Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Transcription Factors in Brain Regeneration: A Potential Novel Therapeutic Target

Author(s): Basheer Abdullah Marzoog*

Volume 25, Issue 1, 2024

Published on: 14 December, 2023

Page: [46 - 61] Pages: 16

DOI: 10.2174/0113894501279977231210170231

Price: $65

Abstract

Transcription factors play a crucial role in providing identity to each cell population. To maintain cell identity, it is essential to balance the expression of activator and inhibitor transcription factors. Cell plasticity and reprogramming offer great potential for future therapeutic applications, as they can regenerate damaged tissue. Specific niche factors can modify gene expression and differentiate or transdifferentiate the target cell to the required fate. Ongoing research is being carried out on the possibilities of transcription factors in regenerating neurons, with neural stem cells (NSCs) being considered the preferred cells for generating new neurons due to their epigenomic and transcriptome memory. NEUROD1/ASCL1, BRN2, MYTL1, and other transcription factors can induce direct reprogramming of somatic cells, such as fibroblasts, into neurons. However, the molecular biology of transcription factors in reprogramming and differentiation still needs to be fully understood.

Graphical Abstract

[1]
De Gioia R, Biella F, Citterio G, et al. Neural stem cell transplantation for neurodegenerative diseases. Int J Mol Sci 2020; 21(9): 3103.
[http://dx.doi.org/10.3390/ijms21093103] [PMID: 32354178]
[2]
Haus DL, López-Velázquez L, Gold EM, et al. Transplantation of human neural stem cells restores cognition in an immunodeficient rodent model of traumatic brain injury. Exp Neurol 2016; 281: 1-16.
[http://dx.doi.org/10.1016/j.expneurol.2016.04.008] [PMID: 27079998]
[3]
Ebrahimi A, Keske E, Mehdipour A, Ebrahimi-Kalan A, Ghorbani M. Somatic cell reprogramming as a tool for neurodegenerative diseases. Biomed Pharmacother 2019; 112: 108663.
[http://dx.doi.org/10.1016/j.biopha.2019.108663] [PMID: 30970509]
[4]
Willis CM, Nicaise AM, Peruzzotti-Jametti L, Pluchino S. The neural stem cell secretome and its role in brain repair. Brain Res 2020; 1729: 146615.
[http://dx.doi.org/10.1016/j.brainres.2019.146615] [PMID: 31863730]
[5]
Wazan LE, Urrutia-Cabrera D, Wong RCB. Using transcription factors for direct reprogramming of neurons in vitro. World J Stem Cells 2019; 11(7): 431-44.
[http://dx.doi.org/10.4252/wjsc.v11.i7.431] [PMID: 31396370]
[6]
Pereira M, Birtele M, Rylander Ottosson D. Direct reprogramming into interneurons: Potential for brain repair. Cell Mol Life Sci 2019; 76(20): 3953-67.
[http://dx.doi.org/10.1007/s00018-019-03193-3] [PMID: 31250034]
[7]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[8]
Heemels MT. Neurodegenerative diseases. Nature 2016; 539(7628): 179.
[http://dx.doi.org/10.1038/539179a] [PMID: 27830810]
[9]
Vogel AD, Upadhya R, Shetty AK. Neural stem cell derived extracellular vesicles: Attributes and prospects for treating neurodegenerative disorders. EBioMedicine 2018; 38: 273-82.
[http://dx.doi.org/10.1016/j.ebiom.2018.11.026] [PMID: 30472088]
[10]
Namestnikova DD, Cherkashova EA, Sukhinich KK, et al. Combined cell therapy in the treatment of neurological disorders. Biomedicines 2020; 8(12): 613.
[http://dx.doi.org/10.3390/biomedicines8120613] [PMID: 33333803]
[11]
Aydin B, Mazzoni EO. Cell reprogramming: The many roads to success. Annu Rev Cell Dev Biol 2019; 35(1): 433-52.
[http://dx.doi.org/10.1146/annurev-cellbio-100818-125127] [PMID: 31340126]
[12]
Drouin-Ouellet J, Pircs K, Barker RA, Jakobsson J, Parmar M. Direct neuronal reprogramming for disease modeling studies using patient-derived neurons: What have we learned? Front Neurosci 2017; 11: 530.
[http://dx.doi.org/10.3389/fnins.2017.00530] [PMID: 29033781]
[13]
Martínez-Cerdeño V, Noctor SC. Neural progenitor cell terminology. Front Neuroanat 2018; 12: 104.
[http://dx.doi.org/10.3389/fnana.2018.00104] [PMID: 30574073]
[14]
Shetty AK, Hattiangady B. Grafted subventricular zone neural stem cells display robust engraftment and similar differentiation properties and form new neurogenic niches in the young and aged hippocampus. Stem Cells Transl Med 2016; 5(9): 1204-15.
[http://dx.doi.org/10.5966/sctm.2015-0270] [PMID: 27194744]
[15]
Lo B, Chang D, Kano S. Alternative Human Cell Models for Neuropsychiatric Research. 2016; pp. 407-22.
[http://dx.doi.org/10.1016/B978-0-12-800981-9.00024-9]
[16]
Erharter A, Rizzi S, Mertens J, Edenhofer F. Take the shortcut – direct conversion of somatic cells into induced neural stem cells and their biomedical applications. FEBS Lett 2019; 593(23): 3353-69.
[http://dx.doi.org/10.1002/1873-3468.13656] [PMID: 31663609]
[17]
Rolfe A, Sun D. Stem cell therapy in brain trauma: Implications for repair and regeneration of injured brain in experimental TBI models Brain Neurotrauma Mol Neuropsychol Rehabil Asp. CRC Press 2015; pp. 587-96.
[http://dx.doi.org/10.1201/b18126]
[18]
Wang J, Daniszewski M, Hao MM, et al. Organelle mapping in dendrites of human iPSC-derived neurons reveals dynamic functional dendritic Golgi structures. Cell Rep 2023; 42(7): 112709.
[http://dx.doi.org/10.1016/j.celrep.2023.112709] [PMID: 37393622]
[19]
Yu N, Qiu J, Li K, et al. Comparison of DNA stability and its related genes of neurons derived from induced pluripotent stem cells and primary retinal neurons. Cell Biol Int 2022; 46(10): 1625-36.
[http://dx.doi.org/10.1002/cbin.11837] [PMID: 35771585]
[20]
Xiao D, Liu X, Zhang M, et al. Direct reprogramming of fibroblasts into neural stem cells by single non-neural progenitor transcription factor Ptf1a. Nat Commun 2018; 9(1): 2865.
[http://dx.doi.org/10.1038/s41467-018-05209-1] [PMID: 30030434]
[21]
Nizzardo M, Simone C, Falcone M, et al. Direct reprogramming of adult somatic cells into other lineages: Past evidence and future perspectives. Cell Transplant 2013; 22(6): 921-44.
[http://dx.doi.org/10.3727/096368912X657477] [PMID: 23044010]
[22]
Thier M, Wörsdörfer P, Lakes YB, et al. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 2012; 10(4): 473-9.
[http://dx.doi.org/10.1016/j.stem.2012.03.003] [PMID: 22445518]
[23]
Lujan E, Chanda S, Ahlenius H, Südhof TC, Wernig M. Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc Natl Acad Sci USA 2012; 109(7): 2527-32.
[http://dx.doi.org/10.1073/pnas.1121003109] [PMID: 22308465]
[24]
Han YC, Lim Y, Duffieldl MD, et al. Direct reprogramming of mouse fibroblasts to neural stem cells by small molecules. Stem Cells Int 2016; 2016: 1-11.
[http://dx.doi.org/10.1155/2016/4304916] [PMID: 26788068]
[25]
Zou Q, Yan Q, Zhong J, et al. Direct conversion of human fibroblasts into neuronal restricted progenitors. J Biol Chem 2014; 289(8): 5250-60.
[http://dx.doi.org/10.1074/jbc.M113.516112] [PMID: 24385434]
[26]
Shahbazi E, Mirakhori F, Ezzatizadeh V, Baharvand H. Reprogramming of somatic cells to induced neural stem cells. Methods 2018; 133: 21-8.
[http://dx.doi.org/10.1016/j.ymeth.2017.09.007] [PMID: 28939501]
[27]
Shahbazi E, Moradi S, Nemati S, et al. Conversion of human fibroblasts to stably self-renewing neural stem cells with a single zinc-finger transcription factor. Stem Cell Reports 2016; 6(4): 539-51.
[http://dx.doi.org/10.1016/j.stemcr.2016.02.013] [PMID: 27052315]
[28]
Labusch M, Mancini L, Morizet D, Bally-Cuif L. Conserved and divergent features of adult neurogenesis in zebrafish. Front Cell Dev Biol 2020; 8: 525.
[http://dx.doi.org/10.3389/fcell.2020.00525] [PMID: 32695781]
[29]
Ottoboni L, von Wunster B, Martino G. Therapeutic Plasticity of Neural Stem Cells. Front Neurol 2020; 11: 148.
[http://dx.doi.org/10.3389/fneur.2020.00148] [PMID: 32265815]
[30]
Ebrahimi B. Engineering cell fate: Spotlight on cell-activation and signaling-directed lineage conversion. Tissue Cell 2016; 48(5): 475-87.
[http://dx.doi.org/10.1016/j.tice.2016.07.005] [PMID: 27514850]
[31]
Riemens RJM, van den Hove DLA, Esteller M, Delgado-Morales R. Directing neuronal cell fate in vitro: Achievements and challenges. Prog Neurobiol 2018; 168: 42-68.
[http://dx.doi.org/10.1016/j.pneurobio.2018.04.003] [PMID: 29653249]
[32]
Yoo J, Noh M, Kim H, Jeon NL, Kim BS, Kim J. Nanogrooved substrate promotes direct lineage reprogramming of fibroblasts to functional induced dopaminergic neurons. Biomaterials 2015; 45: 36-45.
[http://dx.doi.org/10.1016/j.biomaterials.2014.12.049] [PMID: 25662493]
[33]
Jang Y, Jung JH. Direct conversion from skin fibroblasts to functional dopaminergic neurons for biomedical application. Biomed Dermatol 2017; 1(1): 4.
[http://dx.doi.org/10.1186/s41702-017-0004-5]
[34]
Jiang H, Xu Z, Zhong P, et al. Cell cycle and p53 gate the direct conversion of human fibroblasts to dopaminergic neurons. Nat Commun 2015; 6(1): 10100.
[http://dx.doi.org/10.1038/ncomms10100] [PMID: 26639555]
[35]
Wang Y, Wang J, Wang H, et al. Tet1 overexpression and decreased dna hydroxymethylation protect neurons against cell death after injury by increasing expression of genes involved in cell survival. World Neurosurg 2019; 126: e713-22.
[http://dx.doi.org/10.1016/j.wneu.2019.02.133] [PMID: 30849555]
[36]
Kaas GA, Zhong C, Eason DE, et al. TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron 2013; 79(6): 1086-93.
[http://dx.doi.org/10.1016/j.neuron.2013.08.032] [PMID: 24050399]
[37]
Pfisterer U, Kirkeby A, Torper O, et al. Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci 2011; 108(25): 10343-8.
[http://dx.doi.org/10.1073/pnas.1105135108] [PMID: 21646515]
[38]
Yang H, Hao D, Liu C, et al. Generation of functional dopaminergic neurons from human spermatogonial stem cells to rescue parkinsonian phenotypes. Stem Cell Res Ther 2019; 10(1): 195.
[http://dx.doi.org/10.1186/s13287-019-1294-x] [PMID: 31248447]
[39]
Wu Y, Zhang X, Wang J, Jin G, Zhang X. Research progress of the transcription factor Brn4 (Review). Mol Med Rep 2020; 23(3): 179.
[http://dx.doi.org/10.3892/mmr.2020.11818] [PMID: 33398372]
[40]
Lee H, Lee HY, Lee BE, et al. Sequentially induced motor neurons from human fibroblasts facilitate locomotor recovery in a rodent spinal cord injury model. eLife 2020; 9: e52069.
[http://dx.doi.org/10.7554/eLife.52069] [PMID: 32571478]
[41]
Flitsch LJ, Laupman KE, Brüstle O. Transcription factor-based fate specification and forward programming for neural regeneration. Front Cell Neurosci 2020; 14: 121.
[http://dx.doi.org/10.3389/fncel.2020.00121] [PMID: 32508594]
[42]
Gopalakrishnan S, Hor P, Ichida JK. New approaches for direct conversion of patient fibroblasts into neural cells. Brain Res 2017; 1656: 2-13.
[http://dx.doi.org/10.1016/j.brainres.2015.10.012] [PMID: 26475975]
[43]
Zhang L, Zhang X, Zhang Y, et al. Brn4 promotes the differentiation of radial glial cells into neurons by inhibiting CtBP2. Life Sci 2020; 254: 116866.
[http://dx.doi.org/10.1016/j.lfs.2019.116866] [PMID: 31518606]
[44]
Herdy J, Schafer S, Kim Y, et al. Chemical modulation of transcriptionally enriched signaling pathways to optimize the conversion of fibroblasts into neurons. eLife 2019; 8: e41356.
[http://dx.doi.org/10.7554/eLife.41356] [PMID: 31099332]
[45]
Hao L, Xu Z, Sun H, et al. Direct induction of functional neuronal cells from fibroblast-like cells derived from adult human retina. Stem Cell Res 2017; 23: 61-72.
[http://dx.doi.org/10.1016/j.scr.2017.06.012] [PMID: 28697461]
[46]
Gascón S, Masserdotti G, Russo GL, Götz M. Direct neuronal reprogramming: Achievements, hurdles, and new roads to success. Cell Stem Cell 2017; 21(1): 18-34.
[http://dx.doi.org/10.1016/j.stem.2017.06.011] [PMID: 28686866]
[47]
Tsunemoto RK, Eade KT, Blanchard JW, Baldwin KK. Forward engineering neuronal diversity using direct reprogramming. EMBO J 2015; 34(11): 1445-55.
[http://dx.doi.org/10.15252/embj.201591402] [PMID: 25908841]
[48]
Wong RC-B, Nguyen T. Neuroregeneration using in vivo cellular reprogramming. Neural Regen Res 2017; 12(7): 1073-4.
[http://dx.doi.org/10.4103/1673-5374.211182] [PMID: 28852386]
[49]
Lu P, Hou S. Direct reprogramming of somatic cells into neural stem cells or neurons for neurological disorders. Neural Regen Res 2016; 11(1): 28-31.
[http://dx.doi.org/10.4103/1673-5374.169602] [PMID: 26981072]
[50]
Zhu X, Zhou W, Jin H, Li T. Brn2 alone is sufficient to convert astrocytes into neural progenitors and neurons. Stem Cells Dev 2018; 27(11): 736-44.
[http://dx.doi.org/10.1089/scd.2017.0250] [PMID: 29635978]
[51]
Robinson M, Fraser I, McKee E, Scheck K, Chang L, Willerth SM. Transdifferentiating astrocytes into neurons using ascl1 functionalized with a novel intracellular protein delivery technology. Front Bioeng Biotechnol 2018; 6: 173.
[http://dx.doi.org/10.3389/fbioe.2018.00173] [PMID: 30525033]
[52]
Ding F, He Q-R, Cong M, et al. Peripheral nerve fibroblasts secrete neurotrophic factors to promote axon growth of motoneurons. Neural Regen Res 2022; 17(8): 1833-40.
[http://dx.doi.org/10.4103/1673-5374.332159] [PMID: 35017446]
[53]
Zhou Z. Analysis of the progress of in vivo trans differentiation of glial cells into neurons. Highlights in Science, Engineering and Technology 2023; 40: 277-83.
[http://dx.doi.org/10.54097/hset.v40i.6671]
[54]
Tsunemoto R, Lee S, Szűcs A, et al. Diverse reprogramming codes for neuronal identity. Nature 2018; 557(7705): 375-80.
[http://dx.doi.org/10.1038/s41586-018-0103-5] [PMID: 29743677]
[55]
Li X, Zuo X, Jing J, et al. Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell 2015; 17(2): 195-203.
[http://dx.doi.org/10.1016/j.stem.2015.06.003] [PMID: 26253201]
[56]
Lau S, Rylander Ottosson D, Jakobsson J, Parmar M. Direct neural conversion from human fibroblasts using self-regulating and nonintegrating viral vectors. Cell Rep 2014; 9(5): 1673-80.
[http://dx.doi.org/10.1016/j.celrep.2014.11.017] [PMID: 25482564]
[57]
Kameneva P, Adameyko I. Recent advances in our understanding of central and peripheral nervous system progenitors. Curr Opin Cell Biol 2019; 61: 24-30.
[http://dx.doi.org/10.1016/j.ceb.2019.07.003] [PMID: 31369951]
[58]
David L, Polo JM. Phases of reprogramming. Stem Cell Res (Amst) 2014; 12(3): 754-61.
[http://dx.doi.org/10.1016/j.scr.2014.03.007] [PMID: 24735951]
[59]
Chen J. Perspectives on somatic reprogramming: Spotlighting epigenetic regulation and cellular heterogeneity. Curr Opin Genet Dev 2020; 64: 21-5.
[http://dx.doi.org/10.1016/j.gde.2020.05.016] [PMID: 32599300]
[60]
Schiebinger G, Shu J, Tabaka M, et al. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell 2019; 176(4): 928-943.e22.
[http://dx.doi.org/10.1016/j.cell.2019.01.006] [PMID: 30712874]
[61]
Peng J, Zhang WJ, Zhang Q, Su YH, Tang LP. The dynamics of chromatin states mediated by epigenetic modifications during somatic cell reprogramming. Front Cell Dev Biol 2023; 11: 1097780.
[http://dx.doi.org/10.3389/fcell.2023.1097780] [PMID: 36727112]
[62]
Li D, Shu X, Zhu P, Pei D. Chromatin accessibility dynamics during cell fate reprogramming. EMBO Rep 2021; 22(2): e51644.
[http://dx.doi.org/10.15252/embr.202051644] [PMID: 33480184]
[63]
Apostolou E, Hochedlinger K. Chromatin dynamics during cellular reprogramming. Nature 2013; 502(7472): 462-71.
[http://dx.doi.org/10.1038/nature12749] [PMID: 24153299]
[64]
Missinato MA, Murphy S, Lynott M, et al. Conserved transcription factors promote cell fate stability and restrict reprogramming potential in differentiated cells. Nat Commun 2023; 14(1): 1709.
[http://dx.doi.org/10.1038/s41467-023-37256-8] [PMID: 36973293]
[65]
Islam Z, Ali AM, Naik A, Eldaw M, Decock J, Kolatkar PR. Transcription factors: The fulcrum between cell development and carcinogenesis. Front Oncol 2021; 11: 681377.
[http://dx.doi.org/10.3389/fonc.2021.681377] [PMID: 34195082]
[66]
Kumar R, Sharma AK. Transcription factor stoichiometry in cell fate determination. J Genet 2021; 100(2): 27.
[http://dx.doi.org/10.1007/s12041-021-01278-2] [PMID: 34187974]
[67]
Gurdon JB. Cell Fate Determination by Transcription Factors. 2016; pp. 445-54.
[http://dx.doi.org/10.1016/bs.ctdb.2015.10.005]
[68]
Aloia L. Epigenetic regulation of cell-fate changes that determine adult liver regeneration after injury. Front Cell Dev Biol 2021; 9: 643055.
[http://dx.doi.org/10.3389/fcell.2021.643055] [PMID: 33732709]
[69]
Massenet J, Gardner E, Chazaud B, Dilworth FJ. Epigenetic regulation of satellite cell fate during skeletal muscle regeneration. Skelet Muscle 2021; 11(1): 4.
[http://dx.doi.org/10.1186/s13395-020-00259-w] [PMID: 33431060]
[70]
Chen C, Gao Y, Liu W, Gao S. Epigenetic regulation of cell fate transition: Learning from early embryo development and somatic cell reprogramming. Biol Reprod 2022; 107(1): 183-95.
[http://dx.doi.org/10.1093/biolre/ioac087] [PMID: 35526125]
[71]
Stadhouders R, Vidal E, Serra F, et al. Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming. Nat Genet 2018; 50(2): 238-49.
[http://dx.doi.org/10.1038/s41588-017-0030-7] [PMID: 29335546]
[72]
Bruno S, Williams RJ, Del Vecchio D. Epigenetic cell memory: The gene’s inner chromatin modification circuit. PLOS Comput Biol 2022; 18(4): e1009961.
[http://dx.doi.org/10.1371/journal.pcbi.1009961] [PMID: 35385468]
[73]
Aydin B, Kakumanu A, Rossillo M, et al. Proneural factors Ascl1 and Neurog2 contribute to neuronal subtype identities by establishing distinct chromatin landscapes. Nat Neurosci 2019; 22(6): 897-908.
[http://dx.doi.org/10.1038/s41593-019-0399-y] [PMID: 31086315]
[74]
Chouchane M, Melo de Farias AR, Moura DMS, et al. Lineage reprogramming of astroglial cells from different origins into distinct neuronal subtypes. Stem Cell Reports 2017; 9(1): 162-76.
[http://dx.doi.org/10.1016/j.stemcr.2017.05.009] [PMID: 28602612]
[75]
Giacomoni J, Bruzelius A, Stamouli CA, Rylander Ottosson D. Direct conversion of human stem cell-derived glial progenitor cells into gabaergic interneurons. Cells 2020; 9(11): 2451.
[http://dx.doi.org/10.3390/cells9112451] [PMID: 33182669]
[76]
Matsuda T, Irie T, Katsurabayashi S, et al. Pioneer factor neurod1 rearranges transcriptional and epigenetic profiles to execute microglia-neuron conversion. Neuron 2019; 101(3): 472-485.e7.
[http://dx.doi.org/10.1016/j.neuron.2018.12.010] [PMID: 30638745]
[77]
Trudler D, Lipton SA. Novel direct conversion of microglia to neurons. Trends Mol Med 2019; 25(2): 72-4.
[http://dx.doi.org/10.1016/j.molmed.2018.12.005] [PMID: 30611669]
[78]
Pataskar A, Jung J, Smialowski P, et al. NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program. EMBO J 2016; 35(1): 24-45.
[http://dx.doi.org/10.15252/embj.201591206] [PMID: 26516211]
[79]
Vadodaria KC, Mertens J, Paquola A, et al. Generation of functional human serotonergic neurons from fibroblasts. Mol Psychiatry 2016; 21(1): 49-61.
[http://dx.doi.org/10.1038/mp.2015.161] [PMID: 26503761]
[80]
Xu Z, Jiang H, Zhong P, Yan Z, Chen S, Feng J. Direct conversion of human fibroblasts to induced serotonergic neurons. Mol Psychiatry 2016; 21(1): 62-70.
[http://dx.doi.org/10.1038/mp.2015.101] [PMID: 26216300]
[81]
Li S, Shi Y, Yao X, et al. Conversion of astrocytes and fibroblasts into functional noradrenergic neurons. Cell Rep 2019; 28(3): 682-697.e7.
[http://dx.doi.org/10.1016/j.celrep.2019.06.042] [PMID: 31315047]
[82]
Jin K, Jiang H, Xiao D, Zou M, Zhu J, Xiang M. Tfap2a and 2b act downstream of Ptf1a to promote amacrine cell differentiation during retinogenesis. Mol Brain 2015; 8(1): 28.
[http://dx.doi.org/10.1186/s13041-015-0118-x] [PMID: 25966682]
[83]
Iskusnykh IY, Steshina EY, Chizhikov VV. Loss of Ptf1a leads to a widespread cell-fate misspecification in the brainstem, affecting the development of somatosensory and viscerosensory nuclei. J Neurosci 2016; 36(9): 2691-710.
[http://dx.doi.org/10.1523/JNEUROSCI.2526-15.2016] [PMID: 26937009]
[84]
Marzoog B. Lipid behavior in metabolic syndrome pathophysiology. Curr Diabetes Rev 2022; 18(6): e150921196497.
[http://dx.doi.org/10.2174/1573399817666210915101321] [PMID: 34525924]
[85]
Yang H, Liu C, Fan H, et al. Sonic hedgehog effectively improves oct4-mediated reprogramming of astrocytes into neural stem cells. Mol Ther 2019; 27(8): 1467-82.
[http://dx.doi.org/10.1016/j.ymthe.2019.05.006] [PMID: 31153826]
[86]
Marzoog BA, Vlasova TI. Membrane lipids under norm and pathology. European J Cli Exp Med 2021; 19(1): 59-75.
[http://dx.doi.org/10.15584/ejcem.2021.1.9]
[87]
Velychko S, Kang K, Kim SM, et al. Fusion of reprogramming factors alters the trajectory of somatic lineage conversion. Cell Rep 2019; 27(1): 30-39.e4.
[http://dx.doi.org/10.1016/j.celrep.2019.03.023] [PMID: 30943410]
[88]
Maucksch C, Jones KS, Connor B. Concise review: The involvement of SOX2 in direct reprogramming of induced neural stem/precursor cells. Stem Cells Transl Med 2013; 2(8): 579-83.
[http://dx.doi.org/10.5966/sctm.2012-0179] [PMID: 23817132]
[89]
Julian LM, McDonald ACH, Stanford WL. Direct reprogramming with SOX factors: masters of cell fate. Curr Opin Genet Dev 2017; 46: 24-36.
[http://dx.doi.org/10.1016/j.gde.2017.06.005] [PMID: 28662445]
[90]
Mall M, Kareta MS, Chanda S, et al. Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates. Nature 2017; 544(7649): 245-9.
[http://dx.doi.org/10.1038/nature21722] [PMID: 28379941]
[91]
Yaqubi M, Mohammadnia A, Fallahi H. Predicting involvement of polycomb repressive complex 2 in direct conversion of mouse fibroblasts into induced neural stem cells. Stem Cell Res Ther 2015; 6(1): 42.
[http://dx.doi.org/10.1186/s13287-015-0045-x] [PMID: 25890371]
[92]
Khazaie N, Massumi M, Wee P, Salimi M, Mohammadnia A, Yaqubi M. Involvement of polycomb repressive complex 2 in maturation of induced pluripotent stem cells during reprogramming of mouse and human fibroblasts. PLoS One 2016; 11(3): e0150518.
[http://dx.doi.org/10.1371/journal.pone.0150518] [PMID: 26938987]
[93]
Garcia-Manteiga JM, D’Alessandro R, Meldolesi J. News about the role of the transcription factor rest in neurons: From physiology to pathology. Int J Mol Sci 2019; 21(1): 235.
[http://dx.doi.org/10.3390/ijms21010235] [PMID: 31905747]
[94]
Lee SW, Oh YM, Lu YL, Kim WK, Yoo AS. MicroRNAs overcome cell fate barrier by reducing ezh2-controlled rest stability during neuronal conversion of human adult fibroblasts. Dev Cell 2018; 46(1): 73-84.e7.
[http://dx.doi.org/10.1016/j.devcel.2018.06.007] [PMID: 29974865]
[95]
Kim KM, Thaqi M, Peterson DA, Marr RA. Induced neurons for disease modeling and repair: a focus on non-fibroblastic cell sources in direct reprogramming. Front Bioeng Biotechnol 2021; 9: 658498.
[http://dx.doi.org/10.3389/fbioe.2021.658498] [PMID: 33777923]
[96]
Liu D, Pavathuparambil Abdul Manaph N, Al-Hawwas M, Zhou XF, Liao H. Small molecules for neural stem cell induction. Stem Cells Dev 2018; 27(5): 297-312.
[http://dx.doi.org/10.1089/scd.2017.0282] [PMID: 29343174]
[97]
Lee C, Robinson M, Willerth SM. Direct reprogramming of glioblastoma cells into neurons using small molecules. ACS Chem Neurosci 2018; 9(12): 3175-85.
[http://dx.doi.org/10.1021/acschemneuro.8b00365] [PMID: 30091580]
[98]
Li X, Xu J, Deng H. Small molecule-induced cellular fate reprogramming: promising road leading to Rome. Curr Opin Genet Dev 2018; 52: 29-35.
[http://dx.doi.org/10.1016/j.gde.2018.05.004] [PMID: 29857280]
[99]
Smith DK, Yang J, Liu ML, Zhang CL. Small molecules modulate chromatin accessibility to promote neurog2-mediated fibroblast-to-neuron reprogramming. Stem Cell Reports 2016; 7(5): 955-69.
[http://dx.doi.org/10.1016/j.stemcr.2016.09.013] [PMID: 28157484]
[100]
Wan XY, Xu LY, Li B, et al. Chemical conversion of human lung fibroblasts into neuronal cells. Int J Mol Med 2018; 41(3): 1463-8.
[http://dx.doi.org/10.3892/ijmm.2018.3375] [PMID: 29328434]
[101]
Hu W, Qiu B, Guan W, et al. Direct conversion of normal and alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell 2015; 17(2): 204-12.
[http://dx.doi.org/10.1016/j.stem.2015.07.006] [PMID: 26253202]
[102]
Hosseini Farahabadi SS, Ghaedi K, Shoaraye-nejati A, Nasr-Esfahani MH. Full small molecule conversion of human fibroblasts to neuroectodermal cells via a cocktail of Dorsomorphin and Trichostatin A. Regen Ther 2020; 15: 44-52.
[http://dx.doi.org/10.1016/j.reth.2020.05.003] [PMID: 33426201]
[103]
Yang Y, Chen R, Wu X, et al. Rapid and efficient conversion of human fibroblasts into functional neurons by small molecules. Stem Cell Reports 2019; 13(5): 862-76.
[http://dx.doi.org/10.1016/j.stemcr.2019.09.007] [PMID: 31631018]
[104]
Babos K, Ichida JK. Small molecules take a big step by converting fibroblasts into neurons. Cell Stem Cell 2015; 17(2): 127-9.
[http://dx.doi.org/10.1016/j.stem.2015.07.018] [PMID: 26253195]
[105]
Duan Q, Li S, Wen X, et al. Valproic acid enhances reprogramming efficiency and neuronal differentiation on small molecules staged-induction neural stem cells: suggested role of mtor signaling. Front Neurosci 2019; 13: 867.
[http://dx.doi.org/10.3389/fnins.2019.00867] [PMID: 31551670]
[106]
Neely MD, Litt MJ, Tidball AM, et al. DMH1, a highly selective small molecule BMP inhibitor promotes neurogenesis of hiPSCs: comparison of PAX6 and SOX1 expression during neural induction. ACS Chem Neurosci 2012; 3(6): 482-91.
[http://dx.doi.org/10.1021/cn300029t] [PMID: 22860217]
[107]
Sotthibundhu A, Nopparat C, Natphopsuk S, Phuthong S, Noisa P, Govitrapong P. Combination of melatonin and small molecules improved reprogramming neural cell fates via autophagy activation. Neurochem Res 2022; 47(9): 2580-90.
[http://dx.doi.org/10.1007/s11064-021-03382-2] [PMID: 34165669]
[108]
Zhou J, Sun J. A revolution in reprogramming: Small molecules. Curr Mol Med 2019; 19(2): 77-90.
[http://dx.doi.org/10.2174/1566524019666190325113945] [PMID: 30914022]
[109]
Zhang Y, Li W, Laurent T, Ding S. Small molecules, big roles – the chemical manipulation of stem cell fate and somatic cell reprogramming. J Cell Sci 2012; 125(23): 5609-20.
[http://dx.doi.org/10.1242/jcs.096032] [PMID: 23420199]
[110]
Alexanian AR, Liu Q, Zhang Z. Enhancing the efficiency of direct reprogramming of human mesenchymal stem cells into mature neuronal-like cells with the combination of small molecule modulators of chromatin modifying enzymes, SMAD signaling and cyclic adenosine monophosphate levels. Int J Biochem Cell Biol 2013; 45(8): 1633-8.
[http://dx.doi.org/10.1016/j.biocel.2013.04.022] [PMID: 23665234]
[111]
Firestone AJ, Chen JK. Controlling destiny through chemistry: Small-molecule regulators of cell fate. ACS Chem Biol 2010; 5(1): 15-34.
[http://dx.doi.org/10.1021/cb900249y] [PMID: 20000447]
[112]
Qin H, Zhao A, Fu X. Small molecules for reprogramming and transdifferentiation. Cell Mol Life Sci 2017; 74(19): 3553-75.
[http://dx.doi.org/10.1007/s00018-017-2586-x] [PMID: 28698932]
[113]
Qin H, Zhao AD, Sun ML, Ma K, Fu XB. Direct conversion of human fibroblasts into dopaminergic neuron-like cells using small molecules and protein factors. Mil Med Res 2020; 7(1): 52.
[http://dx.doi.org/10.1186/s40779-020-00284-2] [PMID: 33129359]
[114]
Jang SE, Qiu L, Chan LL, Tan EK, Zeng L. Current status of stem cell-derived therapies for parkinson’s disease: from cell assessment and imaging modalities to clinical trials. Front Neurosci 2020; 14: 558532.
[http://dx.doi.org/10.3389/fnins.2020.558532] [PMID: 33177975]
[115]
Edwards N, McCaughey-Chapman A, Combrinck C, Geiger J, Connor B. Small molecules enhance reprogramming of adult human dermal fibroblasts to dorsal forebrain precursor cells. Stem Cells Dev 2022; 31(3-4): 78-89.
[http://dx.doi.org/10.1089/scd.2021.0130] [PMID: 34963331]
[116]
Liu D, Rychkov G, Hurtado P, et al. Conversion of human fibroblasts into induced neural stem cells by small molecules. Int J Mol Sci 2022; 23(3): 1740.
[http://dx.doi.org/10.3390/ijms23031740] [PMID: 35163660]
[117]
Wetzel C, Grobecker S, Kücükoktay S, et al. Mitochondrial and cellular function in fibroblasts and reprogrammed neural cells: insights into major depression as a mitochondria-associated disease 2023.
[http://dx.doi.org/10.21203/rs.3.rs-3125187/v1]
[118]
Yang J, Cao H, Guo S, et al. Small molecular compounds efficiently convert human fibroblasts directly into neurons. Mol Med Rep 2020; 22(6): 4763-71.
[http://dx.doi.org/10.3892/mmr.2020.11559] [PMID: 33174059]
[119]
Chen J, Huang L, Yang Y, et al. Somatic cell reprogramming for nervous system diseases: Techniques, mechanisms, potential applications, and challenges. Brain Sci 2023; 13(3): 524.
[http://dx.doi.org/10.3390/brainsci13030524] [PMID: 36979334]
[120]
Samoilova EM, Revkova VA, Brovkina OI, et al. Chemical reprogramming of somatic cells in neural direction: Myth or reality? Bull Exp Biol Med 2019; 167(4): 546-55.
[http://dx.doi.org/10.1007/s10517-019-04570-5] [PMID: 31502132]
[121]
Aversano S, Palladino R, Caiazzo M. Direct cell conversion of somatic cells into dopamine neurons: achievements and perspectives. Cell Reprogram 2022; 24(5): 259-70.
[http://dx.doi.org/10.1089/cell.2022.0065] [PMID: 36137065]
[122]
Wang X, Wu J, Wang W, et al. Reprogramming of rat fibroblasts into induced neurons by small-molecule compounds in vitro and in vivo. ACS Chem Neurosci 2022; 13(14): 2099-109.
[http://dx.doi.org/10.1021/acschemneuro.2c00078] [PMID: 35723446]
[123]
Xie X, Fu Y, Liu J. Chemical reprogramming and transdifferentiation. Curr Opin Genet Dev 2017; 46: 104-13.
[http://dx.doi.org/10.1016/j.gde.2017.07.003] [PMID: 28755566]
[124]
Qin H, Zhao A, Ma K, Fu X. Chemical conversion of human and mouse fibroblasts into motor neurons. Sci China Life Sci 2018; 61(10): 1151-67.
[http://dx.doi.org/10.1007/s11427-018-9359-8] [PMID: 30159682]
[125]
Bar-Nur O, Russ HA, Efrat S, Benvenisty N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 2011; 9(1): 17-23.
[http://dx.doi.org/10.1016/j.stem.2011.06.007] [PMID: 21726830]
[126]
Kim K, Doi A, Wen B, et al. Epigenetic memory in induced pluripotent stem cells. Nature 2010; 467(7313): 285-90.
[http://dx.doi.org/10.1038/nature09342] [PMID: 20644535]
[127]
Basu A, Tiwari VK. Epigenetic reprogramming of cell identity: Lessons from development for regenerative medicine. Clin Epigenetics 2021; 13(1): 144.
[http://dx.doi.org/10.1186/s13148-021-01131-4] [PMID: 34301318]
[128]
Mertens J, Paquola ACM, Ku M, et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 2015; 17(6): 705-18.
[http://dx.doi.org/10.1016/j.stem.2015.09.001] [PMID: 26456686]
[129]
Nashun B, Hill PWS, Hajkova P. Reprogramming of cell fate: Epigenetic memory and the erasure of memories past. EMBO J 2015; 34(10): 1296-308.
[http://dx.doi.org/10.15252/embj.201490649] [PMID: 25820261]
[130]
Aversano S, Caiazza C, Caiazzo M. Induced pluripotent stem cell-derived and directly reprogrammed neurons to study neurodegenerative diseases: The impact of aging signatures. Front Aging Neurosci 2022; 14: 1069482.
[http://dx.doi.org/10.3389/fnagi.2022.1069482] [PMID: 36620769]
[131]
Noguchi H, Miyagi-Shiohira C, Nakashima Y. Induced tissue-specific stem cells and epigenetic memory in induced pluripotent stem cells. Int J Mol Sci 2018; 19(4): 930.
[http://dx.doi.org/10.3390/ijms19040930] [PMID: 29561778]
[132]
Simpson DJ, Olova NN, Chandra T. Cellular reprogramming and epigenetic rejuvenation. Clin Epigenetics 2021; 13(1): 170.
[http://dx.doi.org/10.1186/s13148-021-01158-7] [PMID: 34488874]
[133]
Marchetto MCN, Yeo GW, Kainohana O, Marsala M, Gage FH, Muotri AR. Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS One 2009; 4(9): e7076.
[http://dx.doi.org/10.1371/journal.pone.0007076] [PMID: 19763270]
[134]
Ruiz S, Diep D, Gore A, et al. Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Proc Natl Acad Sci 2012; 109(40): 16196-201.
[http://dx.doi.org/10.1073/pnas.1202352109] [PMID: 22991473]
[135]
Berry BJ, Smith AST, Young JE, Mack DL. Advances and current challenges associated with the use of human induced pluripotent stem cells in modeling neurodegenerative disease. Cells Tissues Organs 2018; 205(5-6): 331-49.
[http://dx.doi.org/10.1159/000493018] [PMID: 30300891]
[136]
Khelifi G, Chow T, Whiteley J, et al. Determining epigenetic memory in kidney proximal tubule cell derived induced pluripotent stem cells using a quadruple transgenic reprogrammable mouse. Sci Rep 2022; 12(1): 20340.
[http://dx.doi.org/10.1038/s41598-022-24581-z] [PMID: 36434072]
[137]
Penney J, Ralvenius WT, Tsai LH. Modeling Alzheimer’s disease with iPSC-derived brain cells. Mol Psychiatry 2020; 25(1): 148-67.
[http://dx.doi.org/10.1038/s41380-019-0468-3] [PMID: 31391546]
[138]
Bédécarrats A, Chen S, Pearce K, Cai D, Glanzman DL. RNA from trained aplysia can induce an epigenetic engram for long-term sensitization in untrained aplysia. Eneuro 2018; 5
[http://dx.doi.org/10.1523/ENEURO.0038-18.2018]
[139]
de Boni L, Gasparoni G, Haubenreich C, et al. DNA methylation alterations in iPSC- and hESC-derived neurons: potential implications for neurological disease modeling. Clin Epigenetics 2018; 10(1): 13.
[http://dx.doi.org/10.1186/s13148-018-0440-0] [PMID: 29422978]
[140]
Kim M, Costello J. DNA methylation: An epigenetic mark of cellular memory. Exp Mol Med 2017; 49(4): e322-2.
[http://dx.doi.org/10.1038/emm.2017.10] [PMID: 28450738]
[141]
Thiagalingam S. Epigenetic memory in development and disease: Unraveling the mechanism. Biochim Biophys Acta Rev Cancer 2020; 1873(2): 188349.
[http://dx.doi.org/10.1016/j.bbcan.2020.188349] [PMID: 31982403]
[142]
Delgado-Morales R, Agís-Balboa RC, Esteller M, Berdasco M. Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders. Clin Epigenetics 2017; 9(1): 67.
[http://dx.doi.org/10.1186/s13148-017-0365-z] [PMID: 28670349]
[143]
Raevskiy M, Kondrashina A, Medvedeva Y. Improving prediction of core transcription factors for cell reprogramming and transdifferentiation. F1000 Res 2022; 11: 38.
[http://dx.doi.org/10.12688/f1000research.75321.1]
[144]
Wu J, Tang Y. Transcription factor-mediated differentiation of motor neurons from human pluripotent stem cells. 2023; pp. 245-58.
[http://dx.doi.org/10.1007/978-1-0716-2811-9_16]
[145]
Самойлова ЕМ, Белопасов ВВ, Баклаушев ВП. Транскрипционные факторы прямого пронейронального репрограммирования в онтогенезе и ex-vivo. Mol Biol 2021; 55(5): 707-33.
[http://dx.doi.org/10.31857/S0026898421050086] [PMID: 34671001]
[146]
Tian L, Al-Nusaif M, Chen X, Li S, Le W. Roles of transcription factors in the development and reprogramming of the dopaminergic neurons. Int J Mol Sci 2022; 23(2): 845.
[http://dx.doi.org/10.3390/ijms23020845] [PMID: 35055043]
[147]
Luginbühl J, Kouno T, Nakano R, et al. Single-cell convert-seq decodes regulatory factors driving neuronal diversity. Cell Press 2019; 52.
[http://dx.doi.org/10.2139/ssrn.3376670]
[148]
Mollinari C, Merlo D. Direct reprogramming of somatic cells to neurons: pros and cons of chemical approach. Neurochem Res 2021; 46(6): 1330-6.
[http://dx.doi.org/10.1007/s11064-021-03282-5] [PMID: 33666839]
[149]
Han F, Liu Y, Huang J, Zhang X, Wei C. Current approaches and molecular mechanisms for directly reprogramming fibroblasts into neurons and dopamine neurons. Front Aging Neurosci 2021; 13: 738529.
[http://dx.doi.org/10.3389/fnagi.2021.738529] [PMID: 34658841]
[150]
Hill AF. Extracellular vesicles and neurodegenerative diseases. J Neurosci 2019; 39(47): 9269-73.
[http://dx.doi.org/10.1523/JNEUROSCI.0147-18.2019] [PMID: 31748282]
[151]
Mahdavipour M, Hassanzadeh G, Seifali E, et al. Effects of neural stem cell-derived extracellular vesicles on neuronal protection and functional recovery in the rat model of middle cerebral artery occlusion. Cell Biochem Funct 2020; 38(4): 373-83.
[http://dx.doi.org/10.1002/cbf.3484] [PMID: 31885106]
[152]
An N, Xu H, Gao WQ, Yang H. Direct conversion of somatic cells into induced neurons. Mol Neurobiol 2018; 55(1): 642-51.
[http://dx.doi.org/10.1007/s12035-016-0350-0] [PMID: 27981499]
[153]
Lee JH, Lee JE, Kahng JY, Kim SH, Park JS, Yoon SJ, et al. Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nat 2018; 560: 243-7.
[http://dx.doi.org/10.1038/s41586-018-0389-3]
[154]
Mughal AA, Zhang L, Fayzullin A, et al. Patterns of invasive growth in malignant gliomas—the hippocampus emerges as an invasion-spared brain region. Neoplasia 2018; 20(7): 643-56.
[http://dx.doi.org/10.1016/j.neo.2018.04.001] [PMID: 29793116]
[155]
Vignoles R, Lentini C, d’Orange M, Heinrich C. Direct lineage reprogramming for brain repair: Breakthroughs and challenges. Trends Mol Med 2019; 25(10): 897-914.
[http://dx.doi.org/10.1016/j.molmed.2019.06.006] [PMID: 31371156]
[156]
Nagoshi N, Khazaei M, Ahlfors JE, et al. Human spinal oligodendrogenic neural progenitor cells promote functional recovery after spinal cord injury by axonal remyelination and tissue sparing. Stem Cells Transl Med 2018; 7(11): 806-18.
[http://dx.doi.org/10.1002/sctm.17-0269] [PMID: 30085415]
[157]
Yang T, Xing L, Yu W, Cai Y, Cui S, Chen G. Astrocytic reprogramming combined with rehabilitation strategy improves recovery from spinal cord injury. FASEB J 2020; 34(11): 15504-15.
[http://dx.doi.org/10.1096/fj.202001657RR] [PMID: 32975845]
[158]
Braga A, Bandiera S, Verheyen J, et al. Combination of In Situ Lcn2 pRNA-RNAi nanotherapeutics and insc transplantation ameliorates experimental sci in mice. Mol Ther 2020; 28(12): 2677-90.
[http://dx.doi.org/10.1016/j.ymthe.2020.08.001] [PMID: 32877696]
[159]
Hong JY, Lee SH, Lee SC, et al. Therapeutic potential of induced neural stem cells for spinal cord injury. J Biol Chem 2014; 289(47): 32512-25.
[http://dx.doi.org/10.1074/jbc.M114.588871] [PMID: 25294882]
[160]
Zhu Y, Uezono N, Yasui T, Nakashima K. Neural stem cell therapy aiming at better functional recovery after spinal cord injury. Dev Dyn 2018; 247(1): 75-84.
[http://dx.doi.org/10.1002/dvdy.24558] [PMID: 28766845]
[161]
Sullivan GM, Knutsen AK, Peruzzotti-Jametti L, et al. Transplantation of induced neural stem cells (iNSCs) into chronically demyelinated corpus callosum ameliorates motor deficits. Acta Neuropathol Commun 2020; 8(1): 84.
[http://dx.doi.org/10.1186/s40478-020-00960-3] [PMID: 32517808]
[162]
Kawabori M, Shichinohe H, Kuroda S, Houkin K. Clinical trials of stem cell therapy for cerebral ischemic stroke. Int J Mol Sci 2020; 21(19): 7380.
[http://dx.doi.org/10.3390/ijms21197380] [PMID: 33036265]
[163]
Surugiu R, Olaru A, Hermann DM, Glavan D, Catalin B, Popa-Wagner A. Recent advances in mono- and combined stem cell therapies of stroke in animal models and humans. Int J Mol Sci 2019; 20(23): 6029.
[http://dx.doi.org/10.3390/ijms20236029] [PMID: 31795466]
[164]
Suda S, Nito C, Yokobori S, et al. Recent advances in cell-based therapies for ischemic stroke. Int J Mol Sci 2020; 21(18): 6718.
[http://dx.doi.org/10.3390/ijms21186718] [PMID: 32937754]
[165]
Merlevede A, Legault EM, Drugge V, Barker RA, Drouin-Ouellet J, Olariu V. A quantitative model of cellular decision making in direct neuronal reprogramming. Sci Rep 2021; 11(1): 1514.
[http://dx.doi.org/10.1038/s41598-021-81089-8] [PMID: 33452356]
[166]
Hu J, Qian H, Xue Y, Fu XD. PTB/nPTB: Master regulators of neuronal fate in mammals. Biophys Rep 2018; 4(4): 204-14.
[http://dx.doi.org/10.1007/s41048-018-0066-y] [PMID: 30310857]
[167]
Vavougios GD. SARS-CoV-2 dysregulation of PTBP1 and YWHAE/Z gene expression: A primer of neurodegeneration. Med Hypotheses 2020; 144: 110212.
[http://dx.doi.org/10.1016/j.mehy.2020.110212] [PMID: 33254518]
[168]
Jauch R. Cell fate reprogramming through engineering of native transcription factors. Curr Opin Genet Dev 2018; 52: 109-16.
[http://dx.doi.org/10.1016/j.gde.2018.05.013] [PMID: 29980007]
[169]
Rugg-Gunn PJ. Transcription factors make the right contacts. Nat Cell Biol 2019; 21(10): 1173-4.
[http://dx.doi.org/10.1038/s41556-019-0399-x] [PMID: 31548607]
[170]
Horisawa K, Suzuki A. Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries. Proc Jpn Acad, Ser B, Phys Biol Sci 2020; 96(4): 131-58.
[http://dx.doi.org/10.2183/pjab.96.012] [PMID: 32281550]
[171]
Marzoog BA, Vlasova TI. Transcription Factors in Deriving β Cell Regeneration: A Potential Novel Therapeutic Target. Curr Mol Med 2022; 22(5): 421-30.
[http://dx.doi.org/10.2174/1566524021666210712144638] [PMID: 34931980]
[172]
Marzoog BA. Transcription factors – the essence of heart regeneration: A potential novel therapeutic strategy. Curr Mol Med 2023; 23(3): 232-8.
[http://dx.doi.org/10.2174/1566524022666220216123650] [PMID: 35170408]
[173]
Marzoog BA. Autophagy behavior in post-myocardial infarction injury. Cardiovasc Hematol Disord Drug Targets 2023; 23(1): 2-10.
[http://dx.doi.org/10.2174/1871529X23666230503123612] [PMID: 37138481]
[174]
Marzoog BA. The metabolic syndrome puzzles; possible pathogenesis and management. Curr Diabetes Rev 2023; 19(4): e290422204258.
[http://dx.doi.org/10.2174/1573399818666220429100411] [PMID: 35507784]
[175]
Marzoog BA, Bloshkina NI, Gromova VS, Gorshinina EI. Myocardial infarction; early prognostic instrumental & laboratory markers: single cross-sectional analysis. MedRxiv 2023.
[176]
Abdullah Marzoog B. Adaptive and compensatory mechanisms of the cardiovascular system and disease risk factors in young males and females. Emir Med J 2023; 4(1): e281122211293.
[http://dx.doi.org/10.2174/04666221128110145]
[177]
Marzoog BA, Alexandrovich KO, Nikolaevich TM, Vladimirovich KS. Post-coronary artery bypass graft complications; potential causes and risk factors. Emir Med J 2023; 5: e100423215574.
[http://dx.doi.org/10.2174/0250688204666230410084313]
[178]
Marzoog BA. Tree of life: Endothelial cell in norm and disease, the good guy is a partner in crime! Anat Cell Biol 2023; 56(2): 166-78.
[http://dx.doi.org/10.5115/acb.22.190] [PMID: 36879408]
[179]
Abdullah Marzoog B. Caveolae’s behavior in norm and pathology. Emir Med J 2023; 4(2): e080523216639.
[http://dx.doi.org/10.2174/0250688204666230508112229]
[180]
Abdullah Marzoog B. Pathophysiology of Cardiac Cell Injury in Post-COVID-19 Syndrome. Emir Med J 2023; 4(2): e280423216351.
[http://dx.doi.org/10.2174/0250688204666230428120808]
[181]
Marzoog BA. Coagulopathy and brain injury pathogenesis in post-COVID-19 syndrome. Cardiovasc Hematol Agents Med Chem 2022; 20(3): 178-88.
[http://dx.doi.org/10.2174/1871525720666220405124021] [PMID: 35382728]
[182]
Marzoog BA. Ageing increases the incidence rate of post coronary artery shunt complications. MedRxiv 2022; 2022.12.26.22283945.
[http://dx.doi.org/10.1101/2022.12.26.22283945]
[183]
Marzoog BA. Autophagy behavior in endothelial cell regeneration. Curr Mol Med 2022.
[184]
Marzoog B. Anticoagulant status under COVID-19: The potential pathophysiological mechanism. Journal of Applied Hematology 2022; 13(4): 167.
[http://dx.doi.org/10.4103/joah.joah_154_21]
[185]
Marzoog BA, Vlasova TI. Myocardiocyte autophagy in the context of myocardiocytes regeneration: a potential novel therapeutic strategy. Egypt J Med Hum Genet 2022; 23(1): 41.
[http://dx.doi.org/10.1186/s43042-022-00250-8]
[186]
Marzoog BA. Systemic and local hypothermia in the context of cell regeneration. Cryo Lett 2022; 43(2): 66-73.
[http://dx.doi.org/10.54680/fr22210110112] [PMID: 36626147]
[187]
Abdullah Marzoog B. Autophagy as an anti-senescent in aging neurocytes. Curr Mol Med 2023; 23
[http://dx.doi.org/10.2174/1566524023666230120102718] [PMID: 36683318]
[188]
Marzoog BA. Autophagy behavior in endothelial cell dysfunction. Emir Med J 2023; 5: e140723218726.
[http://dx.doi.org/10.2174/0250688204666230714110857]
[189]
Marzoog BA, Romanovna AD. Early Prognostic Instrumental & Laboratory Markers in Post-MI. MedRxiv 2023; 2023.05.13.23289438.
[http://dx.doi.org/10.1101/2023.05.13.23289438]
[190]
Abdullah Marzoog B. Cell physiological behavior in the context of local hypothermia. Emir Med J 2023; 5: e100723218576.
[http://dx.doi.org/10.2174/0250688204666230710102624]
[191]
Tanabe K, Ang CE, Chanda S, et al. Transdifferentiation of human adult peripheral blood T cells into neurons. Proc Natl Acad Sci USA 2018; 115(25): 6470-5.
[http://dx.doi.org/10.1073/pnas.1720273115] [PMID: 29866841]
[192]
Sun X, Tan Z, Huang X, et al. Direct neuronal reprogramming of olfactory ensheathing cells for CNS repair. Cell Death Dis 2019; 10(9): 646.
[http://dx.doi.org/10.1038/s41419-019-1887-4] [PMID: 31501413]
[193]
Xie M, Tang S, Li K, Ding S. Pharmacological reprogramming of somatic cells for regenerative medicine. Acc Chem Res 2017; 50(5): 1202-11.
[http://dx.doi.org/10.1021/acs.accounts.7b00020] [PMID: 28453285]
[194]
Zhang M, Lin YH, Sun YJ, et al. Pharmacological reprogramming of fibroblasts into neural stem cells by signaling-directed transcriptional activation. Cell Stem Cell 2016; 18(5): 653-67.
[http://dx.doi.org/10.1016/j.stem.2016.03.020] [PMID: 27133794]
[195]
Li H, Jiang H, Yin X, Bard JE, Zhang B, Feng J. Attenuation of PRRX2 and HEY2 enables efficient conversion of adult human skin fibroblasts to neurons. Biochem Biophys Res Commun 2019; 516(3): 765-9.
[http://dx.doi.org/10.1016/j.bbrc.2019.06.089] [PMID: 31255287]
[196]
Karow M, Camp JG, Falk S, et al. Direct pericyte-to-neuron reprogramming via unfolding of a neural stem cell-like program. Nat Neurosci 2018; 21(7): 932-40.
[http://dx.doi.org/10.1038/s41593-018-0168-3] [PMID: 29915193]
[197]
Fernandes GS, Singh RD, De D, Kim KK. Strategic application of epigenetic regulators for efficient neuronal reprogramming of human fibroblasts. Int J Stem Cells 2023; 16(2): 156-67.
[http://dx.doi.org/10.15283/ijsc22183] [PMID: 36823979]
[198]
Kim JB, Sebastiano V, Wu G, et al. Oct4-induced pluripotency in adult neural stem cells. Cell 2009; 136(3): 411-9.
[http://dx.doi.org/10.1016/j.cell.2009.01.023] [PMID: 19203577]
[199]
Ohtsuka T, Kageyama R. The basic helix-loop-helix transcription factors in neural differentiation. Cell Cycle Regul. Differ. Cardiovasc. Neural Syst 2010.
[http://dx.doi.org/10.1007/978-1-60327-153-0_2]
[200]
Bani-Yaghoub M, Tremblay RG, Lei JX, et al. Role of Sox2 in the development of the mouse neocortex. Dev Biol 2006; 295(1): 52-66.
[http://dx.doi.org/10.1016/j.ydbio.2006.03.007] [PMID: 16631155]
[201]
Lv H, Li L, Sun M, et al. Mechanism of regulation of stem cell differentiation by matrix stiffness. Stem Cell Res Ther 2015; 6(1): 103.
[http://dx.doi.org/10.1186/s13287-015-0083-4] [PMID: 26012510]
[202]
Nishi Y, Zhang X, Jeong J, et al. A direct fate exclusion mechanism by Sonic hedgehog-regulated transcriptional repressors. Development 2015; 142(19): dev.124636.
[http://dx.doi.org/10.1242/dev.124636] [PMID: 26293298]
[203]
Mizutani K, Yoon K, Dang L, Tokunaga A, Gaiano N. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 2007; 449(7160): 351-5.
[http://dx.doi.org/10.1038/nature06090] [PMID: 17721509]
[204]
Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci 2004; 101(47): 16659-64.
[http://dx.doi.org/10.1073/pnas.0407643101] [PMID: 15537713]
[205]
Nishino J, Kim I, Chada K, Morrison SJ. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell 2008; 135(2): 227-39.
[http://dx.doi.org/10.1016/j.cell.2008.09.017] [PMID: 18957199]
[206]
Colquhoun DE. Investigations into the Control of Neural Stem Cell Dynamics by the mTOR-Hmga1a axis Monash University 2019.https://doi.org/doi.org/10.26180/5d9d61bd2d171
[207]
Osumi N, Shinohara H, Numayama-Tsuruta K, Maekawa M. Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells 2008; 26(7): 1663-72.
[http://dx.doi.org/10.1634/stemcells.2007-0884] [PMID: 18467663]
[208]
Molofsky AV, He S, Bydon M, Morrison SJ, Pardal R. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16 Ink4a and p19 Arf senescence pathways. Genes Dev 2005; 19(12): 1432-7.
[http://dx.doi.org/10.1101/gad.1299505] [PMID: 15964994]
[209]
Karnavas T, Mandalos N, Malas S, Remboutsika E. SoxB, cell cycle and neurogenesis. Front Physiol 2013; 4: 298.
[http://dx.doi.org/10.3389/fphys.2013.00298] [PMID: 24146653]
[210]
Dance A. Genes that escape silencing on the second x chromosome may drive disease | the scientist magazine®. when x-linked genes evade silenc “inactive” chromosom xx cells, some prot women from dis such as cancer, but others seem to promot cond such as autoimmun. 2020. Available from: https://www.the-scientist.com/features/genes-that-escape-silencing-on-the-second-x-chromosome-may-drive-disease-67124
[211]
Takanaga H, Tsuchida-Straeten N, Nishide K, Watanabe A, Aburatani H, Kondo T. Gli2 is a novel regulator of sox2 expression in telencephalic neuroepithelial cells. Stem Cells 2009; 27(1): 165-74.
[http://dx.doi.org/10.1634/stemcells.2008-0580] [PMID: 18927476]
[212]
Inoue K, Shiga T, Ito Y. Runx transcription factors in neuronal development. Neural Dev 2008; 3(1): 20.
[http://dx.doi.org/10.1186/1749-8104-3-20] [PMID: 18727821]
[213]
Nieto M, Schuurmans C, Britz O, Guillemot F. Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 2001; 29(2): 401-13.
[http://dx.doi.org/10.1016/S0896-6273(01)00214-8] [PMID: 11239431]
[214]
Yu Y, Andreu-Agullo C, Liu BF, Barboza L, Toth M, Lai EC. Regulation of embryonic and adult neurogenesis by Ars2. Development 2020; 147(2): dev180018.
[http://dx.doi.org/10.1242/dev.180018] [PMID: 31969356]
[215]
Yun K, Mantani A, Garel S, Rubenstein J, Israel MA. Id4 regulates neural progenitor proliferation and differentiation in vivo. Development 2004; 131(21): 5441-8.
[http://dx.doi.org/10.1242/dev.01430] [PMID: 15469968]
[216]
Ring KL, Tong LM, Balestra ME, et al. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 2012; 11(1): 100-9.
[http://dx.doi.org/10.1016/j.stem.2012.05.018] [PMID: 22683203]
[217]
Sakamoto M, Hirata H, Ohtsuka T, Bessho Y, Kageyama R. The basic helix-loop-helix genes Hesr1/Hey1 and Hesr2/Hey2 regulate maintenance of neural precursor cells in the brain. J Biol Chem 2003; 278(45): 44808-15.
[http://dx.doi.org/10.1074/jbc.M300448200] [PMID: 12947105]
[218]
Tang Y, Liu ML, Zang T, Zhang CL. Direct reprogramming rather than ipsc-based reprogramming maintains aging hallmarks in human motor neurons. Front Mol Neurosci 2017; 10: 359.
[http://dx.doi.org/10.3389/fnmol.2017.00359] [PMID: 29163034]
[219]
Poo M, Pignatelli M, Ryan TJ, et al. What is memory? The present state of the engram. BMC Biol 2016; 14(1): 40.
[http://dx.doi.org/10.1186/s12915-016-0261-6] [PMID: 27197636]
[220]
Johnston ST, Shtrahman M, Parylak S, Gonçalves JT, Gage FH. Paradox of pattern separation and adult neurogenesis: A dual role for new neurons balancing memory resolution and robustness. Neurobiol Learn Mem 2016; 129: 60-8.
[http://dx.doi.org/10.1016/j.nlm.2015.10.013] [PMID: 26549627]
[221]
Nishimura K, Takata K. Disease modeling using human induced pluripotent stem cell-derived microglia and region-specific neurons. Nippon Yakurigaku Zasshi 2023; 158(1): 52-6.
[http://dx.doi.org/10.1254/fpj.22087] [PMID: 36596492]
[222]
Fischer S, Strobel B, Weinmann J, Gillardon F. Two engineered AAV capsid variants for efficient transduction of human cortical neurons directly converted from iPSC. J Neurosci Methods 2022; 368: 109457.
[http://dx.doi.org/10.1016/j.jneumeth.2021.109457] [PMID: 34953937]
[223]
Vasan L, Park E, David LA, Fleming T, Schuurmans C. Direct neuronal reprogramming: Bridging the gap between basic science and clinical application. Front Cell Dev Biol 2021; 9: 681087.
[http://dx.doi.org/10.3389/fcell.2021.681087] [PMID: 34291049]
[224]
Zhang Y, Xie X, Hu J, et al. Prospects of directly reprogrammed adult human neurons for neurodegenerative disease modeling and drug discovery: in vs. ipscs models. Front Neurosci 2020; 14: 546484.
[http://dx.doi.org/10.3389/fnins.2020.546484] [PMID: 33328842]
[225]
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346: 1258096.
[http://dx.doi.org/10.1126/science.1258096]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy