Generic placeholder image

Current Psychopharmacology

Editor-in-Chief

ISSN (Print): 2211-5560
ISSN (Online): 2211-5579

Review Article

The Neurochemical Anatomy of Runway Acquisition and Extinction

Author(s): Robert Lalonde* and Catherine Strazielle

Volume 12, 2024

Published on: 30 December, 2023

Article ID: e301223225099 Pages: 11

DOI: 10.2174/0122115560268626231214070304

Price: $65

Abstract

A review is presented as to the neurochemical basis of the straight runway task, usually consisting of an acquisition phase followed by an extinction phase. During the acquisition of the appetitive runway task, running speeds from the start box to the goal box progressively increase over trials and then decrease when the reward is withheld. Runway extinction is susceptible to lesions of the limbic system, including the medial frontal cortex, the hippocampus, the septum, the amygdala, and the dorsomedial thalamus. When specific neurotransmitter systems are examined, extinction was delayed when noradrenaline transmission was impeded, perhaps involving noradrenergic projections to the hippocampus and neocortex. Extinction was likewise delayed after either facilitation or blocking of dopamine transmission, a result implicating an inverted U-shaped function caused by dopamine’s role in behavioral activation or reward processes. Extinction was also delayed by indirect GABAA receptor agonists injected during acquisition, explained by druginduced disinhibitory tendencies. This simple paradigm may provide information about the effects of a physiological manipulation on both cognition and emotion.

[1]
Koob G, Kelley A, Mason S. Locus coeruleus lesions: Learning and extinction. Physiol Behav 1978; 20(6): 709-16.
[http://dx.doi.org/10.1016/0031-9384(78)90296-2] [PMID: 684108]
[2]
Mason ST, Iversen SD. Learning in the absence of forebrain noradrenaline. Nature 1975; 258(5534): 422-4.
[http://dx.doi.org/10.1038/258422a0] [PMID: 1196374]
[3]
Mason ST, Iversen SD. Effects of selective forebrain noradrenaline loss on behavioral inhibition in the rat. J Comp Physiol Psychol 1977; 91(1): 165-73.
[http://dx.doi.org/10.1037/h0077311] [PMID: 300082]
[4]
Spyraki C, Arbuthnott GW, Fibiger HC. The effect of DSP-4 on some positively reinforced operant behaviors in the rat. Pharmacol Biochem Behav 1982; 16(2): 197-202.
[http://dx.doi.org/10.1016/0091-3057(82)90147-2] [PMID: 7071072]
[5]
Kawasaki K, Iwasaki T. Corticosterone levels during extinction of runway response in rats. Life Sci 1997; 61(17): 1721-8.
[http://dx.doi.org/10.1016/S0024-3205(97)00778-9] [PMID: 9363988]
[6]
Burns RA, Hulbert LG, Cribb D. A test for order relevance in a three-element serial learning task. J Gen Psychol 1990; 117(1): 91-8.
[http://dx.doi.org/10.1080/00221309.1990.9917776] [PMID: 2313282]
[7]
Granger L, Ducharme R, Bélanger D. Effects of water deprivation upon heart rate and running speed of the white rat in a straight alley. Psychophysiology 1969; 5(6): 638-43.
[http://dx.doi.org/10.1111/j.1469-8986.1969.tb02866.x] [PMID: 5812326]
[8]
Gómez MJ, de la Torre L, Callejas-Aguilera JE, et al. The partial reinforcement extinction effect (PREE) in female Roman high- (RHA-I) and low-avoidance (RLA-I) rats. Behav Brain Res 2008; 194(2): 187-92.
[http://dx.doi.org/10.1016/j.bbr.2008.07.009] [PMID: 18692092]
[9]
Shimbo A, Kosaki Y, Ito I, Watanabe S. Mice lacking hippocampal left-right asymmetry show non-spatial learning deficits. Behav Brain Res 2018; 336: 156-65.
[http://dx.doi.org/10.1016/j.bbr.2017.08.043] [PMID: 28864206]
[10]
Muzio RN, Segura ET, Papini MR. Effects of lesions in the medial pallium on instrumental learning in the toad (Bufo arenarum). Physiol Behav 1993; 54(1): 185-8.
[http://dx.doi.org/10.1016/0031-9384(93)90064-M] [PMID: 8327601]
[11]
Gray JA, Dudderidge H. Sodium amylobarbitone, the partial reinforcement extinction effect, and the frustration effect in the double runway. Neuropharmacology 1971; 10(2): 217-22.
[http://dx.doi.org/10.1016/0028-3908(71)90042-6] [PMID: 5093961]
[12]
Henke PG. Effects of reinforcement omission on rats with lesions in the amygdala. J Comp Physiol Psychol 1973; 84(1): 187-93.
[http://dx.doi.org/10.1037/h0035015] [PMID: 4577766]
[13]
Henke PG. Dissociation of the frustration effect and the partial reinforcement extinction effect after limbic lesions in rats. J Comp Physiol Psychol 1977; 91(5): 1032-8.
[http://dx.doi.org/10.1037/h0077396]
[14]
Henke PG, Maxwell D. Lesions in the amygdala and the frustration effect. Physiol Behav 1973; 10(4): 647-50.
[http://dx.doi.org/10.1016/0031-9384(73)90137-6] [PMID: 4575404]
[15]
Amsel A, MacKinnon JR, Rashotte ME, Surridge CT. Partial reinforcement (acquisition) effects within subjects. J Exp Anal Behav 1964; 7(2): 135-8.
[http://dx.doi.org/10.1901/jeab.1964.7-135] [PMID: 14130088]
[16]
Dunnett SB, Iversen SD. Learning impairments following selective kainic acid-induced lesions within the neostriatum of rats. Behav Brain Res 1981; 2(2): 189-209.
[http://dx.doi.org/10.1016/0166-4328(81)90055-3] [PMID: 7248057]
[17]
Gabriele A, Packard M. Evidence of a role for multiple memory systems in behavioral extinction. Neurobiol Learn Mem 2006; 85(3): 289-99.
[http://dx.doi.org/10.1016/j.nlm.2005.12.004] [PMID: 16427329]
[18]
Brunner RL, Haggbloom SJ, Gazzara RA. Effects of hippocampal x-irradiation-produced granule-cell agenesis on instrumental runway performance in rats. Physiol Behav 1974; 13(4): 485-94.
[http://dx.doi.org/10.1016/0031-9384(74)90278-9] [PMID: 4475430]
[19]
Burns RA, Lorig TS, McCrary MD. Reduction of sucrose reward to smaller and nonreward levels without contrast effects. J Gen Psychol 1986; 113(1): 97-102.
[http://dx.doi.org/10.1080/00221309.1986.9710546] [PMID: 28150536]
[20]
Calef RS, Choban MC, Glenney KR, et al. Perseveration of the partial reinforcement effect in extinction with rats over two phases of extinction and two stages of continuous reinforcement. Psychol Rep 2007; 100(1): 101-7.
[http://dx.doi.org/10.2466/pr0.100.1.101-107] [PMID: 17451011]
[21]
Coffey PJ, Feldon J, Mitchell S, Sinden J, Gray JA, Rawlins JNP. Ibotenate-induced total septal lesions reduce resistance to extinction but spare the partial reinforcement extinction effect in the rat. Exp Brain Res 1989; 77(1): 140-52.
[http://dx.doi.org/10.1007/BF00250576] [PMID: 2792258]
[22]
Davis S, Nation J, Mayleben M. The effects of chronic lead exposure on reactivity to frustrative nonreward in rats. Toxicol Lett 1993; 66(3): 237-46.
[http://dx.doi.org/10.1016/0378-4274(93)90004-H] [PMID: 8475504]
[23]
Ettenberg A, Camp CH. Haloperidol induces a partial reinforcement extinction effect in rats: Implications for a dopamine involvement in food reward. Pharmacol Biochem Behav 1986; 25(4): 813-21.
[http://dx.doi.org/10.1016/0091-3057(86)90392-8] [PMID: 3786340]
[24]
Ettenberg A, Camp CH. A partial reinforcement extinction effect in water-reinforced rats intermittently treated with haloperidol. Pharmacol Biochem Behav 1986; 25(6): 1231-5.
[http://dx.doi.org/10.1016/0091-3057(86)90117-6] [PMID: 3809225]
[25]
Feldon J, Gray JA. Effects of medial and lateral septal lesions on the partial reinforcement extinction effect at one trial a day. Q J Exp Psychol 1979; 31(4): 653-74.
[http://dx.doi.org/10.1080/14640747908400756] [PMID: 534287]
[26]
Feldon J, Gray JA. Effects of medial and lateral septal lesions on the partial reinforcement extinction effect at short inter-trial intervals. Q J Exp Psychol 1979; 31(4): 675-90.
[http://dx.doi.org/10.1080/14640747908400757] [PMID: 534288]
[27]
Feldon J, Gray JA. The partial reinforcement extinction effect: Influence of chlordiazepoxide in septal lesioned rats. Psychopharmacology 1981; 74(3): 280-9.
[http://dx.doi.org/10.1007/BF00427111] [PMID: 6791239]
[28]
Feldon J, Gray JA. The partial reinforcement extinction effect after treatment with chlordiazepoxide. Psychopharmacology 1981; 73(3): 269-75.
[http://dx.doi.org/10.1007/BF00422416] [PMID: 6787648]
[29]
Feldon J, Weiner I. Effects of haloperidol on the multitrial partial reinforcement extinction effect (PREE): Evidence for neuroleptic drug action on nonreinforcement but not on reinforcement. Psychopharmacology 1991; 105(3): 407-14.
[http://dx.doi.org/10.1007/BF02244437] [PMID: 1686816]
[30]
Feldon J, Guillamon A, Gray JA, de Wit H, McNaughton N. Sodium amylobarbitone and responses to nonreward. Q J Exp Psychol 1979; 31(1): 19-50.
[http://dx.doi.org/10.1080/14640747908400705] [PMID: 424505]
[31]
Feldon J, Rawlins JNP, Gray JA. Fornix-fimbria section and the partial reinforcement extinction effect. Exp Brain Res 1985; 58(3): 435-9.
[http://dx.doi.org/10.1007/BF00235860] [PMID: 4007086]
[32]
Feldon J, Katz Y, Weiner I. The effects of haloperidol on the partial reinforcement extinction effect (PREE): Implications for neuroleptic drug action on reinforcement and nonreinforcement. Psychopharmacology 1988; 95(4): 528-33.
[http://dx.doi.org/10.1007/BF00172968] [PMID: 2905502]
[33]
Feldon J, Bercovitz H, Weiner I. The effects of amphetamine on a multitrial partial reinforcement extinction effect (PREE) in a runway. Pharmacol Biochem Behav 1989; 32(1): 55-63.
[http://dx.doi.org/10.1016/0091-3057(89)90210-4] [PMID: 2734351]
[34]
Glass DH, Ison JR, Thomas GJ. Anterior limbic cortex and partial reinforcement effects on acquisition and extinction of a runway response in rats. J Comp Physiol Psychol 1969; 69(1): 17-24.
[http://dx.doi.org/10.1037/h0027926] [PMID: 5347362]
[35]
Gray JA. Sodium amobarbital and effects of frustrative nonreward. J Comp Physiol Psychol 1969; 69(1): 55-64.
[http://dx.doi.org/10.1037/h0027935] [PMID: 5347367]
[36]
Gray JA, Mayes AR, Wilson M. A barbiturate-like effect of adrenocorticotropic hormone on the partial reinforcement acquisition and extinction effects. Neuropharmacology 1971; 10(2): 223-30.
[http://dx.doi.org/10.1016/0028-3908(71)90043-8] [PMID: 4328633]
[37]
Gray JA, Quintão L, Araujo-Silva MT. The partial reinforcement extinction effect in rats with medial septal lesions. Physiol Behav 1972; 8(3): 491-6.
[http://dx.doi.org/10.1016/0031-9384(72)90334-4] [PMID: 5037547]
[38]
Gray J, Rickwood L, Drewett R, Dunne E. Gonadal hormones and effects of partial reinforcement on appetitive behaviour in the rat. Physiol Behav 1977; 19(1): 41-5.
[http://dx.doi.org/10.1016/0031-9384(77)90156-1] [PMID: 11803688]
[39]
Halevy G, Feldon J, Weiner I. The effects of clonidine on the partial reinforcement extinction effect (PREE). Psychopharmacology 1986; 90(1): 95-100.
[http://dx.doi.org/10.1007/BF00172878] [PMID: 3094069]
[40]
Hawkins M, Sinden J, Martin I, Gray J. Effects of RO 15-1788 on a running response rewarded on continuous or partial reinforcement schedules. Psychopharmacology 1988; 94(3): 371-8.
[http://dx.doi.org/10.1007/BF00174692] [PMID: 3128814]
[41]
Henke PG. Persistence of runway performance after septal lesions in rats. J Comp Physiol Psychol 1974; 86(5): 760-7.
[http://dx.doi.org/10.1037/h0036395] [PMID: 4833582]
[42]
Ison JR, Pennes ES. Interaction of amobarbital sodium and reinforcement schedule in determining resistance to extinction of an instrumental running response. J Comp Physiol Psychol 1969; 68(2, Pt.1): 215-9.
[http://dx.doi.org/10.1037/h0027511] [PMID: 5792352]
[43]
Jarrard LE, Feldon J, Rawlins JNP, Sinden JD, Gray JA. The effects of intrahippocampal ibotenate on resistance to extinction after continuous or partial reinforcement. Exp Brain Res 1986; 61(3): 519-30.
[http://dx.doi.org/10.1007/BF00237577] [PMID: 3956613]
[44]
Mikulka PJ, Pavlik WB. Deprivation level, competing responses, and the PRE. Psychol Rep 1966; 18(1): 95-102.
[http://dx.doi.org/10.2466/pr0.1966.18.1.95] [PMID: 5908514]
[45]
Nair HP, Berndt JD, Barrett D, Gonzalez-Lima F. Maturation of extinction behavior in infant rats: Large-scale regional interactions with medial prefrontal cortex, orbitofrontal cortex, and anterior cingulate cortex. J Neurosci 2001; 21(12): 4400-7.
[http://dx.doi.org/10.1523/JNEUROSCI.21-12-04400.2001] [PMID: 11404426]
[46]
Nation JR, Bourgeois AE, Clark DE, Elissalde M. Effects of acute trimethyltin exposure on appetitive acquisition and extinction performance in the adult rat. Behav Neurosci 1984; 98(5): 919-24.
[http://dx.doi.org/10.1037/0735-7044.98.5.919] [PMID: 6487421]
[47]
Owen S, Boarder MR, Gray JA, Fillenz M. Acquisition and extinction of continuously and partially reinforced running in rats with lesions of the dorsal noradrenergic bundle. Behav Brain Res 1982; 5(1): 11-41.
[http://dx.doi.org/10.1016/0166-4328(82)90088-2] [PMID: 7082464]
[48]
Rawlins JNP, Feldon J, Gray JA. The effects of hippocampectomy and of fimbria section upon the partial reinforcement extinction effect in rats. Exp Brain Res 1980; 38(3): 273-83.
[http://dx.doi.org/10.1007/BF00236646] [PMID: 7371731]
[49]
Rawlins JNP, Feldon J, Ursin H, Gray JA. Resistance to extinction after schedules of partial delay or partial reinforcement in rats with hippocampal lesions. Exp Brain Res 1985; 59(2): 273-81.
[http://dx.doi.org/10.1007/BF00230907] [PMID: 4029302]
[50]
Sinden JD, Jarrard LE, Gray JA. The effects of intra-subicular ibotenate on resistance to extinction after continuous or partial reinforcement. Exp Brain Res 1988; 73(2): 315-9.
[http://dx.doi.org/10.1007/BF00248223] [PMID: 3215307]
[51]
Theios J. The partial reinforcement effect sustained through blocks of continuous reinforcement. J Exp Psychol 1962; 64(1): 1-6.
[http://dx.doi.org/10.1037/h0046302] [PMID: 13920533]
[52]
Weiner I, Bercovitz H, Lubow RE, Feldon J. The abolition of the partial reinforcement extinction effect (PREE) by amphetamine. Psychopharmacology 1985; 86(3): 318-23.
[http://dx.doi.org/10.1007/BF00432221] [PMID: 3929302]
[53]
Weiner I, Feldon J, Bercovitz H. The abolition of the partial reinforcement extinction effect (PREE) by amphetamine: Disruption of control by nonreinforcement. Pharmacol Biochem Behav 1987; 27(2): 205-10.
[http://dx.doi.org/10.1016/0091-3057(87)90558-2] [PMID: 3628434]
[54]
Weiner I, Tarrasch R, Hasson O, et al. The effects of chronic administration of ceronapril on the partial reinforcement extinction effect and latent inhibition in rats. Behav Pharmacol 1994; 5(3): 306-14.
[http://dx.doi.org/10.1097/00008877-199406000-00008] [PMID: 11224280]
[55]
Willner PJ, Crowe R. Effect of chlordiazepoxide on the partial reinforcement extinction effect. Pharmacol Biochem Behav 1977; 7(5): 479-82.
[http://dx.doi.org/10.1016/0091-3057(77)90218-0] [PMID: 594093]
[56]
Wong PTP, Lee CT, Novier FH. The partial reinforcement effect (PRE) sustained through extinction and continuous reinforcement in two strains of inbred mice. Psychon Sci 1971; 22(3): 141-3.
[http://dx.doi.org/10.3758/BF03332537]
[57]
Yee BK, Feldon J, Rawlins JNP. Cytotoxic lesions of the retrohippocampal region attenuate latent inhibition but spare the partial reinforcement extinction effect. Exp Brain Res 1997; 115(2): 247-56.
[http://dx.doi.org/10.1007/PL00005694] [PMID: 9224853]
[58]
Diaz-Granados JL, Greene PL, Amsel A. Selective activity enhancement and persistence in weanling rats after hippocampal X-irradiation in infancy: Possible relevance for ADHD. Behav Neural Biol 1994; 61(3): 251-9.
[http://dx.doi.org/10.1016/S0163-1047(05)80008-1] [PMID: 8067980]
[59]
Boarder MR, Feldon J, Gray JA, Fillenz M. Effect of runway training on rat brain tyrosine hydroxylase: Differential effect of continuous and partial reinforcement schedules. Neurosci Lett 1979; 15(2-3): 211-5.
[http://dx.doi.org/10.1016/0304-3940(79)96115-9]
[60]
Birch D, Valle FP. Resistance to extinction in the runway following a shift from small to large reward. J Comp Physiol Psychol 1967; 63(1): 50-3.
[http://dx.doi.org/10.1037/h0024173] [PMID: 6029719]
[61]
Wong PTP. A behavioral field approach to instrumental learning in the rat: I. Partial reinforcement effects and sex differences. Anim Learn Behav 1977; 5(1): 5-13.
[http://dx.doi.org/10.3758/BF03209123]
[62]
Drewnowski A, Gray JA. Influence of? 9-tetrahydrocannabinol on partial reinforcement effects. Psychopharmacology 1975; 43(3): 233-7.
[http://dx.doi.org/10.1007/BF00429256] [PMID: 1187956]
[63]
Nelson PB, Wollen KA. Effects of ethanol and partial reinforcement upon runway acquisition. Psychon Sci 1965; 3(1-12): 135-6.
[http://dx.doi.org/10.3758/BF03343060]
[64]
Wolfe JW, Lubar JF, Ison JR. Effects of medial cortical lesions on appetitive instrumental conditioning. Physiol Behav 1967; 2(2): 239-44.
[http://dx.doi.org/10.1016/0031-9384(67)90040-6]
[65]
Lilliquist MW, Nair HP, Gonzalez-Lima F, Amsel A. Extinction after regular and irregular reward schedules in the infant rat: Influence of age and training duration. Dev Psychobiol 1999; 34(1): 57-70.
[http://dx.doi.org/10.1002/(SICI)1098-2302(199901)34:1<57::AID-DEV7>3.0.CO;2-R] [PMID: 9919433]
[66]
Nair HP, Gonzalez-Lima F. Extinction of behavior in infant rats: Development of functional coupling between septal, hippocampal, and ventral tegmental regions. J Neurosci 1999; 19(19): 8646-55.
[http://dx.doi.org/10.1523/JNEUROSCI.19-19-08646.1999] [PMID: 10493765]
[67]
Nair HP, Berndt JD, Barrett D, Gonzalez-Lima F. Metabolic mapping of brain regions associated with behavioral extinction in preweanling rats. Brain Res 2001; 903(1-2): 141-53.
[http://dx.doi.org/10.1016/S0006-8993(01)02469-6] [PMID: 11382397]
[68]
Leguizamon P, Dillon C, Castro D, Lon L, Guelar V, Taragano F. Pharmacological treatment of cognitive symptoms in Alzheimer’s disease. Curr Psychopharmacol 2014; 3(1): 59-66.
[http://dx.doi.org/10.2174/2211556003666140717184049]
[69]
Kolb B. Functions of the frontal cortex of the rat: A comparative review. Brain Res Brain Res Rev 1984; 8(1): 65-98.
[http://dx.doi.org/10.1016/0165-0173(84)90018-3] [PMID: 6440660]
[70]
Jarrard LE. Effects of hippocampal ablation and intertrial interval on acquisition and extinction of a runway response. J Comp Physiol Psychol 1964; 57: 442-4.
[http://dx.doi.org/10.1037/h0041639] [PMID: 14155387]
[71]
Micco DJ Jr, McEwen BS, Shein W. Modulation of behavioral inhibition in appetitive extinction following manipulation of adrenal steroids in rats: Implications for involvement of the hippocampus. J Comp Physiol Psychol 1979; 93(2): 323-9.
[http://dx.doi.org/10.1037/h0077560] [PMID: 457953]
[72]
Winocur G, Bindra D. Effects of additional cues on passive avoidance learning and extinction in rats with hippocampal lesions. Physiol Behav 1976; 17(6): 915-20.
[http://dx.doi.org/10.1016/0031-9384(76)90008-1] [PMID: 14677582]
[73]
Winocur G, Mills JA. Hippocampus and septum in response inhibition. J Comp Physiol Psychol 1969; 67(3): 352-7.
[http://dx.doi.org/10.1037/h0026764] [PMID: 5787385]
[74]
Davis RE. Transections involving the direct subiculum-anterior thalamic fibers: Effects on cue utilization in the straight alley. Behav Neural Biol 1981; 31(2): 198-213.
[http://dx.doi.org/10.1016/S0163-1047(81)91222-X] [PMID: 7259704]
[75]
Goodman J, Gabriele A, Packard MG. Differential effects of neural inactivation of the dorsolateral striatum on response and latent extinction. Behav Neurosci 2017; 131(2): 143-8.
[http://dx.doi.org/10.1037/bne0000190] [PMID: 28301189]
[76]
Thullier F, Lalonde R, Mahler P, Joyal CC, Lestienne F. Dorsal striatal lesions in rats. 2: Effects on spatial and non-spatial learning. Arch Physiol Biochem 1996; 104(3): 307-12.
[http://dx.doi.org/10.1076/apab.104.3.307.12895] [PMID: 8793022]
[77]
Gray JA, Araujo-Silva MT, Quintão L. Resistance to extinction after partial reinforcement training with blocking of the hippocampal theta rhythm by septal stimulation. Physiol Behav 1972; 8(3): 497-502.
[http://dx.doi.org/10.1016/0031-9384(72)90335-6] [PMID: 5037548]
[78]
Donaire R, Morón I, Blanco S, et al. Lateral habenula lesions disrupt appetitive extinction, but do not affect voluntary alcohol consumption. Neurosci Lett 2019; 703: 184-90.
[http://dx.doi.org/10.1016/j.neulet.2019.03.044] [PMID: 30928477]
[79]
Kemble E, Beckman G. Runway performance of rats following amygdaloid lesions. Physiol Behav 1970; 5(1): 45-7.
[http://dx.doi.org/10.1016/0031-9384(70)90011-9] [PMID: 5538402]
[80]
Means L, Harrell T, Mayo E, Alexander G. Effects of dorsomedial thalamic lesions on spontaneous alternation, maze, activity and runway performance in the rat. Physiol Behav 1974; 12(6): 973-9.
[http://dx.doi.org/10.1016/0031-9384(74)90144-9] [PMID: 4832459]
[81]
Thompson R, Harmon D, Yu J. Deficits in response inhibition and attention in rats rendered mentally retarded by early subcortical brain damage. Dev Psychobiol 1985; 18(6): 483-99.
[http://dx.doi.org/10.1002/dev.420180606] [PMID: 4092837]
[82]
Morris MD, Tremmel F, Gebhart GF. Forebrain noradrenaline depletion blocks the release by chlordiazepoxide of behavioral extinction in the rat. Neurosci Lett 1979; 12(2-3): 343-8.
[http://dx.doi.org/10.1016/0304-3940(79)96087-7] [PMID: 460732]
[83]
Anlezark GM, Crow TJ, Greenway AP. Impaired learning and decreased cortical norepinephrine after bilateral locus coeruleus lesions. Science 1973; 181(4100): 682-4.
[http://dx.doi.org/10.1126/science.181.4100.682] [PMID: 4724483]
[84]
Willner P, Montgomery T, Bird D. Behavioural changes during withdrawal from desmethylimipramine (DMI). Psychopharmacology 1981; 75(1): 60-4.
[http://dx.doi.org/10.1007/BF00433503] [PMID: 6795662]
[85]
Marsland AL, Salmon P, Terry P, Stanford SC. Effects of propranolol on, and noradrenergic correlates of, the response to nonreward. Pharmacol Biochem Behav 1990; 35(1): 41-6.
[http://dx.doi.org/10.1016/0091-3057(90)90201-R] [PMID: 2315368]
[86]
Mason ST, Iversen SD. Theories of the dorsal bundle extinction effect. Brain Res Brain Res Rev 1979; 1(1): 107-37.
[http://dx.doi.org/10.1016/0165-0173(79)90018-3] [PMID: 385111]
[87]
Taghzouti K, le Moal M, Simon H. Enhanced frustrative nonreward effect following 6-hydroxydopamine lesions of the lateral septum in the rat. Behav Neurosci 1985; 99(6): 1066-73.
[http://dx.doi.org/10.1037/0735-7044.99.6.1066] [PMID: 3939643]
[88]
Taghzouti K, Simon H, Louilot A, Herman JP, Le Moal M. Behavioral study after local injection of 6-hydroxydopamine into the nucleus accumbens in the rat. Brain Res 1985; 344(1): 9-20.
[http://dx.doi.org/10.1016/0006-8993(85)91184-9] [PMID: 3930001]
[89]
Horvitz JC, Ettenberg A. Haloperidol blocks the response-reinstating effects of food reward: A methodology for separating neuroleptic effects on reinforcement and motor processes. Pharmacol Biochem Behav 1988; 31(4): 861-5.
[http://dx.doi.org/10.1016/0091-3057(88)90396-6] [PMID: 3252277]
[90]
Ettenberg A, Horvitz JC. Pimozide prevents the response-reinstating effects of water reinforcement in rats. Pharmacol Biochem Behav 1990; 37(3): 465-9.
[http://dx.doi.org/10.1016/0091-3057(90)90014-9] [PMID: 2087488]
[91]
Ettenberg A. Haloperidol prevents the reinstatement of amphetamine-rewarded runway responding in rats. Pharmacol Biochem Behav 1990; 36(3): 635-8.
[http://dx.doi.org/10.1016/0091-3057(90)90268-M] [PMID: 2377664]
[92]
Chausmer AL, Ettenberg A. A role for D2, but not D1, dopamine receptors in the response-reinstating effects of food reinforcement. Pharmacol Biochem Behav 1997; 57(4): 681-5.
[http://dx.doi.org/10.1016/S0091-3057(96)00388-7] [PMID: 9258994]
[93]
Chausmer A, Ettenberg A. Intraaccumbens raclopride attenuates amphetamine-induced locomotion, but fails to prevent the response-reinstating properties of food reinforcement. Pharmacol Biochem Behav 1999; 62(2): 299-305.
[http://dx.doi.org/10.1016/S0091-3057(98)00165-8] [PMID: 9972697]
[94]
McDougall SA, Nonneman AJ, Crawford CA. Effects of SCH 23390 and sulpiride on the reinforced responding of the young rat. Behav Neurosci 1991; 105(5): 744-54.
[http://dx.doi.org/10.1037/0735-7044.105.5.744] [PMID: 1840013]
[95]
McDougall SA, Crawford CA, Nonneman AJ. Reinforced responding of the 11-day-old rat pup: Synergistic interaction of D1 and D2 dopamine receptors. Pharmacol Biochem Behav 1992; 42(1): 163-8.
[http://dx.doi.org/10.1016/0091-3057(92)90460-W] [PMID: 1388275]
[96]
Egan J, Earley CJ, Leonard BE. The effect of amitriptyline and mianserine (Org. GB94) on food motivated behaviour of rats trained in a runway: Possible correlation with biogenic amine concentration in the limbic system. Psychopharmacology 1979; 61(2): 143-7.
[http://dx.doi.org/10.1007/BF00426728] [PMID: 108731]
[97]
Asin KE, Wirtshafter D, Kent EW. Straight alley acquisition and extinction and open field activity following discrete electrolytic lesions of the mesencephalic raphe nuclei. Behav Neural Biol 1979; 25(2): 242-56.
[http://dx.doi.org/10.1016/S0163-1047(79)90597-1] [PMID: 464976]
[98]
Rosen AJ, Cohen ME. The effects of cinanserin, a potent serotonin antagonist, on the acquisition of a running response in the rat. Neuropharmacology 1973; 12(6): 501-8.
[http://dx.doi.org/10.1016/0028-3908(73)90001-4] [PMID: 4725521]
[99]
Iwahara S, Nagamura N, Iwasaki T. Effect of chlordiazepoxide upon experimental extinction in the straight runway as a function of partial reinforcement in the rat. Jpn Psychol Res 1967; 9(3): 128-34.
[http://dx.doi.org/10.4992/psycholres1954.9.128]
[100]
Shemer A, Tykocinski O, Feldon J. Long term effects of chronic chlordiazepoxide (CDP) administration. Psychopharmacology (Berl) 1984; 83(3): 277-80.
[http://dx.doi.org/10.1007/BF00464794] [PMID: 6433391]
[101]
Norwood K, McGovern SFJ, Kennedy PJ, Shaw D, Leslie JC. Effects of chlordiazepoxide on runway behaviours of C57Bl/6 mice under continuous or partial reinforcement. Behav Pharmacol 2011; 22(2): 167-72.
[http://dx.doi.org/10.1097/FBP.0b013e328343d776] [PMID: 21263313]
[102]
Barry H III, Wagner AR, Miller NE. Effects of alcohol and amobarbital on performance inhibited by experimental extinction. J Comp Physiol Psychol 1962; 55(4): 464-8.
[http://dx.doi.org/10.1037/h0040717] [PMID: 13865306]
[103]
Ziff DR, Capaldi EJ. Amytal and the small trial partial reinforcement effect: Stimulus properties of early trial nonrewards. J Exp Psychol 1971; 87(2): 263-9.
[http://dx.doi.org/10.1037/h0030570]
[104]
Dudderidge HJ, Gray JA. Joint effects of sodium amylobarbitone and amphetamine sulphate on resistance to extinction of a rewarded running response in the rat. Psychopharmacology 1974; 35(4): 365-70.
[http://dx.doi.org/10.1007/BF00429227] [PMID: 4831516]
[105]
Cohen LE, Cogan DC, Jones JR, Cogan CC. Development and learning in the offspring of rats fed an alcohol diet on a short- or long-term basis. Neurobehav Toxicol Teratol 1985; 7(2): 129-37.
[PMID: 4000375]
[106]
Gray JA. Sodium amobarbital, the hippocampal theta rhythm, and the partial reinforcement extinction effect. Psychol Rev 1970; 77(5): 465-80.
[http://dx.doi.org/10.1037/h0029804] [PMID: 5506814]
[107]
Gray JA, Feldon J, Rawlins JN, Owen S, McNaughton N. The role of the septo-hippocampal system and its noradrenergic afferents in behavioural responses to none-reward. Ciba Found Symp 1978; 58: 275-307.
[http://dx.doi.org/10.1002/9780470720394.ch12]
[108]
Lalonde R, Joyal CC. Effects of ketamine and L-glutamic acid diethyl ester on spatial and nonspatial learning tasks in rats. Pharmacol Biochem Behav 1993; 44(3): 539-45.
[http://dx.doi.org/10.1016/0091-3057(93)90164-O] [PMID: 8451257]
[109]
Gabriele A, Packard MG. D-Cycloserine enhances memory consolidation of hippocampus-dependent latent extinction. Learn Mem 2007; 14(7): 468-71.
[http://dx.doi.org/10.1101/lm.528007] [PMID: 17600116]
[110]
Hennessy J, Cohen M, Rosen A. Adrenocortical influences upon the extinction of an appetitive runway response. Physiol Behav 1973; 11(6): 767-70.
[http://dx.doi.org/10.1016/0031-9384(73)90269-2] [PMID: 4357861]
[111]
Gray JA. Effect of ACTH on extinction of rewarded behaiour is blocked by previous administration of ACTH. Nature 1971; 229(5279): 52-4.
[http://dx.doi.org/10.1038/229052a0] [PMID: 4321220]
[112]
Beatty WW, O’Briant DA. Sex differences in extinction of food-rewarded approach responses. Bull Psychon Soc 1973; 2(2): 97-8.
[http://dx.doi.org/10.3758/BF03327728]
[113]
Earley CJ, Leonard BE. The effects of castration and hormone replacement on runway behaviour and GABA concentrations in the septum. Ir J Med Sci 1979; 148(1): 227-31.
[http://dx.doi.org/10.1007/BF02938087] [PMID: 27517425]
[114]
Enriquez P, Calés J, Sánchez-Santed F, Guillamón A. Effects of early postnatal gonadal steroids on extinction of a continuously food-rewarded running response. Physiol Behav 1991; 49(1): 57-61.
[http://dx.doi.org/10.1016/0031-9384(91)90230-L] [PMID: 2017480]
[115]
Sánchez-Santed F, Calés J, Enriquez P, Guillamón A. Early postnatal estrogen organizes sex differences in the extinction of a CRF running response. Brain Res Bull 1993; 30(5-6): 649-53.
[http://dx.doi.org/10.1016/0361-9230(93)90096-T] [PMID: 8457912]
[116]
Noland EA, Taylor DH, Bull RJ. Monomethyl-and trimethyltin compounds induce learning deficiencies in young rats. Neurobehav Toxicol Teratol 1982; 4(5): 539-44.
[PMID: 7177305]
[117]
Bushway AA, Whistler RL, Myers RD. Effect of 5-thio-D-glucose on food and water intakes and on the acquisition and performance of maze tasks in the rat. Physiol Behav 1977; 19(2): 249-53.
[http://dx.doi.org/10.1016/0031-9384(77)90334-1] [PMID: 607236]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy