.01.154] [PMID: 32063576]
[70]
Milaneschi Y, Simmons WK, van Rossum EFC, Penninx BWJH. Depression and obesity: Evidence of shared biological mechanisms. Mol Psychiatry 2019; 24(1): 18-33.
[http://dx.doi.org/10.1038/s41380-018-0017-5] [PMID: 29453413]
[71]
Luppino FS, de Wit LM, Bouvy PF, et al. Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry 2010; 67(3): 220-9.
[http://dx.doi.org/10.1001/archgenpsychiatry.2010.2] [PMID: 20194822]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy