Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Novel Targets and Drug Delivery System in the Treatment of Postoperative Pain: Recent Studies and Clinical Advancement

Author(s): Trilochan Satapathy*, Gulab Singh, Ravindra Kumar Pandey, Shiv Shankar Shukla, Shiv Kumar Bhardwaj and Beena Gidwani

Volume 25, Issue 1, 2024

Published on: 30 November, 2023

Page: [25 - 45] Pages: 21

DOI: 10.2174/0113894501271207231127063431

Price: $65

Abstract

Pain is generated by a small number of peripheral targets. These can be made more sensitive by inflammatory mediators. The number of opioids prescribed to the patients can be reduced dramatically with better pain management. Any therapy that safely and reliably provides extended analgesia and is flexible enough to facilitate a diverse array of release profiles would be useful for improving patient comfort, quality of care, and compliance after surgical procedures. Comparisons are made between new and traditional methods, and the current state of development has been discussed; taking into account the availability of molecular and cellular level data, preclinical and clinical data, and early post-market data. There are a number of benefits associated with the use of nanotechnology in the delivery of analgesics to specific areas of the body. Nanoparticles are able to transport drugs to inaccessible bodily areas because of their small molecular size. This review focuses on targets that act specifically or primarily on sensory neurons, as well as inflammatory mediators that have been shown to have an analgesic effect as a side effect of their anti- inflammatory properties. New, regulated post-operative pain management devices that use existing polymeric systems were presented in this article, along with the areas for potential development. Analgesic treatments, both pharmacological and non-pharmacological, have also been discussed.

Graphical Abstract

[1]
Brigham NC, Ji RR, Becker ML. Degradable polymeric vehicles for postoperative pain management. Nat Commun 2021; 12(1): 1367.
[http://dx.doi.org/10.1038/s41467-021-21438-3] [PMID: 33649338]
[2]
Hyland SJ, Wetshtein AM, Grable SJ, Jackson MP. Acute pain management pearls: A focused review for the hospital clinician. Healthcare 2022; 11(1): 34.
[http://dx.doi.org/10.3390/healthcare11010034] [PMID: 36611494]
[3]
Small C, Laycock H. Acute postoperative pain management. Br J Surg 2020; 107(2): e70-80.
[http://dx.doi.org/10.1002/bjs.11477] [PMID: 31903595]
[4]
Sandhu HK, Miller CC III, Tanaka A, Estrera AL, Charlton-Ouw KM. Effectiveness of standard local anesthetic bupivacaine and liposomal bupivacaine for postoperative pain control in patients undergoing truncal incisions. JAMA Netw Open 2021; 4(3): e210753.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.0753] [PMID: 33724391]
[5]
Ge L, Pereira MJ, Yap CW, Heng BH. Chronic low back pain and its impact on physical function, mental health, and health-related quality of life: a cross-sectional study in Singapore. Sci Rep 2022; 12(1): 20040.
[http://dx.doi.org/10.1038/s41598-022-24703-7] [PMID: 36414674]
[6]
Choe K, Zinn E, Lu K, Hoang D, Yang LH. Impact of COVID-19 pandemic on chronic pain and opioid use in marginalized populations: A scoping review. Front Public Health 2023; 11: 1046683.
[http://dx.doi.org/10.3389/fpubh.2023.1046683]
[7]
Antunes FTT, Campos MM, Carvalho VPR, et al. Current drug development overview: Targeting voltage-gated calcium channels for the treatment of pain. Int J Mol Sci 2023; 24(11): 9223.
[http://dx.doi.org/10.3390/ijms24119223] [PMID: 37298174]
[8]
Dydyk AM, Jain NK, Gupta M. Opioid use disorder. StatPearls. Treasure Island, FL: StatPearls Publishing 2023. Internet
[9]
Horn R, Kramer J. Postoperative pain control. StatPearls. Treasure Island, FL: StatPearls Publishing 2023. Internet
[10]
Babaie S, Taghvimi A, Hong JH, Hamishehkar H, An S, Kim KH. Recent advances in pain management based on nanoparticle technologies. J Nanobiotechnology 2022; 20(1): 290.
[http://dx.doi.org/10.1186/s12951-022-01473-y] [PMID: 35717383]
[11]
Miller B. Novel drug delivery systems for targeted pain relief in anesthesiology. J Anesthesiology and Pain Res 2023; 6(1): 1-2.
[12]
Brigham NC, Nofsinger R, Luo X, et al. Controlled release of etoricoxib from poly(ester urea) films for post-operative pain management. J Control Release 2021; 329: 316-27.
[http://dx.doi.org/10.1016/j.jconrel.2020.11.052] [PMID: 33278481]
[13]
Ji RR, Chamessian A, Zhang YQ. Pain regulation by non-neuronal cells and inflammation. Science 2016; 354(6312): 572-7.
[http://dx.doi.org/10.1126/science.aaf8924] [PMID: 27811267]
[14]
Kehlet H, Jensen TS, Woolf CJ. Persistent postsurgical pain: risk factors and prevention. Lancet 2006; 367(9522): 1618-25.
[http://dx.doi.org/10.1016/S0140-6736(06)68700-X] [PMID: 16698416]
[15]
Wang C-F. J., Hung, C. H., Gerner, P., Ji, R. R. & Strichartz, G. R. The qualitative hyperalgesia profile: a new metric to assess chronic postthoracotomy. Pain. Open Pain J 2013; 6: 190-8.
[http://dx.doi.org/10.2174/1876386301306010190] [PMID: 24567767]
[16]
Matsuda M, Huh Y, Ji RR. Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. J Anesth 2019; 33(1): 131-9.
[http://dx.doi.org/10.1007/s00540-018-2579-4] [PMID: 30448975]
[17]
Gold MS, Gebhart GF. Nociceptor sensitization in pain pathogenesis. Nat Med 2010; 16(11): 1248-57.
[http://dx.doi.org/10.1038/nm.2235] [PMID: 20948530]
[18]
Inoue K, Tsuda M. Microglia in neuropathic pain: Cellular and molecular mechanisms and therapeutic potential. Nat Rev Neurosci 2018; 19(3): 138-52.
[http://dx.doi.org/10.1038/nrn.2018.2] [PMID: 29416128]
[19]
Garimella V, Cellini C. Postoperative pain control. Clin Colon Rectal Surg 2013; 26(3): 191-6.
[http://dx.doi.org/10.1055/s-0033-1351138] [PMID: 24436674]
[20]
Vadivelu N, Mitra S, Narayan D. Recent advances in postoperative pain management. Yale J Biol Med 2010; 83(1): 11-25.
[PMID: 20351978]
[21]
Insel PA, Snead A, Murray F, et al. GPCR expression in tissues and cells: Are the optimal receptors being used as drug targets? Br J Pharmacol 2012; 165(6): 1613-6.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01434.x] [PMID: 21488863]
[22]
Csanády L. A new target for G protein signaling. eLife 2017; 6: e31106.
[http://dx.doi.org/10.7554/eLife.31106] [PMID: 28891794]
[23]
Salzer I, Ray S, Schicker K, Boehm S. Nociceptor signalling through ion channel regulation via GPCRs. Int J Mol Sci 2019; 20(10): 2488.
[http://dx.doi.org/10.3390/ijms20102488] [PMID: 31137507]
[24]
Woodhams SG, Chapman V, Finn DP, Hohmann AG, Neugebauer V. The cannabinoid system and pain. Neuropharmacology 2017; 124: 105-20.
[http://dx.doi.org/10.1016/j.neuropharm.2017.06.015] [PMID: 28625720]
[25]
Whiting PF, Wolff RF, Deshpande S, et al. Cannabinoids for medical use: A systematic review and meta-analysis. JAMA 2015; 313(24): 2456-73.
[http://dx.doi.org/10.1001/jama.2015.6358] [PMID: 26103030]
[26]
Agarwal N, Pacher P, Tegeder I, et al. Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat Neurosci 2007; 10(7): 870-9.
[http://dx.doi.org/10.1038/nn1916] [PMID: 17558404]
[27]
Mulpuri Y, Marty VN, Munier JJ, et al. Synthetic peripherally restricted cannabinoid suppresses chemotherapy-induced peripheral neuropathy pain symptoms by CB1 receptor activation. Neuropharmacology 2018; 139: 85-97.
[http://dx.doi.org/10.1016/j.neuropharm.2018.07.002]
[28]
Starowicz K, Finn DP. Cannabinoids and pain: Sites and mechanisms of action. Adv Pharmacol 2017; 80: 437-75.
[http://dx.doi.org/10.1016/bs.apha.2017.05.003] [PMID: 28826543]
[29]
Seltzman HH, Shiner C, Hirt EE, et al. Peripherally selective cannabinoid 1 receptor (CB1R) agonists for the treatment of neuropathic pain. J Med Chem 2016; 59(16): 7525-43.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00516] [PMID: 27482723]
[30]
Ignatowska-Jankowska BM, Baillie GL, Kinsey S, et al. A cannabinoid CB1 receptor-positive allosteric modulator reduces neuropathic pain in the mouse with no psychoactive effects. Neuropsychopharmacology 2015; 40(13): 2948-59.
[http://dx.doi.org/10.1038/npp.2015.148] [PMID: 26052038]
[31]
Slivicki RA, Xu Z, Kulkarni PM, et al. Positive allosteric modulation of cannabinoid receptor type 1 suppresses pathological pain without producing tolerance or dependence. Biol Psychiatry 2018; 84(10): 722-33.
[http://dx.doi.org/10.1016/j.biopsych.2017.06.032] [PMID: 28823711]
[32]
Vaudry D, Falluel-Morel A, Bourgault S, et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 2009; 61(3): 283-357.
[http://dx.doi.org/10.1124/pr.109.001370] [PMID: 19805477]
[33]
Wang J, Song X, Zhang D, et al. Cryo-EM structures of PAC1 receptor reveal ligand binding mechanism. Cell Res 2020; 30(5): 436-45.
[http://dx.doi.org/10.1038/s41422-020-0280-2] [PMID: 32047270]
[34]
Kobayashi K, Shihoya W, Nishizawa T, et al. Cryo-EM structure of the human PAC1 receptor coupled to an engineered heterotrimeric G protein. Nat Struct Mol Biol 2020; 27(3): 274-80.
[http://dx.doi.org/10.1038/s41594-020-0386-8] [PMID: 32157248]
[35]
Yokai M, Kurihara T, Miyata A. Spinal astrocytic activation contributes to both induction and maintenance of pituitary adenylate cyclase-activating polypeptide type 1 receptor-induced long-lasting mechanical allodynia in mice. Mol Pain 2016; 12
[http://dx.doi.org/10.1177/1744806916646383] [PMID: 27175011]
[36]
Ohnou T, Yokai M, Kurihara T, et al. Pituitary adenylate cyclase-activating polypeptide type 1 receptor signaling evokes long-lasting nociceptive behaviors through the activation of spinal astrocytes in mice. J Pharmacol Sci 2016; 130(4): 194-203.
[http://dx.doi.org/10.1016/j.jphs.2016.01.008] [PMID: 26948958]
[37]
Takasaki I, Nakamura K, Shimodaira A, et al. The novel small-molecule antagonist of PAC1 receptor attenuates formalin-induced inflammatory pain behaviors in mice. J Pharmacol Sci 2019; 139(2): 129-32.
[http://dx.doi.org/10.1016/j.jphs.2018.11.011] [PMID: 30552012]
[38]
Rubio-Beltrán E, Correnti E, Deen M, et al. PACAP38 and PAC1 receptor blockade: A new target for headache? J Headache Pain 2018; 19(1): 64.
[http://dx.doi.org/10.1186/s10194-018-0893-8] [PMID: 30088106]
[39]
Takasaki I, Ogashi H, Okada T, et al. Synthesis of a novel and potent small-molecule antagonist of PAC1 receptor for the treatment of neuropathic pain. Eur J Med Chem 2020; 186: 111902.
[http://dx.doi.org/10.1016/j.ejmech.2019.111902] [PMID: 31771828]
[40]
Yu R, Zheng L, Cui Y, Zhang H, Ye H. Doxycycline exerted neuroprotective activity by enhancing the activation of neuropeptide GPCR PAC1. Neuropharmacology 2016; 103: 1-15.
[http://dx.doi.org/10.1016/j.neuropharm.2015.11.032] [PMID: 26700245]
[41]
Nichols DE, Nichols CD. Serotonin receptors. Chem Rev 2008; 108(5): 1614-41.
[http://dx.doi.org/10.1021/cr078224o] [PMID: 18476671]
[42]
Moreno-Ajona D, Chan C, Villar-Martínez MD, Goadsby PJ. Targeting CGRP and 5-HT1F receptors for the acute therapy of migraine: a literature review. Headache 2019; 59(S2) (Suppl. 2): 3-19.
[http://dx.doi.org/10.1111/head.13582] [PMID: 31291016]
[43]
Lanfumey L, Hamon M. 5-HT1 Receptors. Curr Drug Targets CNS Neurol Disord 2004; 3(1): 1-10.
[http://dx.doi.org/10.2174/1568007043482570] [PMID: 14965240]
[44]
Ahn AH, Basbaum AI. Where do triptans act in the treatment of migraine? Pain 2005; 115: 1-4.
[http://dx.doi.org/10.1016/j.pain.2005.03.008]
[45]
Knievel K, Buchanan AS, Lombard L, et al. Lasmiditan for the acute treatment of migraine: Subgroup analyses by prior response to triptans. Cephalalgia 2020; 40(1): 19-27.
[http://dx.doi.org/10.1177/0333102419889350] [PMID: 31744319]
[46]
Sanna MD, Stark H, Lucarini L, Ghelardini C, Masini E, Galeotti N. Histamine H4 receptor activation alleviates neuropathic pain through differential regulation of ERK, JNK, and P38 MAPK phosphorylation. Pain 2015; 156(12): 2492-504.
[http://dx.doi.org/10.1097/j.pain.0000000000000319] [PMID: 26270581]
[47]
Popiolek-Barczyk K, Łażewska D, Latacz G, et al. Antinociceptive effects of novel histamine H 3 and H 4 receptor antagonists and their influence on morphine analgesia of neuropathic pain in the mouse. Br J Pharmacol 2018; 175(14): 2897-910.
[http://dx.doi.org/10.1111/bph.14185] [PMID: 29486058]
[48]
Medhurst AD, Briggs MA, Bruton G, et al. Structurally novel histamine H3 receptor antagonists GSK207040 and GSK334429 improve scopolamine-induced memory impairment and capsaicin-induced secondary allodynia in rats. Biochem Pharmacol 2007; 73: 1182-94.
[http://dx.doi.org/10.1016/j.bcp.2007.01.007]
[49]
Obara I, Telezhkin V, Alrashdi I, Chazot PL. Histamine, histamine receptors, and neuropathic pain relief. Br J Pharmacol 2020; 177(3): 580-99.
[http://dx.doi.org/10.1111/bph.14696] [PMID: 31046146]
[50]
Hough LB, Rice FL. H3 receptors and pain modulation: peripheral, spinal, and brain interactions. J Pharmacol Exp Ther 2011; 336(1): 30-7.
[http://dx.doi.org/10.1124/jpet.110.171264] [PMID: 20864501]
[51]
Liu WL. Histamine H4 receptor antagonists for the treatment of inflammatory disorders. Drug Discov Today 2014; 19(8): 1222-5.
[http://dx.doi.org/10.1016/j.drudis.2014.05.007] [PMID: 24859018]
[52]
Tripathi T, Shahid M, Khan HM, et al. in vivo study of histamine H4 receptor in immunomodulation. Bratisl Med J 2012; 113(11): 641-7.
[http://dx.doi.org/10.4149/BLL_2012_145] [PMID: 23137201]
[53]
Werfel T, Layton G, Yeadon M, et al. Efficacy and safety of the histamine H4 receptor antagonist ZPL-3893787 in patients with atopic dermatitis. J Allergy Clin Immunol 2019; 143(5): 1830-1837.e4.
[http://dx.doi.org/10.1016/j.jaci.2018.07.047] [PMID: 30414855]
[54]
Jang JH, Clark DJ, Li X, Yorek MS, Usachev YM, Brennan TJ. Nociceptive sensitization by complement C5a and C3a in mouse. Pain 2010; 148(2): 343-52.
[http://dx.doi.org/10.1016/j.pain.2009.11.021] [PMID: 20031321]
[55]
Shutov LP, Warwick CA, Shi X, et al. The complement system component C5a produces thermal hyperalgesia via macrophageto-nociceptor signaling that requires NGF and TRPV1. J Neurosci 2016; 36(18): 5055-70.
[http://dx.doi.org/10.1523/JNEUROSCI.3249-15.2016] [PMID: 27147658]
[56]
Moriconi A, Cunha TM, Souza GR, et al. Targeting the minor pocket of C5aR for the rational design of an oral allosteric inhibitor for inflammatory and neuropathic pain relief. Proc Natl Acad Sci USA 2014; 111(47): 16937-42.
[http://dx.doi.org/10.1073/pnas.1417365111] [PMID: 25385614]
[57]
Andersson C, Wenander CS, Usher PA, et al. Rapid-onset clinical and mechanistic effects of anti-C5aR treatment in the mouse collagen-induced arthritis model. Clin Exp Immunol 2014; 177(1): 219-33.
[http://dx.doi.org/10.1111/cei.12338] [PMID: 24665841]
[58]
Jayne DRW, Bruchfeld AN, Harper L, et al. Randomized trial of C5a receptor inhibitor avacopan in ANCA-associated vasculitis. J Am Soc Nephrol 2017; 28(9): 2756-67.
[http://dx.doi.org/10.1681/ASN.2016111179] [PMID: 28400446]
[59]
novo nordisk A/S. Dose-escalation trial of Anti-C5aR antibody in healthy subjects. 2008. Available from: https://ClinicalTrials.gov/show/
[60]
60. Novo Nordisk A/S. A trial to investigate the safety, tolerability, pharmacokinetics and pharmacodynamics of nnc0215-0384 administered to subjects with moderate to severe rheumatoid arthritis. 2013. Available from: https://ClinicalTrials.gov/show/NCT01955603
[61]
Assistance publique hopitaux de marseille, innate pharma. avdoralimab an Anti-C5aR antibody, in patients with COVID- 19 severe pneumonia. 2020. Available from: https://ClinicalTrials.gov/show/NCT04371367
[62]
Negri L, Lattanzi R, Giannini E, et al. Impaired nociception and inflammatory pain sensation in mice lacking the prokineticin receptor PKR1: focus on interaction between PKR1 and the capsaicin receptor TRPV1 in pain behavior. J Neurosci 2006; 26(25): 6716-27.
[http://dx.doi.org/10.1523/JNEUROSCI.5403-05.2006] [PMID: 16793879]
[63]
Maftei D, Vellani V, Artico M, Giacomoni C, Severini C, Lattanzi R. Abnormal pain sensation in mice lacking the prokineticin receptor PKR2: Interaction of PKR2 with transient receptor potential TRPV1 and TRPA1. Neuroscience 2020; 427: 16-28.
[http://dx.doi.org/10.1016/j.neuroscience.2019.12.003] [PMID: 31883821]
[64]
Qiu CY, Liu YQ, Qiu F, Wu J, Zhou QY, Hu WP. Prokineticin 2 potentiates acid-sensing ion channel activity in rat dorsal root ganglion neurons. J Neuroinflammation 2012; 9(1): 608.
[http://dx.doi.org/10.1186/1742-2094-9-108] [PMID: 22642848]
[65]
Balboni G, Lazzari I, Trapella C, et al. Triazine compounds as antagonists at Bv8-prokineticin receptors. J Med Chem 2008; 51(23): 7635-9.
[http://dx.doi.org/10.1021/jm800854e] [PMID: 19006379]
[66]
Guida F, Lattanzi R, Boccella S, et al. PC1, a non-peptide PKR1-preferring antagonist, reduces pain behavior and spinal neuronal sensitization in neuropathic mice. Pharmacol Res 2015; 91: 36-46.
[http://dx.doi.org/10.1016/j.phrs.2014.11.004] [PMID: 25434589]
[67]
Negri L, Maftei D. Targeting the prokineticin system to control chronic pain and inflammation. Curr Med Chem 2018; 25(32): 3883-94.
[http://dx.doi.org/10.2174/0929867324666170713102514] [PMID: 28707588]
[68]
Bennett DL, Clark AJ, Huang J, Waxman SG, Dib-Hajj SD. The role of voltage-gated sodium channels in pain signaling. Physiol Rev 2019; 99(2): 1079-151.
[http://dx.doi.org/10.1152/physrev.00052.2017] [PMID: 30672368]
[69]
Catterall WA. From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron 2000; 26(1): 13-25.
[http://dx.doi.org/10.1016/S0896-6273(00)81133-2] [PMID: 10798388]
[70]
Lampert A, O’Reilly AO, Reeh P, Leffler A. Sodium channelopathies and pain. Pflugers Arch 2010; 460(2): 249-63.
[http://dx.doi.org/10.1007/s00424-009-0779-3] [PMID: 20101409]
[71]
Devor M. Sodium channels and mechanisms of neuropathic pain. J Pain 2006; 7: 3-12.
[72]
Gould HJ III, England JD, Soignier RD, et al. Ibuprofen blocks changes in nav 1.7 and 1.8 sodium channels associated with complete freund’s adjuvant–induced inflammation in rat. J Pain 2004; 5(5): 270-80.
[http://dx.doi.org/10.1016/j.jpain.2004.04.005] [PMID: 15219259]
[73]
Toledo-Aral JJ, Brehm P, Halegoua S, Mandel G. A single pulse of nerve growth factor triggers long-term neuronal excitability through sodium channel gene induction. Neuron 1995; 14(3): 607-11.
[http://dx.doi.org/10.1016/0896-6273(95)90317-8] [PMID: 7695907]
[74]
Nassar MA, Stirling LC, Forlani G, et al. Nociceptor-specific gene deletion reveals a major role for Na v 1.7 (PN1) in acute and inflammatory pain. Proc Natl Acad Sci 2004; 101(34): 12706-11.
[http://dx.doi.org/10.1073/pnas.0404915101] [PMID: 15314237]
[75]
Yatziv SL, Devor M. Suppression of neuropathic pain by selective silencing of dorsal root ganglion ectopia using nonblocking concentrations of lidocaine. Pain 2019; 160(9): 2105-14.
[http://dx.doi.org/10.1097/j.pain.0000000000001602] [PMID: 31095098]
[76]
Cardoso FC, Lewis RJ. Sodium channels and pain: From toxins to therapies. Br J Pharmacol 2018; 175(12): 2138-57.
[http://dx.doi.org/10.1111/bph.13962] [PMID: 28749537]
[77]
Ma RSY, Kayani K, Oshodi DW, et al. Voltage gated sodium channels as therapeutic targets for chronic pain. J Pain Res 2019; 12: 2709-22.
[http://dx.doi.org/10.2147/JPR.S207610] [PMID: 31564962]
[78]
Foadi N. Modulation of sodium channels as pharmacological tool for pain therapy—highlights and gaps. Naunyn Schmiedebergs Arch Pharmacol 2018; 391(5): 481-8.
[http://dx.doi.org/10.1007/s00210-018-1487-3] [PMID: 29572558]
[79]
Laboratories JAR. Comparison of prescription lidocaine patchto over the counter lidocaine patch and placebo for back pain and arthritis. 2016. Available from: https://ClinicalTrials.gov/show/NCT02749123
[80]
Kingwell K. Nav1.7 withholds its pain potential. Nat Rev Drug Discov 2019.
[http://dx.doi.org/10.1038/d41573-019-00065-0] [PMID: 31048807]
[81]
Kushnarev M, Pirvulescu IP, Candido KD, Knezevic NN. Neuropathic pain: Preclinical and early clinical progress with voltage-gated sodium channel blockers. Expert Opin Investig Drugs 2020; 29: 259-71.
[http://dx.doi.org/10.1080/13543784.2020.1728254]
[82]
Nilius B, Prenen J, Owsianik G. Irritating channels: The case of TRPA1. J Physiol 2011; 589(7): 1543-9.
[http://dx.doi.org/10.1113/jphysiol.2010.200717] [PMID: 21078588]
[83]
Weyer-Menkhoff I, Lötsch J. Human pharmacological approaches to TRP-ion-channel-based analgesic drug development. Drug Discov Today 2018; 23(12): 2003-12.
[http://dx.doi.org/10.1016/j.drudis.2018.06.020] [PMID: 29969684]
[84]
González-Ramírez R, Chen Y, Liedtke WB, Morales-Lázaro SL. TRP channels and pain. In: Emir TLR, Ed. Neurobiology of TRP channels. (2nd ed.), Boca Raton: CRC Press/Taylor & Francis 2017.http://www.ncbi.nlm.nih.gov/books/NBK476120/
[http://dx.doi.org/10.4324/9781315152837-8]
[85]
Nazıroğlu M, Braidy N. Thermo-sensitive TRP channels: Novel targets for treating chemotherapy-induced peripheral pain. Front Physiol 2017; 8: 1040.
[http://dx.doi.org/10.3389/fphys.2017.01040] [PMID: 29326595]
[86]
Jeske NA, Diogenes A, Ruparel NB, et al. A-kinase anchoring protein mediates TRPV1 thermal hyperalgesia through PKA phosphorylation of TRPV1. Pain 2008; 138(3): 604-16.
[http://dx.doi.org/10.1016/j.pain.2008.02.022] [PMID: 18381233]
[87]
Cao E, Cordero-Morales JF, Liu B, Qin F, Julius D. TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron 2013; 77(4): 667-79.
[http://dx.doi.org/10.1016/j.neuron.2012.12.016] [PMID: 23439120]
[88]
Chuang H, Lin S. Oxidative challenges sensitize the capsaicin receptor by covalent cysteine modification. Proc Natl Acad Sci 2009; 106(47): 20097-102.
[http://dx.doi.org/10.1073/pnas.0902675106] [PMID: 19897733]
[89]
Simone DA, Ngeow JYF, Putterman GJ, LaMotte RH. Hyperalgesia to heat after intradermal injection of capsaicin. Brain Res 1987; 418(1): 201-3.
[http://dx.doi.org/10.1016/0006-8993(87)90982-6] [PMID: 3664271]
[90]
Culp WJ, Ochoa J, Cline M, Dotson R. Heat and mechanical hyperalgesia induced by capsaicin. Cross modality threshold modulation in human C nociceptors. Brain 1989; 112(5): 1317-31.
[http://dx.doi.org/10.1093/brain/112.5.1317] [PMID: 2804614]
[91]
LaMotte RH, Lundberg LE, Torebjörk HE. Pain, hyperalgesia and activity in nociceptive C units in humans after intradermal injection of capsaicin. J Physiol 1992; 448(1): 749-64.
[http://dx.doi.org/10.1113/jphysiol.1992.sp019068] [PMID: 1593488]
[92]
Simone DA, Baumann TK, LaMotte RH. Dose-dependent pain and mechanical hyperalgesia in humans after intradermal injection of capsaicin. Pain 1989; 38(1): 99-107.
[http://dx.doi.org/10.1016/0304-3959(89)90079-1] [PMID: 2780068]
[93]
Basith S, Cui M, Hong S, Choi S. Harnessing the therapeutic potential of capsaicin and its analogues in pain and other diseases. Molecules 2016; 21(8): 966.
[http://dx.doi.org/10.3390/molecules21080966] [PMID: 27455231]
[94]
Burness CB, McCormack PL. Capsaicin 8% patch: a review in peripheral neuropathic pain. Drugs 2016; 76(1): 123-34.
[http://dx.doi.org/10.1007/s40265-015-0520-9] [PMID: 26666418]
[95]
Gomtsyan A, McDonald HA, Schmidt RG, et al. TRPV1 ligands with hyperthermic, hypothermic and no temperature effects in rats. Temperature 2015; 2(2): 297-301.
[http://dx.doi.org/10.1080/23328940.2015.1046013] [PMID: 27227030]
[96]
Daewoong Pharmaceutical Co. LTD. Evaluate the efficacy and safety of DWP05195 in subjects with post-herpetic neuralgia. 2012. Available from: https://ClinicalTrials.gov/show/NCT01557010
[97]
Neomed Institute. A proof-of-concept study assessing NEO6860 in osteoarthritis pain. 2016. Available from: https://ClinicalTrials.gov/show/
[98]
Sylentis SA. HELIX, a double-masked study of SYL1001 in patients with moderate to severe dry eye disease. 2017. Available from: https://ClinicalTrials.gov/show/NCT03108664
[99]
Jo YY, Lee JY, Park CK. Resolvin E1 inhibits substance Pinduced potentiation of trpv1 in primary sensory neurons. Mediators Inflamm 2016; 2016: 1-9.
[http://dx.doi.org/10.1155/2016/5259321] [PMID: 27738388]
[100]
Resolvyx Pharmaceuticals I. Single and multiple ascending oral dose study of RX-10001 in healthy volunteers. 2009. Available from: https://ClinicalTrials.gov/show/NCT00941018
[101]
Garami A, Shimansky YP, Rumbus Z, et al. Hyperthermia induced by transient receptor potential vanilloid-1 (TRPV1) antagonists in human clinical trials: Insights from mathematical modeling and meta-analysis. Pharmacol Ther 2020; 208: 107474.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107474] [PMID: 31926897]
[102]
Stein M, Breit A, Fehrentz T, Gudermann T, Trauner D. Optical control of TRPV1 channels. Angew Chem Int Ed 2013; 52(37): 9845-8.
[http://dx.doi.org/10.1002/anie.201302530] [PMID: 23873837]
[103]
Takayama Y, Derouiche S, Maruyama K, Tominaga M. Emerging perspectives on pain management bymodulation of TRP channels and ANO1. Int J Mol Sci 2019; 20(14): 3411.
[http://dx.doi.org/10.3390/ijms20143411] [PMID: 31336748]
[104]
Gutman GA, Chandy KG, Adelman JP, et al. International Union of Pharmacology. XLI. Compendium of voltage-gated ion channels: Potassium channels. Pharmacol Rev 2003; 55(4): 583-6.
[http://dx.doi.org/10.1124/pr.55.4.9] [PMID: 14657415]
[105]
Du X, Gamper N. Potassium channels in peripheral pain pathways: Expression, function and therapeutic potential. Curr Neuropharmacol 2013; 11(6): 621-40.
[http://dx.doi.org/10.2174/1570159X113119990042] [PMID: 24396338]
[106]
Tsantoulas C. Emerging potassium channel targets for the treatment of pain. Curr Opin Support Palliat Care 2015; 9(2): 147-54.
[http://dx.doi.org/10.1097/SPC.0000000000000131] [PMID: 25872119]
[107]
Busserolles J, Gasull X, Noël J. Potassium channels and pain. In:The Oxford Handbook of the Neurobiology of Pain. 2018.
[http://dx.doi.org/10.1093/oxfordhb/9780190860509.013.19]
[108]
Everill B, Rizzo MA, Kocsis JD. Morphologically identified cutaneous afferent DRG neurons express three different potassium currents in varying proportions. J Neurophysiol 1998; 79(4): 1814-24.
[http://dx.doi.org/10.1152/jn.1998.79.4.1814] [PMID: 9535950]
[109]
Du X, Hao H, Gigout S, et al. Control of somatic membrane potential in nociceptive neurons and its implications for peripheral nociceptive transmission. Pain 2014; 155(11): 2306-22.
[http://dx.doi.org/10.1016/j.pain.2014.08.025] [PMID: 25168672]
[110]
Gada K, Plant LD. Two-pore domain potassium channels: Emerging targets for novel analgesic drugs: IUPHAR Review 26. Br J Pharmacol 2019; 176(2): 256-66.
[http://dx.doi.org/10.1111/bph.14518] [PMID: 30325008]
[111]
Loucif AJC, Saintot PP, Liu J, et al. GI-530159, a novel, selective, mechanosensitive two-pore-domain potassium (K 2P ) channel opener, reduces rat dorsal root ganglion neuron excitability. Br J Pharmacol 2018; 175(12): 2272-83.
[http://dx.doi.org/10.1111/bph.14098] [PMID: 29150838]
[112]
Poupon L, Lamoine S, Pereira V, et al. Targeting the TREK-1 potassium channel via riluzole to eliminate the neuropathic and depressive-like effects of oxaliplatin. Neuropharmacology 2018; 140: 43-61.
[http://dx.doi.org/10.1016/j.neuropharm.2018.07.026] [PMID: 30056126]
[113]
Lolicato M, Arrigoni C, Mori T, et al. K2P2.1 (TREK-1)–activator complexes reveal a cryptic selectivity filter binding site. Nature 2017; 547(7663): 364-8.
[http://dx.doi.org/10.1038/nature22988] [PMID: 28693035]
[114]
Wright PD, Weir G, Cartland J, et al. Cloxyquin (5-chloroquinolin-8-ol) is an activator of the two-pore domain potassium channel TRESK. Biochem Biophys Res Commun 2013; 441(2): 463-8.
[http://dx.doi.org/10.1016/j.bbrc.2013.10.090] [PMID: 24383077]
[115]
Noël J, Sandoz G, Lesage F. Molecular regulations governing TREK and TRAAK channel functions. Channels 2011; 5(5): 402-9.
[http://dx.doi.org/10.4161/chan.5.5.16469] [PMID: 21829087]
[116]
Wilke BU, Kummer KK, Leitner MG, Kress M. Chloride – the underrated ion in nociceptors. Front Neurosci 2020; 14: 287.
[http://dx.doi.org/10.3389/fnins.2020.00287] [PMID: 32322187]
[117]
Rocha-González HI, Mao S, Alvarez-Leefmans FJ. Na+,K+,2Cl- cotransport and intracellular chloride regulation in rat primary sensory neurons: thermodynamic and kinetic aspects. J Neurophysiol 2008; 100(1): 169-84.
[http://dx.doi.org/10.1152/jn.01007.2007] [PMID: 18385481]
[118]
Carlton SM, Zhou S, Coggeshall RE. Peripheral GABAA receptors: Evidence for peripheral primary afferent depolarization. Neuroscience 1999; 93(2): 713-22.
[http://dx.doi.org/10.1016/S0306-4522(99)00101-3] [PMID: 10465455]
[119]
Sung KW, Kirby M, McDonald MP, Lovinger DM, Delpire E. Abnormal GABAA receptor-mediated currents in dorsal root ganglion neurons isolated from Na-K-2Cl cotransporter null mice. J Neurosci 2000; 20(20): 7531-8.
[http://dx.doi.org/10.1523/JNEUROSCI.20-20-07531.2000] [PMID: 11027211]
[120]
Granados-Soto V, Arguelles CF, Álvarez-Leefmans FJ. Peripheral and central antinociceptive action of Na+–K+–2Cl− cotransporter blockers on formalin-induced nociception in rats. Pain 2005; 114(1): 231-8.
[http://dx.doi.org/10.1016/j.pain.2004.12.023] [PMID: 15733649]
[121]
Funk K, Woitecki A, Franjic-Würtz C, Gensch T, Möhrlen F, Frings S. Modulation of chloride homeostasis by inflammatory mediators in dorsal root ganglion neurons. Mol Pain 2008; 4: 1744-8069-4-32.
[http://dx.doi.org/10.1186/1744-8069-4-32] [PMID: 18700020]
[122]
Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M. A family of hyperpolarization-activated mammalian cation channels. Nature 1998; 393(6685): 587-91.
[http://dx.doi.org/10.1038/31255] [PMID: 9634236]
[123]
Cho H-J, Staikopoulos V, Furness JB, Jennings EA. Inflammation-induced increase in hyperpolarization-activated, cyclic nucleotide-gated channel protein in trigeminal ganglion neurons and the effect of buprenorphine. Neuroscience 2009; 162: 453-61.
[http://dx.doi.org/10.1016/j.neuroscience.2009.04.063]
[124]
Schnorr S. HCN2 channels account for mechanical (but not heat) hyperalgesia during long-standing inflammation. PAIN 2014; 155: 1079.
[125]
Lainez S, Tsantoulas C, Biel M, McNaughton PA. HCN3 ion channels: Roles in sensory neuronal excitability and pain. J Physiol 2019; 597(17): 4661-75.
[http://dx.doi.org/10.1113/JP278211] [PMID: 31290157]
[126]
Herrmann S, Rajab H, Christ I, et al. Protein kinase A regulates inflammatory pain sensitization by modulating HCN2 channel activity in nociceptive sensory neurons. Pain 2017; 158(10): 2012-24.
[http://dx.doi.org/10.1097/j.pain.0000000000001005] [PMID: 28767511]
[127]
Young GT, Emery EC, Mooney ER, Tsantoulas C, McNaughton PA. Inflammatory and neuropathic pain are rapidly suppressed by peripheral block of hyperpolarisation-activated cyclic nucleotide-gated ion channels. Pain 2014; 155(9): 1708-19.
[http://dx.doi.org/10.1016/j.pain.2014.05.021] [PMID: 24861581]
[128]
Lee MC, Bond S, Wheeler D, et al. A randomised, double-blind, placebo-controlled crossover trial of the influence of the HCN channel blocker ivabradine in a healthy volunteer pain model: an enriched population trial. Pain 2019; 160(11): 2554-65.
[http://dx.doi.org/10.1097/j.pain.0000000000001638] [PMID: 31188268]
[129]
Dini L, Del Lungo M, Resta F, et al. Selective blockade of HCN1/ HCN2 channels as a potential pharmacological strategy against pain. Front Pharmacol 2018; 9: 1252.
[http://dx.doi.org/10.3389/fphar.2018.01252] [PMID: 30467478]
[130]
Vijayaragavan K, Boutjdir M, Chahine M. Modulation of Nav1.7 and Nav1.8 peripheral nerve sodium channels by protein kinase A and protein kinase C. J Neurophysiol 2004; 91(4): 1556-69.
[http://dx.doi.org/10.1152/jn.00676.2003] [PMID: 14657190]
[131]
Chatelier A, Dahllund L, Eriksson A, Krupp J, Chahine M. Biophysical properties of human Na v1.7 splice variants and their regulation by protein kinase A. J Neurophysiol 2008; 99(5): 2241-50.
[http://dx.doi.org/10.1152/jn.01350.2007] [PMID: 18337362]
[132]
Aley KO, Levine JD. Role of protein kinase A in the maintenance of inflammatory pain. J Neurosci 1999; 19(6): 2181-6.
[http://dx.doi.org/10.1523/JNEUROSCI.19-06-02181.1999] [PMID: 10066271]
[133]
Malmberg AB. Protein kinase subtypes involved in injury-induced nociception. Prog Brain Res 2000; 129: 51-9.
[http://dx.doi.org/10.1016/S0079-6123(00)29005-5] [PMID: 11098681]
[134]
Malmberg AB, Brandon EP, Idzerda RL, Liu H, McKnight GS, Basbaum AI. Diminished inflammation and nociceptive pain with preservation of neuropathic pain in mice with a targeted mutation of the type I regulatory subunit of cAMP-dependent protein kinase. J Neurosci 1997; 17(19): 7462-70.
[http://dx.doi.org/10.1523/JNEUROSCI.17-19-07462.1997] [PMID: 9295392]
[135]
Yap TA, Walton MI, Grimshaw KM, et al. AT13148 is a novel, oral multi-AGC kinase inhibitor with potent pharmacodynamic and antitumor activity. Clin Cancer Res 2012; 18(14): 3912-23.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3313] [PMID: 22781553]
[136]
Leroux AE, Schulze JO, Biondi RM. AGC kinases, mechanisms of regulation and innovative drug development. Semin Cancer Biol 2018; 48: 1-17.
[http://dx.doi.org/10.1016/j.semcancer.2017.05.011]
[137]
Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002; 298(5600): 1911-2.
[http://dx.doi.org/10.1126/science.1072682] [PMID: 12471242]
[138]
Ji RR, Gereau RW IV, Malcangio M, Strichartz GR. MAP kinase and pain. Brain Res Brain Res Rev 2009; 60(1): 135-48.
[http://dx.doi.org/10.1016/j.brainresrev.2008.12.011] [PMID: 19150373]
[139]
Gao Y-J, Ji R-R. Activation of JNK pathway in persistent pain. Neurosci Lett 2008; 437: 180-3.
[http://dx.doi.org/10.1016/j.neulet.2008.03.017]
[140]
Kumar S, Boehm J, Lee JC. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2003; 2(9): 717-26.
[http://dx.doi.org/10.1038/nrd1177] [PMID: 12951578]
[141]
Lin X, Wang M, Zhang J, Xu R. p38 MAPK: A potential target of chronic pain. Curr Med Chem 2014; 21(38): 4405-18.
[http://dx.doi.org/10.2174/0929867321666140915143040] [PMID: 25245374]
[142]
Dai Y, Iwata K, Fukuoka T, et al. Phosphorylation of extracellular signal-regulated kinase in primary afferent neurons by noxious stimuli and its involvement in peripheral sensitization. J Neurosci 2002; 22(17): 7737-45.
[http://dx.doi.org/10.1523/JNEUROSCI.22-17-07737.2002] [PMID: 12196597]
[143]
Obata K, Yamanaka H, Dai Y, et al. Differential activation of extracellular signal-regulated protein kinase in primary afferent neurons regulates brain-derived neurotrophic factor expression after peripheral inflammation and nerve injury. J Neurosci 2003; 23(10): 4117-26.
[http://dx.doi.org/10.1523/JNEUROSCI.23-10-04117.2003] [PMID: 12764099]
[144]
Maruta T, Nemoto T, Hidaka K, et al. Upregulation of ERK phosphorylation in rat dorsal root ganglion neurons contributes to oxaliplatin-induced chronic neuropathic pain. PLoS One 2019; 14(11): e0225586.
[http://dx.doi.org/10.1371/journal.pone.0225586] [PMID: 31765435]
[145]
Madhav NVS, Shakya AK, Shakya P, Singh K. Orotransmucosal drug delivery systems: A review. J Control Release 2009; 140(1): 2-11.
[http://dx.doi.org/10.1016/j.jconrel.2009.07.016] [PMID: 19665039]
[146]
Khorsand S, Karamchandani K, Joshi GP. Sedation-analgesia techniques for nonoperating room anesthesia: An update. Curr Opin Anaesthesiol 2022; 35(4): 450-6.
[http://dx.doi.org/10.1097/ACO.0000000000001123] [PMID: 35283459]
[147]
Galer BS, Rowbotham MC, Perander J, Friedman E. Topical lidocaine patch relieves postherpetic neuralgia more effectively than a vehicle topical patch: Results of an enriched enrollment study. Pain 1999; 80(3): 533-8.
[http://dx.doi.org/10.1016/S0304-3959(98)00244-9] [PMID: 10342414]
[148]
Blair HA. Capsaicin 8% dermal patch: A review in peripheral neuropathic pain. Drugs 2018; 78(14): 1489-500.
[http://dx.doi.org/10.1007/s40265-018-0982-7] [PMID: 30251173]
[149]
Food and Drug Administration. Fentanyl Transdermal System (marketed as Duragesic and generics. 2015. Available from: https://www.fda.gov/drugs/postmarket-drug-safetyinformation-patients-and-providers/fentanyl-transdermal-system-marketedduragesic-
[150]
Gray A, Kehlet H, Bonnet F, Rawal N. Predicting postoperative analgesia outcomes: NNT league tables or procedure-specific evidence? † †Declaration of interest. The authors are members of the Procedure Specific Postoperative Pain Management (PROSPECT) Group, which conducts procedure-specific systematic reviews of the literature using the Cochrane Protocol, supplements these with evidence from other procedures and from clinical practice, and produces guidelines for the management of postoperative pain. The PROSPECT Group is funded by an unrestricted educational grant from Pfizer Inc., who provided financial support for the writing of this article. Br J Anaesth 2005; 94(6): 710-4.
[http://dx.doi.org/10.1093/bja/aei144] [PMID: 15833778]
[151]
Moore RA, Derry S, Wiffen PJ, et al. Estimating relative efficacy in acute postoperative pain: Network meta-analysis is consistent with indirect comparison to placebo alone. Pain 2018; 159(11): 2234-44.
[http://dx.doi.org/10.1097/j.pain.0000000000001322] [PMID: 29965830]
[152]
Hughes MJ, Ventham NT, McNally S, Harrison E, Wigmore S. Analgesia after open abdominal surgery in the setting of enhanced recovery surgery: A systematic review and meta-analysis. JAMA Surg 2014; 149(12): 1224-30.
[http://dx.doi.org/10.1001/jamasurg.2014.210] [PMID: 25317633]
[153]
Levy N, Mills P, Mythen M. Is the pursuit of DREAMing (drinking, eating and mobilising) the ultimate goal of anaesthesia? Anaesthesia 2016; 71(9): 1008-12.
[http://dx.doi.org/10.1111/anae.13495] [PMID: 27079158]
[154]
Wick EC, Grant MC, Wu CL. Postoperative multimodal analgesia pain management with nonopioid analgesics and techniques. JAMA Surg 2017; 152(7): 691-7.
[http://dx.doi.org/10.1001/jamasurg.2017.0898] [PMID: 28564673]
[155]
Kehlet H, Dahl JB. The value of “multimodal” or “balanced analgesia” in postoperative pain treatment. Anesth Analg 1993; 77(5): 1048-56.
[http://dx.doi.org/10.1213/00000539-199311000-00030] [PMID: 8105724]
[156]
Maund E, McDaid C, Rice S, Wright K, Jenkins B, Woolacott N. Paracetamol and selective and non-selective non-steroidal anti-inflammatory drugs for the reduction in morphine-related side-effects after major surgery: a systematic review. Br J Anaesth 2011; 106(3): 292-7.
[http://dx.doi.org/10.1093/bja/aeq406] [PMID: 21285082]
[157]
Moore RA, Derry S, Aldington D, Wiffen PJ. Single dose oral analgesics for acute postoperative pain in adults - an overview of Cochrane reviews. Cochrane Database Syst Rev 2015; 2015(9): CD008659.
[PMID: 26414123]
[158]
Apfel CC, Turan A, Souza K, Pergolizzi J, Hornuss C. Intravenous acetaminophen reduces postoperative nausea and vomiting: A systematic review and meta-analysis. Pain 2013; 154(5): 677-89.
[http://dx.doi.org/10.1016/j.pain.2012.12.025] [PMID: 23433945]
[159]
Dart RC, Bailey E. Does therapeutic use of acetaminophen cause acute liver failure? Pharmacotherapy 2007; 27(9): 1219-30.
[http://dx.doi.org/10.1592/phco.27.9.1219] [PMID: 17723075]
[160]
Corder G, Castro DC, Bruchas MR, Scherrer G. Endogenous and exogenous opioids in pain. Annu Rev Neurosci 2018; 41(1): 453-73.
[http://dx.doi.org/10.1146/annurev-neuro-080317-061522] [PMID: 29852083]
[161]
Stein C, Lang LJ. Peripheral mechanisms of opioid analgesia. Curr Opin Pharmacol 2009; 9(1): 3-8.
[http://dx.doi.org/10.1016/j.coph.2008.12.009] [PMID: 19157985]
[162]
Shafi S, Collinsworth AW, Copeland LA, et al. Association of opioid-related adverse drug events with clinical and cost outcomes among surgical patients in a large integrated health care delivery system. JAMA Surg 2018; 153(8): 757-63.
[http://dx.doi.org/10.1001/jamasurg.2018.1039] [PMID: 29799927]
[163]
Callinan CE, Neuman MD, Lacy KE, Gabison C, Ashburn MA. The initiation of chronic opioids: A survey of chronic pain patients. J Pain 2017; 18(4): 360-5.
[http://dx.doi.org/10.1016/j.jpain.2016.11.001] [PMID: 27919771]
[164]
Bicket MC, Long JJ, Pronovost PJ, Alexander GC, Wu CL. Prescription opioid analgesics commonly unused after surgery: A systematic review. JAMA Surg 2017; 152(11): 1066-71.
[http://dx.doi.org/10.1001/jamasurg.2017.0831] [PMID: 28768328]
[165]
Lanzillotta JA, Clark A, Starbuck E, Kean EB, Kalarchian M. The impact of patient characteristics and postoperative opioid exposure on prolonged postoperative opioid use: An integrative review. Pain Manag Nurs 2018; 19(5): 535-48.
[http://dx.doi.org/10.1016/j.pmn.2018.07.003] [PMID: 30172738]
[166]
Quinlan J, Cox F. Acute pain management in patients with drug dependence syndrome. Pain Rep 2017; 2(4): e611.
[http://dx.doi.org/10.1097/PR9.0000000000000611] [PMID: 29392226]
[167]
Huxtable CA, Roberts LJ, Somogyi AA, Macintyre PE. Acute pain management in opioid-tolerant patients: A growing challenge. Anaesth Intensive Care 2011; 39(5): 804-23.
[http://dx.doi.org/10.1177/0310057X1103900505] [PMID: 21970125]
[168]
Kumar K, Kirksey MA, Duong S, Wu CL. A review of opioid-sparing modalities in perioperative pain management. Anesth Analg 2017; 125(5): 1749-60.
[http://dx.doi.org/10.1213/ANE.0000000000002497] [PMID: 29049119]
[169]
St-Jacques B, Ma W. Prostaglandin E2/EP4 signalling facilitates EP4 receptor externalization in primary sensory neurons in vitro and in vivo. Pain 2013; 154(2): 313-23.
[http://dx.doi.org/10.1016/j.pain.2012.11.005] [PMID: 23265688]
[170]
Reichling DB, Levine JD. Critical role of nociceptor plasticity in chronic pain. Trends Neurosci 2009; 32(12): 611-8.
[http://dx.doi.org/10.1016/j.tins.2009.07.007] [PMID: 19781793]
[171]
Gustafsson UO, Scott MJ, Hubner M, et al. Guidelines for perioperative care in elective colorectal surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations: 2018. World J Surg 2019; 43(3): 659-95.
[http://dx.doi.org/10.1007/s00268-018-4844-y] [PMID: 30426190]
[172]
Nelson G, Bakkum-Gamez J, Kalogera E, et al. Guidelines for perioperative care in gynecologic/oncology: Enhanced Recovery After Surgery (ERAS) Society recommendations—2019 update. Int J Gynecol Cancer 2019; 29(4): 651-68.
[http://dx.doi.org/10.1136/ijgc-2019-000356] [PMID: 30877144]
[173]
Low DE, Allum W, De Manzoni G, et al. Guidelines for perioperative care in esophagectomy: Enhanced recovery after surgery (ERAS®) society recommendations. World J Surg 2019; 43(2): 299-330.
[http://dx.doi.org/10.1007/s00268-018-4786-4] [PMID: 30276441]
[174]
Thorell A, MacCormick AD, Awad S, et al. Guidelines for perioperative care in bariatric surgery: Enhanced recovery after surgery (ERAS) society recommendations. World J Surg 2016; 40(9): 2065-83.
[http://dx.doi.org/10.1007/s00268-016-3492-3] [PMID: 26943657]
[175]
Temple-Oberle C, Shea-Budgell MA, Tan M, et al. Consensus review of optimal perioperative care in breast reconstruction: Enhanced Recovery After Surgery (ERAS) Society recommendations. Plast Reconstr Surg 2017; 139(5): 1056e-71e.
[http://dx.doi.org/10.1097/PRS.0000000000003242] [PMID: 28445352]
[176]
Chapman SJ, Glasbey J, Kelly M, et al. Impact of postoperative non-steroidal anti-inflammatory drugs on adverse events after gastrointestinal surgery. Br J Surg 2014; 101(11): 1413-23.
[http://dx.doi.org/10.1002/bjs.9614] [PMID: 25091299]
[177]
STARSurg Collaborative. Safety of nonsteroidal anti-inflammatory drugs in major gastrointestinal surgery: A prospective, multicenter cohort study. World J Surg 2017; 41(1): 47-55.
[http://dx.doi.org/10.1007/s00268-016-3727-3] [PMID: 27766396]
[178]
Bell S, Rennie T, Marwick CA, Davey P. Effects of peri-operative nonsteroidal anti-inflammatory drugs on post-operative kidney function for adults with normal kidney function. Cochrane Libr 2018; 11(11): CD011274.
[http://dx.doi.org/10.1002/14651858.CD011274.pub2] [PMID: 30488949]
[179]
Kverneng Hultberg D, Angenete E, Lydrup ML, Rutegård J, Matthiessen P, Rutegård M. Nonsteroidal anti-inflammatory drugs and the risk of anastomotic leakage after anterior resection for rectal cancer. Eur J Surg Oncol 2017; 43(10): 1908-14.
[http://dx.doi.org/10.1016/j.ejso.2017.06.010] [PMID: 28687432]
[180]
Huang Y, Tang SR, Young CJ. Nonsteroidal anti-inflammatory drugs and anastomotic dehiscence after colorectal surgery: A meta-analysis. ANZ J Surg 2018; 88(10): 959-65.
[http://dx.doi.org/10.1111/ans.14322] [PMID: 29164809]
[181]
Modasi A, Pace D, Godwin M, Smith C, Curtis B. NSAID administration post colorectal surgery increases anastomotic leak rate: Systematic review/meta-analysis. Surg Endosc 2019; 33(3): 879-85.
[http://dx.doi.org/10.1007/s00464-018-6355-1] [PMID: 29998389]
[182]
Brinck E, Tiippana E, Heesen M, et al. Perioperative intravenous ketamine for acute postoperative pain in adults. Cochrane Libr 2018; 12(12): CD012033.
[http://dx.doi.org/10.1002/14651858.CD012033.pub4] [PMID: 30570761]
[183]
Aroni F, Iacovidou N, Dontas I, Pourzitaki C, Xanthos T. Pharmacological aspects and potential new clinical applications of ketamine: Reevaluation of an old drug. J Clin Pharmacol 2009; 49(8): 957-64.
[http://dx.doi.org/10.1177/0091270009337941] [PMID: 19546251]
[184]
Chaparro LE, Smith SA, Moore RA, Wiffen PJ, Gilron I. Pharmacotherapy for the prevention of chronic pain after surgery in adults. Cochrane Database Syst Rev 2013; 2013(7): CD008307.
[PMID: 23881791]
[185]
Chincholkar M. Analgesic mechanisms of gabapentinoids and effects in experimental pain models: A narrative review. Br J Anaesth 2018; 120(6): 1315-34.
[http://dx.doi.org/10.1016/j.bja.2018.02.066] [PMID: 29793598]
[186]
Clarke H, Bonin RP, Orser BA, Englesakis M, Wijeysundera DN, Katz J. The prevention of chronic postsurgical pain using gabapentin and pregabalin: A combined systematic review and meta-analysis. Anesth Analg 2012; 115(2): 428-42.
[http://dx.doi.org/10.1213/ANE.0b013e318249d36e] [PMID: 22415535]
[187]
Tiippana EM, Hamunen K, Kontinen VK, Kalso E. Do surgical patients benefit from perioperative gabapentin/pregabalin? A systematic review of efficacy and safety. Anesth Analg 2007; 104(6): 1545-56.
[http://dx.doi.org/10.1213/01.ane.0000261517.27532.80] [PMID: 17513656]
[188]
Fabritius ML, Geisler A, Petersen PL, et al. Gabapentin for post-operative pain management: A systematic review with meta-analyses and trial sequential analyses. Acta Anaesthesiol Scand 2016; 60(9): 1188-208.
[http://dx.doi.org/10.1111/aas.12766] [PMID: 27426431]
[189]
Fabritius ML, Strøm C, Koyuncu S, et al. Benefit and harm of pregabalin in acute pain treatment: A systematic review with meta-analyses and trial sequential analyses. Br J Anaesth 2017; 119(4): 775-91.
[http://dx.doi.org/10.1093/bja/aex227] [PMID: 29121288]
[190]
Office for national statistics. Number of Drug-Related Deaths Involving Gabapentin or PregabalinWith orWithout An Opioid Drug, England and Wales. 2017.
[191]
Mayor S. Pregabalin and gabapentin become controlled drugs to cut deaths from misuse. BMJ 2018; 363: k4364.
[http://dx.doi.org/10.1136/bmj.k4364] [PMID: 30327316]
[192]
Evoy KE, Morrison MD, Saklad SR. Abuse and misuse of pregabalin and gabapentin. Drugs 2017; 77(4): 403-26.
[http://dx.doi.org/10.1007/s40265-017-0700-x] [PMID: 28144823]
[193]
Grape S, Kirkham KR, Frauenknecht J, Albrecht E. Intra-operative analgesia with remifentanil vs. dexmedetomidine: A systematic review and meta-analysis with trial sequential analysis. Anaesthesia 2019; 74(6): 793-800.
[http://dx.doi.org/10.1111/anae.14657] [PMID: 30950522]
[194]
Jessen Lundorf L, Korvenius Nedergaard H, Møller AM. Perioperative dexmedetomidine for acute pain after abdominal surgery in adults. Cochrane Libr 2016; 2016(2): CD010358.
[http://dx.doi.org/10.1002/14651858.CD010358.pub2] [PMID: 26889627]
[195]
McEvoy MD, Scott MJ, Gordon DB, et al. American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) joint consensus statement on optimal analgesia within an enhanced recovery pathway for colorectal surgery: part 1—from the preoperative period to PACU. Perioper Med (Lond) 2017; 6(1): 8.
[http://dx.doi.org/10.1186/s13741-017-0064-5] [PMID: 28413629]
[196]
De Oliveira GS Jr, Castro-Alves LJ, Khan JH, McCarthy RJ. Perioperative systemic magnesium to minimize postoperative pain: A meta-analysis of randomized controlled trials. Anesthesiology 2013; 119(1): 178-90.
[http://dx.doi.org/10.1097/ALN.0b013e318297630d] [PMID: 23669270]
[197]
Kahraman F, Eroglu A. The effect of intravenous magnesium sulfate infusion on sensory spinal block and postoperative pain score in abdominal hysterectomy. BioMed Res Int 2014; 2014: 1-5.
[http://dx.doi.org/10.1155/2014/236024] [PMID: 24772415]
[198]
Kumar M, Dayal N, Rautela RS, Sethi AK. Effect of intravenous magnesium sulphate on postoperative pain following spinal anesthesia. A randomized double blind controlled study. Middle East J Anaesthesiol 2013; 22(3): 251-6.
[PMID: 24649780]
[199]
Powell R, Scott NW, Manyande A, et al. Psychological preparation and postoperative outcomes for adults undergoing surgery under general anaesthesia. Cochrane Libr 2016; 2016(5): CD008646.
[http://dx.doi.org/10.1002/14651858.CD008646.pub2] [PMID: 27228096]
[200]
Poulsen MJ, Coto J. Nursing music protocol and postoperative pain. Pain Manag Nurs 2018; 19(2): 172-6.
[http://dx.doi.org/10.1016/j.pmn.2017.09.003] [PMID: 29153918]
[201]
Cepeda MS, Carr DB, Lau J, Alvarez H. Music for pain relief. Cochrane Database Syst Rev 2006; (2): CD004843.
[PMID: 16625614]
[202]
Dimitriou V, Mavridou P, Manataki A, Damigos D. The use of aromatherapy for postoperative pain management: A systematic review of randomized controlled trials. J Perianesth Nurs 2017; 32(6): 530-41.
[http://dx.doi.org/10.1016/j.jopan.2016.12.003] [PMID: 29157760]
[203]
Cooley LF, Barker SB. Canine-assisted therapy as an adjunct tool in the care of the surgical patient: A literature review and opportunity for research. Altern Ther Health Med 2018; 24(3): 48-51.
[PMID: 29477136]
[204]
Mosso Vázquez JL, Mosso Lara D, Mosso Lara JL, Miller I, Wiederhold MD, Wiederhold BK. Pain distraction during ambulatory surgery: Virtual reality and mobile devices. Cyberpsychol Behav Soc Netw 2019; 22(1): 15-21.
[http://dx.doi.org/10.1089/cyber.2017.0714] [PMID: 30256662]
[205]
Mordecai L, Leung FHL, Carvalho CYM, et al. Self-managing postoperative pain with the use of a novel, interactive device: A proof of concept study. Pain Res Manag 2016; 2016: 1-6.
[http://dx.doi.org/10.1155/2016/9704185] [PMID: 27445635]
[206]
Stewart S, Domínguez-Robles J, Donnelly R, Larrañeta E. Implantable polymeric drug delivery devices: Classification, manufacture, materials, and clinical applications. Polymers (Basel) 2018; 10(12): 1379.
[http://dx.doi.org/10.3390/polym10121379] [PMID: 30961303]
[207]
Stoddard A, McNicholas C, Peipert JF. Efficacy and safety of long-acting reversible contraception. Drugs 2011; 71(8): 969-80.
[http://dx.doi.org/10.2165/11591290-000000000-00000] [PMID: 21668037]
[208]
Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther 2018; 12: 3117-45.
[http://dx.doi.org/10.2147/DDDT.S165440] [PMID: 30288019]
[209]
Gianolio DA, Philbrook M, Avila LZ, et al. Hyaluronan-tethered opioid depots: Synthetic strategies and release kinetics in vitro and in vivo. Bioconjug Chem 2008; 19(9): 1767-74.
[http://dx.doi.org/10.1021/bc8000479] [PMID: 18717537]
[210]
Cohen B, Shefy-Peleg A, Zilberman M. Novel gelatin/alginate soft tissue adhesives loaded with drugs for pain management: Structure and properties. J Biomater Sci Polym Ed 2014; 25(3): 224-40.
[http://dx.doi.org/10.1080/09205063.2013.849904] [PMID: 24156311]
[211]
Catanzano O, Docking R, Schofield P, Boateng J. Advanced multi-targeted composite biomaterial dressing for pain and infection control in chronic leg ulcers. Carbohydr Polym 2017; 172: 40-8.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.040] [PMID: 28606546]
[212]
Ioan DC, Rău I, Tihan GT, et al. Piroxicam-collagen-based sponges for medical applications. Int J Polym Sci 2019; 2019: 1-7.
[http://dx.doi.org/10.1155/2019/6062381]
[213]
Ulery BD, Kan HM, Williams BA, et al. Facile fabrication of polyanhydride/anesthetic nanoparticles with tunable release kinetics. Adv Healthc Mater 2014; 3(6): 843-7.
[http://dx.doi.org/10.1002/adhm.201300521] [PMID: 24376136]
[214]
Shikanov A, Domb AJ, Weiniger CF. Long acting local anesthetic–polymer formulation to prolong the effect of analgesia. J Control Release 2007; 117(1): 97-103.
[http://dx.doi.org/10.1016/j.jconrel.2006.10.014] [PMID: 17137669]
[215]
Maniar M, Domb A, Haffer A, Shah J. Controlled release of a local anesthetic from fatty acid dimer based polyanhydride. J Control Release 1994; 30(3): 233-9.
[http://dx.doi.org/10.1016/0168-3659(94)90029-9]
[216]
Wu MH, Shih MH, Hsu WB, et al. Evaluation of a novel biodegradable thermosensitive keto-hydrogel for improving postoperative pain in a rat model. PLoS One 2017; 12(10): e0186784.
[http://dx.doi.org/10.1371/journal.pone.0186784] [PMID: 29059223]
[217]
Miyazaki M, Maeda T, Hirashima K, Kurokawa N, Nagahama K, Hotta A. PEG-based nanocomposite hydrogel: Thermoresponsive sol-gel transition controlled by PLGA-PEG-PLGA molecular weight and solute concentration. Polymer (Guildf) 2017; 115: 246-54.
[http://dx.doi.org/10.1016/j.polymer.2017.03.016]
[218]
Barr J, Woodburn KW, Ng SY, Shen HR, Heller J. Post surgical pain management with poly(ortho esters). Adv Drug Deliv Rev 2002; 54(7): 1041-8.
[http://dx.doi.org/10.1016/S0169-409X(02)00056-X] [PMID: 12384320]
[219]
Wang Z, Huang H, Yang S, et al. Long-term effect of ropivacaine nanoparticles for sciatic nerve block on postoperative pain in rats. Int J Nanomedicine 2016; 11: 2081-90.
[PMID: 27274236]
[220]
Li A, Yang F, Xin J, Bai X. An efficient and long-acting local anesthetic: Ropivacaine-loaded lipid-polymer hybrid nanoparticles for the control of pain. Int J Nanomedicine 2019; 14: 913-20.
[http://dx.doi.org/10.2147/IJN.S190164] [PMID: 30774342]
[221]
Chai F, Maton M, Degoutin S, et al. in vivo evaluation of post-operative pain reduction on rat model after implantation of intraperitoneal PET meshes functionalised with cyclodextrins and loaded with ropivacaine. Biomaterials 2019; 192: 260-70.
[http://dx.doi.org/10.1016/j.biomaterials.2018.07.032] [PMID: 30458361]
[222]
Zhao C, Liu A, Santamaria CM, et al. Polymer-tetrodotoxin conjugates to induce prolonged duration local anesthesia with minimal toxicity. Nat Commun 2019; 10(1): 2566.
[http://dx.doi.org/10.1038/s41467-019-10296-9] [PMID: 31189915]
[223]
Tobe M, Obata H, Suto T, et al. Long-term effect of sciatic nerve block with slow-release lidocaine in a rat model of postoperative pain. Anesthesiology 2010; 112(6): 1473-81.
[http://dx.doi.org/10.1097/ALN.0b013e3181d4f66f] [PMID: 20461003]
[224]
Petit A, Sandker M, Müller B, et al. Release behavior and intra-articular biocompatibility of celecoxib-loaded acetyl-capped PCLA-PEG-PCLA thermogels. Biomaterials 2014; 35(27): 7919-28.
[http://dx.doi.org/10.1016/j.biomaterials.2014.05.064] [PMID: 24952978]
[225]
Liu KS, Chen WH, Lee CH, Su YF, Liu SJ. Extended pain relief achieved by analgesic-eluting biodegradable nanofibers in the Nuss procedure: in vitro and in vivo studies. Int J Nanomedicine 2018; 13: 8355-64.
[http://dx.doi.org/10.2147/IJN.S189505] [PMID: 30573957]
[226]
Abid S, Hussain T, Nazir A, Zahir A, Khenoussi N. A novel double-layered polymeric nanofiber-based dressing with controlled drug delivery for pain management in burn wounds. Polym Bull 2019; 76(12): 6387-411.
[http://dx.doi.org/10.1007/s00289-019-02727-w]
[227]
Lee KJ, Yang SY, Ryu W. Controlled release of bupivacaine HCl through microchannels of biodegradable drug delivery device. Biomed Microdevices 2012; 14(3): 583-93.
[http://dx.doi.org/10.1007/s10544-012-9637-8] [PMID: 22374474]
[228]
Yue J, He L, Tang Y, Yang L, Wu B, Ni J. Facile design and development of photoluminescent graphene quantum dots grafted dextran/glycol-polymeric hydrogel for thermoresponsive triggered delivery of buprenorphine on pain management in tissue implantation. J Photochem Photobiol B 2019; 197: 111530.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111530] [PMID: 31279287]
[229]
Indulekha S, Arunkumar P, Bahadur D, Srivastava R. Thermoresponsive polymeric gel as an on-demand transdermal drug delivery system for pain management. Mater Sci Eng C 2016; 62: 113-22.
[http://dx.doi.org/10.1016/j.msec.2016.01.021] [PMID: 26952404]
[230]
Janssen M, Timur UT, Woike N, et al. Celecoxib-loaded PEA microspheres as an auto regulatory drug-delivery system after intra-articular injection. J Control Release 2016; 244(Pt A): 30-40.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.003] [PMID: 27836707]
[231]
Kipper MJ, Shen E, Determan A, Narasimhan B. Design of an injectable system based on bioerodible polyanhydride microspheres for sustained drug delivery. Biomaterials 2002; 23(22): 4405-12.
[http://dx.doi.org/10.1016/S0142-9612(02)00181-3] [PMID: 12219831]
[232]
Chiu Li L, Deng J, Stephens D. Polyanhydride implant for antibiotic delivery—from the bench to the clinic. Adv Drug Deliv Rev 2002; 54(7): 963-86.
[http://dx.doi.org/10.1016/S0169-409X(02)00053-4] [PMID: 12384317]
[233]
Liu X, Pettway GJ, McCauley LK, Ma PX. Pulsatile release of parathyroid hormone from an implantable delivery system. Biomaterials 2007; 28(28): 4124-31.
[http://dx.doi.org/10.1016/j.biomaterials.2007.05.034] [PMID: 17576005]
[234]
Wang J, Yang G, Guo X, Tang Z, Zhong Z, Zhou S. Redox-responsive polyanhydride micelles for cancer therapy. Biomaterials 2014; 35(9): 3080-90.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.025] [PMID: 24388799]
[235]
Sipos EP, Tyler B, Piantadosi S, Burger PC, Brem H. Optimizing interstitial delivery of BCNU from controlled release polymers for the treatment of brain tumors. Cancer Chemother Pharmacol 1997; 39(5): 383-9.
[http://dx.doi.org/10.1007/s002800050588] [PMID: 9054951]
[236]
Ng SY, Shen HR, Lopez E, et al. Development of a poly(ortho ester) prototype with a latent acid in the polymer backbone for 5-fluorouracil delivery. J Control Release 2000; 65(3): 367-74.
[http://dx.doi.org/10.1016/S0168-3659(99)00218-7] [PMID: 10699295]
[237]
Rothen-Weinhold A, Schwach-Abdellaoui K, Barr J, et al. Release of BSA from poly(ortho ester) extruded thin strands. J Control Release 2001; 71(1): 31-7.
[http://dx.doi.org/10.1016/S0168-3659(00)00348-5] [PMID: 11245906]
[238]
Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci, B, Polym Phys 2011; 49(12): 832-64.
[http://dx.doi.org/10.1002/polb.22259] [PMID: 21769165]
[239]
Cutright DE, Beasley JD III, Perez B. Histologic comparison of polylactic and polyglycolic acid sutures. Oral Surg Oral Med Oral Pathol 1971; 32(1): 165-73.
[http://dx.doi.org/10.1016/0030-4220(71)90265-9] [PMID: 5281553]
[240]
Frazza EJ, Schmitt EE. A new absorbable suture. J Biomed Mater Res 1971; 5(2): 43-58.
[http://dx.doi.org/10.1002/jbm.820050207] [PMID: 5575328]
[241]
Lee JE, Park S, Park M, et al. Surgical suture assembled with polymeric drug-delivery sheet for sustained, local pain relief. Acta Biomater 2013; 9(9): 8318-27.
[http://dx.doi.org/10.1016/j.actbio.2013.06.003] [PMID: 23770220]
[242]
Padmakumar S, Joseph J, Neppalli MH, et al. Electrospun polymeric core–sheath yarns as drug eluting surgical sutures. ACS Appl Mater Interfaces 2016; 8(11): 6925-34.
[http://dx.doi.org/10.1021/acsami.6b00874] [PMID: 26936629]
[243]
Mrsny RJ. Oral drug delivery research in Europe. J Control Release 2012; 161(2): 247-53.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.017] [PMID: 22342473]
[244]
Qian G, Zhang L, Li X, Shuai C, Wang X. Construction of Fe 3 O 4 -Loaded Mesoporous Carbon Systems for Controlled Drug Delivery. ACS Appl Bio Mater 2021; 4(6): 5304-11.
[http://dx.doi.org/10.1021/acsabm.1c00422] [PMID: 35007011]
[245]
Qian G, Zhang L, Shuai Y, et al. 3D-printed CuFe2O4-MXene/PLLA antibacterial tracheal scaffold against implantation-associated infection. Appl Surf Sci 2023; 614: 156108.
[http://dx.doi.org/10.1016/j.apsusc.2022.156108]
[246]
Qian G, Wang J, Yang L, et al. A pH-responsive CaO2@ZIF-67 system endows a scaffold with chemodynamic therapy properties. J Mater Sci 2023; 58(3): 1214-28.
[http://dx.doi.org/10.1007/s10853-022-08103-w]
[247]
Yih TC, Al-Fandi M. Engineered nanoparticles as precise drug delivery systems. J Cell Biochem 2006; 97(6): 1184-90.
[http://dx.doi.org/10.1002/jcb.20796] [PMID: 16440317]
[248]
Hughes GA. Nanostructure-mediated drug delivery. Nanomedicine 2005; 1(1): 22-30.
[http://dx.doi.org/10.1016/j.nano.2004.11.009] [PMID: 17292054]
[249]
Landgraf W, Li N, Benson J. Polymer microcarrier exhibiting zero-order release. Drug Deliv Technol 2003; 3(1): 1-12.
[250]
Ochekpe NA, Olorunfemi PO, Ngwuluka NC. Nanotechnology and drug delivery part 2: Nanostructures for drug delivery. Trop J Pharm Res 2009; 8(3): 275-87.
[http://dx.doi.org/10.4314/tjpr.v8i3.44547]
[251]
Jannesari M, Varshosaz J, Morshed M, Zamani M. Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. Int J Nanomedicine 2011; 6: 993-1003.
[PMID: 21720511]
[252]
Cevc G, Vierl U. Nanotechnology and the transdermal routeA state of the art review and critical appraisal. J Control Release 2010; 141(3): 277-99.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.016] [PMID: 19850095]
[253]
Kingsley JD, Dou H, Morehead J, Rabinow B, Gendelman HE, Destache CJ. Nanotechnology: A focus on nanoparticles as a drug delivery system. J Neuroimmune Pharmacol 2006; 1(3): 340-50.
[http://dx.doi.org/10.1007/s11481-006-9032-4] [PMID: 18040810]
[254]
Peptu C, Rotaru R, Ignat L, et al. Nanotechnology approaches for pain therapy through transdermal drug delivery. Curr Pharm Des 2015; 21(42): 6125-39.
[http://dx.doi.org/10.2174/1381612821666151027152752] [PMID: 26503147]
[255]
Foley S, Crowley C, Smaihi M, et al. Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun 2002; 294(1): 116-9.
[http://dx.doi.org/10.1016/S0006-291X(02)00445-X] [PMID: 12054749]
[256]
Gonzalez K, Wilson LJ, Wu W, Nancollas GH. Synthesis and in vitro characterization of a tissue-Selective fullerene: Vectoring C60(OH)16AMBP to mineralized bone. Bioorg Med Chem 2002; 10(6): 1991-7.
[http://dx.doi.org/10.1016/S0968-0896(02)00049-4] [PMID: 11937359]
[257]
Khan N, Harun M, Nawaz A, Harjoh N, Wong T. Nanocarriers and their actions to improve skin permeability and transdermal drug delivery. Curr Pharm Des 2015; 21(20): 2848-66.
[http://dx.doi.org/10.2174/1381612821666150428145216] [PMID: 25925113]
[258]
Bagwe RP, Zhao X, Tan W. Bioconjugated luminescent nanoparticles for biological applications. J Dispers Sci Technol 2003; 24(3-4): 453-64.
[http://dx.doi.org/10.1081/DIS-120021801]
[259]
Grewal H, Dhakate SR, Goyal AK, Markandeywar TS, Malik B, Rath G. Development of transmucosal patch using nanofibers. Artif Cells Blood Substit Immobil Biotechnol 2012; 40(1-2): 146-50.
[http://dx.doi.org/10.3109/10731199.2011.637924] [PMID: 22192072]
[260]
Tseng YY, Liu SJ. Nanofibers used for the delivery of analgesics. Nanomedicine 2015; 10(11): 1785-800.
[http://dx.doi.org/10.2217/nnm.15.23] [PMID: 26080700]
[261]
Mendes AC, Gorzelanny C, Halter N, Schneider SW, Chronakis IS. Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery. Int J Pharm 2016; 510(1): 48-56.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.016] [PMID: 27286632]
[262]
Talegaonkar S, Mishra PR. Intranasal delivery: An approach to bypass the blood brain barrier. Indian J Pharmacol 2004; 36: 140-7.
[263]
Lu CT, Zhao YZ, Wong HL, Cai J, Peng L, Tian XQ. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine 2014; 9: 2241-57.
[http://dx.doi.org/10.2147/IJN.S61288] [PMID: 24872687]
[264]
Anselmo AC, Mitragotri S. An overview of clinical and commercial impact of drug delivery systems. J Control Release 2014; 190: 15-28.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.053] [PMID: 24747160]
[265]
Shaikh S, Nazim S, Khan T, Shaikh A, Zameeruddin M, Quazi A. Recent advances in pulmonary drug delivery system: A review. Int J Appl Pharm 2010; 2: 27-3.
[266]
Tiwari G, Tiwari R, Bannerjee SK, et al. Drug delivery systems: An updated review. Int J Pharm Investig 2012; 2(1): 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[267]
Bruschi ML, de Freitas O. Oral bioadhesive drug delivery systems. Drug Dev Ind Pharm 2005; 31(3): 293-310.
[http://dx.doi.org/10.1081/DDC-52073] [PMID: 15830725]
[268]
Ritu MG, Mohd I, Sunny S, Neeraj G. A clinical perspective on mucoadhesive buccal drug delivery systems. J Biomed Res 2014; 28(2): 81-97.
[http://dx.doi.org/10.7555/JBR.27.20120136] [PMID: 24683406]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy