Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Breaking Barriers: Current Advances and Future Directions in Mpox Therapy

Author(s): Bhumi M. Shah* and Palmi Modi

Volume 25, Issue 1, 2024

Published on: 27 December, 2023

Page: [62 - 76] Pages: 15

DOI: 10.2174/0113894501281263231218070841

Price: $65

Abstract

Background: Mpox, a newly discovered zoonotic infection, can be transmitted from animal to human and between humans. Serological and genomic studies are used to identify the virus.

Objective: Currently, there are no proven effective treatments for Mpox. Also, the safety and efficacy of intravenous vaccinia immune globulin, oral Tecovirimat (an inhibitor of intracellular viral release), and oral Brincidofovir (a DNA polymerase inhibitor) against the Mpox virus are uncertain, highlighting the need for more effective and safe treatments. As a result, drug repurposing has emerged as a promising strategy to identify previously licensed drugs that can be repurposed to treat Mpox.

Results: Various approaches have been employed to identify previously approved drugs that can target specific Mpox virus proteins, including thymidylate kinase, D9 decapping enzyme, E8 protein, Topoisomerase1, p37, envelope proteins (D13, A26, and H3), F13 protein, virus's main cysteine proteases, and DNA polymerase.

Conclusion: In this summary, we provide an overview of potential drugs that could be used to treat Mpox and discuss the underlying biological processes of their actions.

« Previous
Graphical Abstract

[1]
Li H, Zhang H, Ding K, et al. The evolving epidemiology of monkeypox virus. Cytokine Growth Factor Rev 2022; 68: 1-12.
[http://dx.doi.org/10.1016/j.cytogfr.2022.10.002] [PMID: 36244878]
[2]
Magnus P, Andersen EK, Petersen KB, Birch-Andersen A. A pox-like disease in cynomolgus monkeys. Acta Pathol Microbiol Scand 1959; 46(2): 156-76.
[http://dx.doi.org/10.1111/j.1699-0463.1959.tb00328.x]
[3]
Breman JG, Kalisa-Ruti , Steniowski MV, Zanotto E, Gromyko AI, Arita I. Human monkeypox, 1970-79. Bull World Health Organ 1980; 58(2): 165-82.
[PMID: 6249508]
[4]
Bunge EM, Hoet B, Chen L, et al. The changing epidemiology of human monkeypox—A potential threat? A systematic review. PLoS Negl Trop Dis 2022; 16(2): e0010141.
[http://dx.doi.org/10.1371/journal.pntd.0010141] [PMID: 35148313]
[5]
Centers for Disease Control and Prevention (CDC, 2003. Multistate outbreak of monkeypox--Illinois, Indiana, and Wisconsin MMWR Morb Mortal Wkly Rep 2003; 52(23): 537-40.
[PMID: 12803191]
[6]
Langkop CW, Austin C, Dworkin M, et al. Update: Multistate outbreak of monkeypox--Illinois, Indiana, Kansas, Missouri, Ohio, and Wisconsin, 2003. MMWR Morb Mortal Wkly Rep 2003; 52(24): 561-4.
[PMID: 12816106]
[7]
Reed KD, Melski JW, Graham MB, et al. The detection of monkeypox in humans in the Western Hemisphere. N Engl J Med 2004; 350(4): 342-50.
[http://dx.doi.org/10.1056/NEJMoa032299] [PMID: 14736926]
[8]
Harapan H, Ophinni Y, Megawati D, et al. Monkeypox: A comprehensive review. Viruses 2022; 14(10): 2155.
[http://dx.doi.org/10.3390/v14102155] [PMID: 36298710]
[9]
Alakunle EF, Okeke MI. Monkeypox virus: A neglected zoonotic pathogen spreads globally. Nat Rev Microbiol 2022; 20(9): 507-8.
[http://dx.doi.org/10.1038/s41579-022-00776-z] [PMID: 35859005]
[10]
Sahu A, Gaur M, Mahanandia NC, Subudhi E, Swain RP, Subudhi BB. Identification of core therapeutic targets for Monkeypox virus and repurposing potential of drugs against them: An in silico approach. Comput Biol Med 2023; 161: 106971.
[http://dx.doi.org/10.1016/j.compbiomed.2023.106971] [PMID: 37211001]
[11]
McCollum AM, Damon IK. Human monkeypox. Clin Infect Dis 2014; 58(2): 260-7.
[http://dx.doi.org/10.1093/cid/cit703] [PMID: 24158414]
[12]
Nolen LD, Osadebe L, Katomba J, et al. Extended human-to-human transmission during a monkeypox outbreak in the Democratic Republic of the Congo. Emerg Infect Dis 2016; 22(6): 1014-21.
[http://dx.doi.org/10.3201/eid2206.150579] [PMID: 27191380]
[13]
Lai CC, Hsu CK, Yen MY, Lee PI, Ko WC, Hsueh PR. Monkeypox: An emerging global threat during the COVID-19 pandemic. J Microbiol Immunol Infect 2022; 55(5): 787-94.
[http://dx.doi.org/10.1016/j.jmii.2022.07.004] [PMID: 35970757]
[14]
Reynolds M, McCollum A, Nguete B, Shongo Lushima R, Petersen B. Improving the care and treatment of monkeypox patients in low-resource settings: applying evidence from contemporary biomedical and smallpox biodefense research. Viruses 2017; 9(12): 380.
[http://dx.doi.org/10.3390/v9120380] [PMID: 29231870]
[15]
Sklenovská N, Van Ranst M. Emergence of monkeypox as the most important orthopoxvirus infection in humans. Front Public Health 2018; 6: 241.
[http://dx.doi.org/10.3389/fpubh.2018.00241] [PMID: 30234087]
[16]
Gurnani B, Kaur K, Chaudhary S, Balakrishnan H. Ophthalmic manifestations of monkeypox infection. Indian J Ophthalmol 2023; 71(5): 1687-97.
[http://dx.doi.org/10.4103/ijo.IJO_2032_22] [PMID: 37203020]
[17]
Paolini GV, Shapland RHB, van Hoorn WP, Mason JS, Hopkins AL. Global mapping of pharmacological space. Nat Biotechnol 2006; 24(7): 805-15.
[http://dx.doi.org/10.1038/nbt1228] [PMID: 16841068]
[18]
Koch U, Hamacher M, Nussbaumer P. Cheminformatics at the interface of medicinal chemistry and proteomics. Biochim Biophys Acta Proteins Proteomics 2014; 1844(1): 156-61.
[http://dx.doi.org/10.1016/j.bbapap.2013.05.010] [PMID: 23707564]
[19]
Hodos RA, Kidd BA, Shameer K, Readhead BP, Dudley JT. in silico methods for drug repurposing and pharmacology. Wiley Interdiscip Rev Syst Biol Med 2016; 8(3): 186-210.
[http://dx.doi.org/10.1002/wsbm.1337] [PMID: 27080087]
[20]
Piro RM. Network medicine: Linking disorders. Hum Genet 2012; 131(12): 1811-20.
[http://dx.doi.org/10.1007/s00439-012-1206-y] [PMID: 22825316]
[21]
Rasizadeh R, Shamekh A, Shiri Aghbash P, Bannazadeh Baghi H. Comparison of human monkeypox, chickenpox and smallpox: A comprehensive review of pathology and dermatological manifestations. Curr Med Res Opin 2023; 39(5): 751-60.
[http://dx.doi.org/10.1080/03007995.2023.2200122] [PMID: 37025009]
[22]
Shchelkunov SN, Totmenin AV, Babkin IV, et al. Human monkeypox and smallpox viruses: Genomic comparison. FEBS Lett 2001; 509(1): 66-70.
[http://dx.doi.org/10.1016/S0014-5793(01)03144-1] [PMID: 11734207]
[23]
Kugelman JR, Johnston SC, Mulembakani PM, et al. Genomic variability of monkeypox virus among humans, democratic republic of the congo. Emerg Infect Dis 2014; 20(2): 232-9.
[http://dx.doi.org/10.3201/eid2002.130118] [PMID: 24457084]
[24]
Seet BT, Johnston JB, Brunetti CR, et al. Poxviruses and immune evasion. Annu Rev Immunol 2003; 21(1): 377-423.
[http://dx.doi.org/10.1146/annurev.immunol.21.120601.141049] [PMID: 12543935]
[25]
Senkevich TG, Yutin N, Wolf YI, Koonin EV, Moss B. Ancient gene capture and recent gene loss shape the evolution of orthopoxvirus-host interaction genes. MBio 2021; 12(4): e01495-21.
[http://dx.doi.org/10.1128/mBio.01495-21] [PMID: 34253028]
[26]
Moss B. Membrane fusion during poxvirus entry. Semin Cell Dev Biol 2016; 60: 89-96.
[http://dx.doi.org/10.1016/j.semcdb.2016.07.015] [PMID: 27423915]
[27]
Kmiec D, Kirchhoff F. Monkeypox: A new threat? Int J Mol Sci 2022; 23(14): 7866.
[http://dx.doi.org/10.3390/ijms23147866] [PMID: 35887214]
[28]
Moss B. Poxvirus cell entry: How many proteins does it take? Viruses 2012; 4(5): 688-707.
[http://dx.doi.org/10.3390/v4050688] [PMID: 22754644]
[29]
Moss B. Poxvirus DNA replication. Cold Spring Harb Perspect Biol 2013; 5(9): a010199.
[http://dx.doi.org/10.1101/cshperspect.a010199] [PMID: 23838441]
[30]
Rampogu S, Kim Y, Kim SW, Lee KW. An overview on monkeypox virus: Pathogenesis, transmission, host interaction and therapeutics. Front Cell Infect Microbiol 2023; 13: 1076251.
[http://dx.doi.org/10.3389/fcimb.2023.1076251] [PMID: 36844409]
[31]
Whitworth J. Monkeypox is an outbreak of international concern. Trans R Soc Trop Med Hyg 2022; 116(9): 761-2.
[http://dx.doi.org/10.1093/trstmh/trac082] [PMID: 36088279]
[32]
Letafati A, Sakhavarz T. Monkeypox virus: A review. Microb Pathog 2023; 176: 106027.
[http://dx.doi.org/10.1016/j.micpath.2023.106027] [PMID: 36758824]
[33]
Ahmed SK, El-Kader RGA, Lorenzo JM, et al. Hospital-based salient prevention and control measures to counteract the 2022 monkeypox outbreak. Health Sci Rep 2023; 6(1): e1057.
[http://dx.doi.org/10.1002/hsr2.1057] [PMID: 36644314]
[34]
Sherwat A, Brooks JT, Birnkrant D, Kim P. Tecovirimat and the treatment of monkeypox—past, present, and future considerations. N Engl J Med 2022; 387(7): 579-81.
[http://dx.doi.org/10.1056/NEJMp2210125] [PMID: 35921403]
[35]
Ortiz-Saavedra B, León-Figueroa DA, Montes-Madariaga ES, et al. Antiviral treatment against monkeypox: A scoping review. Trop Med Infect Dis 2022; 7(11): 369.
[http://dx.doi.org/10.3390/tropicalmed7110369] [PMID: 36355910]
[36]
James SH, Prichard MN. Current and future therapies for herpes simplex virus infections: Mechanism of action and drug resistance. Curr Opin Virol 2014; 8: 54-61.
[http://dx.doi.org/10.1016/j.coviro.2014.06.003] [PMID: 25036916]
[37]
Johri N, Kumar D, Nagar P, Maurya A, Vengat M, Jain P. Clinical manifestations of human monkeypox infection and implications for outbreak strategy. Health Sci Rep 2022; 5: 100055.
[http://dx.doi.org/10.1016/j.hsr.2022.100055] [PMID: 36254190]
[38]
O’Shea J, Filardo TD, Morris SB, Weiser J, Petersen B, Brooks JT. Interim guidance for prevention and treatment of monkeypox in persons with HIV infection—United States, August 2022. MMWR Morb Mortal Wkly Rep 2022; 71(32): 1023-8.
[http://dx.doi.org/10.15585/mmwr.mm7132e4] [PMID: 35951495]
[39]
Grosenbach DW, Jordan R, Hruby DE. Development of the small-molecule antiviral ST-246 ® as a smallpox therapeutic. Future Virol 2011; 6(5): 653-71.
[http://dx.doi.org/10.2217/fvl.11.27] [PMID: 21837250]
[40]
Russo AT, Grosenbach DW, Chinsangaram J, et al. An overview of tecovirimat for smallpox treatment and expanded anti-orthopoxvirus applications. Expert Rev Anti Infect Ther 2021; 19(3): 331-44.
[http://dx.doi.org/10.1080/14787210.2020.1819791] [PMID: 32882158]
[41]
Zhang Y, Zhou Y, Pei R, Chen X, Wang Y. Potential threat of human pathogenic orthopoxviruses to public health and control strategies. Journal of Biosafety and Biosecurity 2023; 5(1): 1-7.
[http://dx.doi.org/10.1016/j.jobb.2022.12.004] [PMID: 36624850]
[42]
Andrei G, Fiten P, Krečmerová M, Opdenakker G, Topalis D, Snoeck R. Poxviruses bearing DNA polymerase mutations show complex patterns of cross-resistance. Biomedicines 2022; 10(3): 580.
[http://dx.doi.org/10.3390/biomedicines10030580] [PMID: 35327382]
[43]
Mucker EM, Goff AJ, Shamblin JD, et al. Efficacy of tecovirimat (ST-246) in nonhuman primates infected with variola virus (Smallpox). Antimicrob Agents Chemother 2013; 57(12): 6246-53.
[http://dx.doi.org/10.1128/AAC.00977-13] [PMID: 24100494]
[44]
Keckler MS, Salzer JS, Patel N, et al. IMVAMUNE® and ACAM2000® provide different protection against disease when administered postexposure in an intranasal monkeypox challenge prairie dog model. Vaccines 2020; 8(3): 396.
[http://dx.doi.org/10.3390/vaccines8030396] [PMID: 32698399]
[45]
Delaune D, Iseni F. Drug development against smallpox: Present and future. Antimicrob Agents Chemother 2020; 64(4): e01683-19.
[http://dx.doi.org/10.1128/AAC.01683-19] [PMID: 31932370]
[46]
Hoy SM. Tecovirimat: First global approval. Drugs 2018; 78(13): 1377-82.
[http://dx.doi.org/10.1007/s40265-018-0967-6] [PMID: 30120738]
[47]
Chakraborty S, Chandran D, Mohapatra RK, et al. Clinical management, antiviral drugs and immunotherapeutics for treating monkeypox. An update on current knowledge and futuristic prospects. Int J Surg 2022; 105: 106847.
[http://dx.doi.org/10.1016/j.ijsu.2022.106847] [PMID: 35995352]
[48]
Adler H, Gould S, Hine P, et al. Clinical features and management of human monkeypox: A retrospective observational study in the UK. Lancet Infect Dis 2022; 22(8): 1153-62.
[http://dx.doi.org/10.1016/S1473-3099(22)00228-6] [PMID: 35623380]
[49]
Matias WR, Koshy JM, Nagami EH, et al. Tecovirimat for the treatment of human monkeypox: An initial series from Massachusetts, United States. Open Forum Infect Dis 2022; 9(8): ofac377.
[http://dx.doi.org/10.1093/ofid/ofac377] [PMID: 35949403]
[50]
Desai AN, Thompson GR III, Neumeister SM, Arutyunova AM, Trigg K, Cohen SH. Compassionate use of tecovirimat for the treatment of monkeypox infection. JAMA 2022; 328(13): 1348-50.
[http://dx.doi.org/10.1001/jama.2022.15336] [PMID: 35994281]
[51]
Marty FM, Winston DJ, Chemaly RF, et al. A randomized, double-blind, placebo-controlled phase 3 trial of oral brincidofovir for cytomegalovirus prophylaxis in allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2019; 25(2): 369-81.
[http://dx.doi.org/10.1016/j.bbmt.2018.09.038] [PMID: 30292744]
[52]
Yu J, Mahendra Raj S. Efficacy of three key antiviral drugs used to treat orthopoxvirus infections: A systematic review. Global Biosecurity 2019; 1(1): 28.
[http://dx.doi.org/10.31646/gbio.12]
[53]
Magee WC, Hostetler KY, Evans DH. Mechanism of inhibition of vaccinia virus DNA polymerase by cidofovir diphosphate. Antimicrob Agents Chemother 2005; 49(8): 3153-62.
[http://dx.doi.org/10.1128/AAC.49.8.3153-3162.2005] [PMID: 16048917]
[54]
Kendle JB, Fan-Havard P. Cidofovir in the treatment of cytomegaloviral disease. Ann Pharmacother 1998; 32(11): 1181-92.
[http://dx.doi.org/10.1345/aph.17312] [PMID: 9825085]
[55]
Tollefson AE, Spencer JF, Ying B, Buller RML, Wold WSM, Toth K. Cidofovir and brincidofovir reduce the pathology caused by systemic infection with human type 5 adenovirus in immunosuppressed Syrian hamsters, while ribavirin is largely ineffective in this model. Antiviral Res 2014; 112: 38-46.
[http://dx.doi.org/10.1016/j.antiviral.2014.10.005] [PMID: 25453340]
[56]
Chan-Tack K, Harrington P, Bensman T, et al. Benefit-risk assessment for brincidofovir for the treatment of smallpox: U.S. Food and drug administration’s evaluation. Antiviral Res 2021; 195: 105182.
[http://dx.doi.org/10.1016/j.antiviral.2021.105182] [PMID: 34582915]
[57]
Alakunle E, Moens U, Nchinda G, Okeke MI. Monkeypox virus in Nigeria: Infection biology, epidemiology, and evolution. Viruses 2020; 12(11): 1257.
[http://dx.doi.org/10.3390/v12111257] [PMID: 33167496]
[58]
Aldhaeefi M, Rungkitwattanakul D, Unonu J, et al. The 2022 human monkeypox outbreak: Clinical review and management guidance. Am J Health Syst Pharm 2023; 80(2): 44-52.
[http://dx.doi.org/10.1093/ajhp/zxac300] [PMID: 36259674]
[59]
Huston J, Curtis S, Egelund EF. Brincidofovir: A novel agent for the treatment of smallpox. Ann Pharmacother 2023; 57(10): 1198-206.
[http://dx.doi.org/10.1177/10600280231151751] [PMID: 36688308]
[60]
Shchelkunova GA, Shchelkunov SN. Smallpox, monkeypox and other human orthopoxvirus infections. Viruses 2022; 15(1): 103.
[http://dx.doi.org/10.3390/v15010103] [PMID: 36680142]
[61]
Dubey AK. Monkeypox-an overview of transmission, clinical manifestations and treatment approaches. Indo-Glob. J Pharm Sci 2022; 12: 273-80.
[http://dx.doi.org/10.35652/IGJPS.2022.12036]
[62]
Lustig S, Maik-Rachline G, Paran N, et al. Effective post-exposure protection against lethal orthopoxviruses infection by vaccinia immune globulin involves induction of adaptive immune response. Vaccine 2009; 27(11): 1691-9.
[http://dx.doi.org/10.1016/j.vaccine.2009.01.038] [PMID: 19195492]
[63]
Ajmera KM, Goyal L, Pandit T, Pandit R. Monkeypox – An emerging pandemic. IDCases 2022; 29: e01587.
[http://dx.doi.org/10.1016/j.idcr.2022.e01587] [PMID: 35938150]
[64]
Rabie AM. Teriflunomide: A possible effective drug for the comprehensive treatment of COVID-19. Curr Res Pharmacol Drug Discov 2021; 2: 100055.
[http://dx.doi.org/10.1016/j.crphar.2021.100055] [PMID: 34870153]
[65]
Rabaan AA, Abas AH, Tallei TE, et al. Monkeypox outbreak 2022: What we know so far and its potential drug targets and management strategies. J Med Virol 2023; 95(1): e28306.
[http://dx.doi.org/10.1002/jmv.28306] [PMID: 36372558]
[66]
Rizk JG, Lippi G, Henry BM, Forthal DN, Rizk Y. Prevention and treatment of monkeypox. Drugs 2022; 82(9): 957-63.
[http://dx.doi.org/10.1007/s40265-022-01742-y] [PMID: 35763248]
[67]
Lum FM, Torres-Ruesta A, Tay MZ, et al. Monkeypox: disease epidemiology, host immunity and clinical interventions. Nat Rev Immunol 2022; 22(10): 597-613.
[http://dx.doi.org/10.1038/s41577-022-00775-4] [PMID: 36064780]
[68]
Poland GA, Kennedy RB, Tosh PK. Prevention of monkeypox with vaccines: A rapid review. Lancet Infect Dis 2022; 22(12): e349-58.
[http://dx.doi.org/10.1016/S1473-3099(22)00574-6] [PMID: 36116460]
[69]
Saied AA, Dhawan M, Metwally AA, Fahrni ML, Choudhary P, Choudhary OP. Disease history, pathogenesis, diagnostics, and therapeutics for human monkeypox disease: A comprehensive review. Vaccines 2022; 10(12): 2091.
[http://dx.doi.org/10.3390/vaccines10122091] [PMID: 36560502]
[70]
Ullah A, Shahid FA, Haq MU, et al. An integrative reverse vaccinology, immunoinformatic, docking and simulation approaches towards designing of multi-epitopes based vaccine against monkeypox virus. J Biomol Struct Dyn 2022; 1-4
[http://dx.doi.org/10.1080/07391102.2022.2125441] [PMID: 36129135]
[71]
Pandya VS, Mehta V, Miraj M, et al. Monkeypox: An unfamiliar virus—clinical and epidemiological characteristics, diagnosis, and treatment with special emphasis on oral health. Diagnostics 2022; 12(11): 2749.
[http://dx.doi.org/10.3390/diagnostics12112749] [PMID: 36359593]
[72]
Sah R, Humayun M, Baig E, et al. FDA’s authorized “JYNNEOS” vaccine for counteracting monkeypox global public health emergency; an update – Correspondence. Int J Surg 2022; 107: 106971.
[http://dx.doi.org/10.1016/j.ijsu.2022.106971] [PMID: 36330988]
[73]
Abdelaal A, Reda A, Lashin BI, et al. Preventing the next pandemic: Is live vaccine efficacious against monkeypox, or is there a need for killed virus and mRNA vaccines? Vaccines 2022; 10(9): 1419.
[http://dx.doi.org/10.3390/vaccines10091419] [PMID: 36146497]
[74]
Volkmann A, Williamson AL, Weidenthaler H, et al. The Brighton Collaboration standardized template for collection of key information for risk/benefit assessment of a Modified Vaccinia Ankara (MVA) vaccine platform. Vaccine 2021; 39(22): 3067-80.
[http://dx.doi.org/10.1016/j.vaccine.2020.08.050] [PMID: 33077299]
[75]
Ophinni Y, Frediansyah A, Sirinam S, et al. Monkeypox: Immune response, vaccination and preventive efforts. Narra J 2022; 2(3)
[http://dx.doi.org/10.52225/narra.v2i3.90]
[76]
Gaeta F, De Caro F, Franci G, Pagliano P, Vajro P, Mandato C. Monkeypox infection 2022: An updated narrative review focusing on the neonatal and pediatric population. Children 2022; 9(12): 1832.
[http://dx.doi.org/10.3390/children9121832] [PMID: 36553276]
[77]
Jayasinghe M, Caldera D, Prathiraja O, et al. Waking up to monkeypox in the midst of COVID-19. Cureus 2022; 14(10): e30920.
[http://dx.doi.org/10.7759/cureus.30920] [PMID: 36465725]
[78]
Shamim MA, Padhi BK, Satapathy P, et al. The use of antivirals in the treatment of human monkeypox outbreaks: a systematic review: antivirals in treatment of monkeypox: Systematic review. Int J Infect Dis 2022.
[http://dx.doi.org/10.1016/j.ijid.2022.11.040] [PMID: 36470502]
[79]
Kim SB, Jung J, Peck KR. Monkeypox: The resurgence of forgotten things. Epidemiol Health 2022; 44: e2022082.
[http://dx.doi.org/10.4178/epih.e2022082] [PMID: 36228673]
[80]
Malik S, Ahmad T, Ahsan O, Muhammad K, Waheed Y. Recent developments in mpox prevention and treatment options. Vaccines 2023; 11(3): 500.
[http://dx.doi.org/10.3390/vaccines11030500] [PMID: 36992085]
[81]
Sahoo AK, Augusthian PD, Muralitharan I, et al. in silico identification of potential inhibitors of vital monkeypox virus proteins from FDA approved drugs. Mol. Diver 2022; pp. 1-6.
[http://dx.doi.org/10.1007/s11030-022-10550-1]
[82]
Arasu MV, Vijayaragavan P, Purushothaman S, et al. Molecular docking of monkeypox (mpox) virus proteinase with FDA approved lead molecules. J Infect Public Health 2023; 16(5): 784-91.
[http://dx.doi.org/10.1016/j.jiph.2023.03.004] [PMID: 36958173]
[83]
Lam HYI, Guan JS, Mu Y. in silico repurposed drugs against monkeypox virus. Molecules 2022; 27(16): 5277.
[http://dx.doi.org/10.3390/molecules27165277] [PMID: 36014515]
[84]
Preet G, Oluwabusola ET, Milne BF, Ebel R, Jaspars M. Computational repurposing of mitoxantrone-related structures against monkeypox virus: A molecular docking and 3D pharmacophore study. Int J Mol Sci 2022; 23(22): 14287.
[http://dx.doi.org/10.3390/ijms232214287] [PMID: 36430762]
[85]
Lam TP, Tran VH, Mai TT, et al. Identification of diosmin and flavin adenine dinucleotide as repurposing treatments for monkeypox virus: A computational study. Int J Mol Sci 2022; 23(19): 11570.
[http://dx.doi.org/10.3390/ijms231911570] [PMID: 36232872]
[86]
Srivastava V, Naik B, Godara P, Das D, Mattaparthi VSK, Prusty D. Identification of FDA-approved drugs with triple targeting mode of action for the treatment of monkeypox: A high throughput virtual screening study. Mol Divers 2023; 1-5: 1-15.
[http://dx.doi.org/10.1007/s11030-023-10636-4] [PMID: 37079243]
[87]
Gulati P, Chadha J, Harjai K, Singh S. Targeting envelope proteins of poxviruses to repurpose phytochemicals against monkeypox: An in silico investigation. Front Microbiol 2023; 13: 1073419.
[http://dx.doi.org/10.20944/preprints202210.0302.v1]
[88]
Ali Y, Imtiaz H, Tahir MM, et al. Fragment-based approaches identified tecovirimat-competitive novel drug candidate for targeting the F13 protein of the monkeypox virus. Viruses 2023; 15(2): 570.
[http://dx.doi.org/10.3390/v15020570] [PMID: 36851785]
[89]
Bansal P, Gupta M, Sangwan S, et al. Computational purposing phytochemicals against cysteine protease of monkeypox virus: An in-silico approach. J Pure Appl Microbiol 2022; 16 (Suppl. 1): 3144-54.
[http://dx.doi.org/10.22207/JPAM.16.SPL1.04]
[90]
Sarkar K, Das RK. Repurposing of existing pharmaceutical drugs against monkey-pox virus: An in silico study. Anal Chem Lett 2022; 12(6): 655-70.
[http://dx.doi.org/10.1080/22297928.2022.2157224]
[91]
Kumari S, Chakraborty S, Ahmad M, Kumar V, Tailor PB, Biswal BK. Identification of probable inhibitors for the DNA polymerase of the Monkeypox virus through the virtual screening approach. Int J Biol Macromol 2023; 229: 515-28.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.12.252] [PMID: 36584781]
[92]
Dutt M, Kumar A, Rout M, et al. Drug repurposing for Mpox: Discovery of small molecules as potential inhibitors against DNA-dependent RNA polymerase using molecular modeling approach. J Cell Biochem 2023; 124(5): 701-15.
[http://dx.doi.org/10.1002/jcb.30397] [PMID: 36946432]
[93]
Altayb HN. Fludarabine, a potential DNA-dependent RNA polymerase inhibitor, as a prospective drug against monkeypox virus: A computational approach. Pharmaceuticals 2022; 15(9): 1129.
[http://dx.doi.org/10.3390/ph15091129] [PMID: 36145351]
[94]
Akazawa D, Ohashi H, Hishiki T, et al. Potential anti-monkeypox virus activity of atovaquone, mefloquine, and molnupiravir, and their potential use as treatments. BioRxiv 2022.
[http://dx.doi.org/10.1101/2022.08.02.502485]
[95]
Rabie AM, Abdalla M. Evaluation of a series of nucleoside analogs as effective anticoronaviral-2 drugs against the Omicron-B.1.1.529/BA.2 subvariant: A repurposing research study. Med Chem Res 2023; 32(2): 326-41.
[http://dx.doi.org/10.1007/s00044-022-02970-3] [PMID: 36593869]
[96]
Dubey A, Alawi MM, Alandijany TA, et al. Exploration of microbially derived natural compounds against monkeypox virus as viral core cysteine proteinase inhibitors. Viruses 2023; 15(1): 251.
[http://dx.doi.org/10.3390/v15010251] [PMID: 36680291]
[97]
Khan A, Adil S, Qudsia HA, Waheed Y, Alshabrmi FM, Wei DQ. Structure-based design of promising natural products to inhibit thymidylate kinase from Monkeypox virus and validation using free energy calculations. Comput Biol Med 2023; 158: 106797.
[http://dx.doi.org/10.1016/j.compbiomed.2023.106797] [PMID: 36966556]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy