Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Anticancer Potential of Hemidesmus indicus-enriched Pt/Au Bimetallic Nanoparticles against Human Breast and Skin Cancer Cell Lines

Author(s): Vinay A. Bagal*, Vijay Naresh, John I. Disouza, Uma G. Mali and Somnath Bhinge

Volume 13, Issue 6, 2023

Published on: 28 November, 2023

Article ID: e281123223950 Pages: 11

DOI: 10.2174/0122106812266542231117073659

Price: $65

Abstract

Background: Worldwide, cancer has become the most disastrous disease, causing an enormous number of deaths in the population. According to GLOBOCON, in the year 2020, there were 1.93 crore cases of cancer reported and 10 million deaths caused by cancer.

Methods: Metallic nanoparticles, such as gold, silver, and platinum, which possess properties of bioenvironmental stability, safety, and lower toxicity, have become preferred materials for drug delivery. Bimetallic nanoparticles, in particular, have shown enhanced optical, magnetic, electrical, catalytic, and medicinal properties compared to monometallic nanoparticles. We have developed gold-platinum PtAuBNPs containing H. indicus methanolic extract using a green synthesis approach. The PtAuBNPs were characterized by UV-visible spectroscopy, particle size analysis, zeta potential measurement, and surface characteristics using TEM, XRD, Raman spectroscopy, and DSC. The anticancer activity of PtAuBNPs was investigated using two distinctive cell lines, MCF-7 and B16F10.

Results: The change in the colour of the prepared systems after incubation indicated the development of nanoparticles, as analysed by UV spectroscopy. The PtAuBNPs showed a particle size of 243.3 nm and a zeta potential of -14.4 mV. TEM analysis showed the hexagonal and cubic nature of the nanoparticles. XRD analysis indicated the crystalline nature of the nanoparticles. The bimetallic nanoparticles showed greater anticancer activity against the breast cancer cell line (MCF-7) and the skin cancer cell line (B16F10), with IC50 values of 35.52μg mL-1and 30.22 μg mL-1, respectively, which have been found to be lower than the standard 5-FU.

Conclusion: The development of PtAuBNPs may pave the way for a new era of enhancing the anticancer activity of herbal extracts through the synergistic effects of gold and platinum metals. The developed PtAuBNPs have been shown to exhibit excellent anticancer activity against skin and breast cancer.

Graphical Abstract

[1]
Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol., 2022, 23(1), 74-88.
[http://dx.doi.org/10.1038/s41580-021-00404-3] [PMID: 34508254]
[2]
J. Saller, J. Boyle, T.A. Molecular pathology of lung cancer. Cold Spring Harb. Perspect. Med., 2022, 12(3), a037812.
[http://dx.doi.org/10.1101/cshperspect.a037812] [PMID: 34751163]
[3]
Cheung, E.C.; Vousden, K.H. The role of ROS in tumour development and progression. Nat. Rev. Cancer, 2022, 22(5), 280-297.
[http://dx.doi.org/10.1038/s41568-021-00435-0] [PMID: 35102280]
[4]
Kumari, S.; Sharma, V.; Tiwari, R.; Maurya, J.P.; Subudhi, B.B.; Senapati, D. Therapeutic potential of p53 reactivation in prostate cancer: Strategies and opportunities. Eur. J. Pharmacol., 2022, 919, 174807.
[http://dx.doi.org/10.1016/j.ejphar.2022.174807] [PMID: 35151649]
[5]
Chhikara, B.S.; Parang, K. Global Cancer Statistics 2022: The trends projection analysis. Chem. Biol. Lett., 2023, 10(1), 451.
[6]
Allen, T.M. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer, 2002, 2(10), 750-763.
[http://dx.doi.org/10.1038/nrc903] [PMID: 12360278]
[7]
Yao, X.; Panichpisal, K.; Kurtzman, N.; Nugent, K. Cisplatin nephrotoxicity: A review. Am. J. Med. Sci., 2007, 334(2), 115-124.
[http://dx.doi.org/10.1097/MAJ.0b013e31812dfe1e] [PMID: 17700201]
[8]
Pfeffer, B.; Tziros, C.; Katz, R.J. Current concepts of anthracyclinecardiotoxicity: Pathogenesis, diagnosis and prevention. Br. J. Cardiol., 2009, 16, 85-89.
[9]
Cheng, Z.; Li, M.; Dey, R.; Chen, Y. Nanomaterials for cancer therapy: Current progress and perspectives. J. Hematol. Oncol., 2021, 14(1), 85.
[http://dx.doi.org/10.1186/s13045-021-01096-0] [PMID: 34059100]
[10]
Rafieian-Kopaie, M.; Nasri, H. On the occasion of world cancer day 2015; the possibility of cancer prevention or treatment with antioxidants: The ongoing cancer prevention researches. Int. J. Prev. Med., 2015, 6(1), 108.
[http://dx.doi.org/10.4103/2008-7802.169077] [PMID: 26644907]
[11]
Lachenmayer, A.; Alsinet, C.; Chang, C.Y.; Llovet, J.M. Molecular approaches to treatment of hepatocellular carcinoma. Dig. Liver Dis., 2010, 42((0 3)(Suppl. 3)), S264-S272.
[http://dx.doi.org/10.1016/S1590-8658(10)60515-4] [PMID: 20547313]
[12]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70(3), 461-477.
[http://dx.doi.org/10.1021/np068054v] [PMID: 17309302]
[13]
Nelson, V.; Sahoo, N.K.; Sahu, M.; Sudhan, H.; Pullaiah, C.P.; Muralikrishna, K.S. In vitro anticancer activity of Eclipta alba whole plant extract on colon cancer cell HCT-116. BMC Complementary Medicine and Therapies, 2020, 20(1), 355.
[http://dx.doi.org/10.1186/s12906-020-03118-9] [PMID: 33225921]
[14]
Khalid, M.; Amayreh, M.; Salah, S.Z.; Rimawi, F.A.; Ghassab, M.; Alanezi, A.A.; Wedian, F.; Alasmari, F.; Shalayel, M.H.F. Assessment of antioxidant, antimicrobial, and anticancer activities of Sisymbrium officinale plant extract. Heliyon, 2022, 8(9), e10477.
[15]
Balasubramanian, K.; Padma, P.R. Anticancer activity of zea mays leaf extracts on oxidative stress-induced Hep2 cells. J. Acupunct. Meridian Stud., 2013, 6(3), 149-158.
[16]
Zahra, B.Z.; Ardakani, T.M.; Amir Hossein, D.H.; Hassan, B. Evaluation of the antioxidant and anticancer activities of hydroalcoholic extracts of thymus daenensis Cˇ elak and Stachyspilifera. Benth. J. Toxicol., 2022, 8, Article ID: 1924265.
[17]
Rahier, N.J.; Thomas, C.J.; Hecht, S.M. Camptothecin and its analogs. Anticancer agents from natural products; Talylor and Francis, 2005, pp. 5-22.
[18]
Barzegar, E.; Fouladdel, S.; Movahhed, T.K.; Atashpour, S.; Ghahremani, M.H.; Ostad, S.N.; Azizi, E. Effects of berberine on proliferation, cell cycle distribution and apoptosis of human breast cancer T47D and MCF7 cell lines. Iran. J. Basic Med. Sci., 2015, 18(4), 334-342.
[PMID: 26019795]
[19]
Lauritano, C.; Andersen, J.H.; Hansen, E.; Albrigtsen, M.; Escalera, L.; Esposito, F.; Helland, K.; Hanssen, K.Ø.; Romano, G.; Ianora, A. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front. Mar. Sci., 2016, 3, 68.
[http://dx.doi.org/10.3389/fmars.2016.00068]
[20]
Park, Y.J.; Wen, J.; Bang, S.; Park, S.W.; Song, S.Y. [6]-Gingerol induces cell cycle arrest and cell death of mutant p53-expressing pancreatic cancer cells. Yonsei Med. J., 2006, 47(5), 688-697.
[http://dx.doi.org/10.3349/ymj.2006.47.5.688] [PMID: 17066513]
[21]
Oyagbemi, A.A.; Saba, A.B.; Azeez, O.I. Capsaicin: A novel chemopreventive molecule and its underlying molecular mechanisms of action. Indian J. Cancer, 2010, 47(1), 53-58.
[http://dx.doi.org/10.4103/0019-509X.58860] [PMID: 20071791]
[22]
Hoshyar, R.; Mollaei, H. A comprehensive review on anticancer mechanisms of the main carotenoid of saffron, crocin. J. Pharm. Pharmacol., 2017, 69(11), 1419-1427.
[http://dx.doi.org/10.1111/jphp.12776] [PMID: 28675431]
[23]
Carini, F.; David, S.; Tomasello, G.; Mazzola, M.; Damiani, P.; Rappa, F.; Battaglia, L.; Gerges Geagea, A.; Jurjus, R.; Leone, A. Colorectal cancer: An update on the effects of lycopene on tumor progression and cell proliferation. J. Biol. Regul. Homeost. Agents, 2017, 31(3), 769-774.
[PMID: 28685524]
[24]
Khan, N.; Afaq, F.; Khusro, F.H.; Adhami, V.M.; Suh, Y.; Mukhtar, H. Dual inhibition of PI3K/AKT and mTORsignaling in human nonsmall cell lung cancer cells by a dietary flavonoid fisetin. Int. J. Cancer, 2012, 130, 1695.
[http://dx.doi.org/10.1002/ijc.26178] [PMID: 21618507]
[25]
Patel, K.R.; Brown, V.A.; Jones, D.J.L.; Britton, R.G.; Hemingway, D.; Miller, A.S.; West, K.P.; Booth, T.D.; Perloff, M.; Crowell, J.A.; Brenner, D.E.; Steward, W.P.; Gescher, A.J.; Brown, K. Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res., 2010, 70(19), 7392-7399.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2027] [PMID: 20841478]
[26]
Varoni, E.M.; Lo Faro, A.F.; Sharifi-Rad, J.; Iriti, M. Anticancer molecular mechanisms of resveratrol. Front. Nutr., 2016, 3, 8.
[http://dx.doi.org/10.3389/fnut.2016.00008] [PMID: 27148534]
[27]
Vallianou, N.G.; Evangelopoulos, A.; Schizas, N.; Kazazis, C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res., 2015, 35(2), 645-651.
[PMID: 25667441]
[28]
Kasala, E.R. BodduluSru, L.N.; Madana, R.; Gogoi, R.; Barua, C.C. Chemo preventive and therapeutic potential of chrysin in cancer: Mechanistic perspectives. Toxicol. Lett., 2015, 233, 214-225.
[http://dx.doi.org/10.1016/j.toxlet.2015.01.008] [PMID: 25596314]
[29]
Renuka, M.; Vijayakumar, N.; Ramakrishnan, A. Chrysin, a flavonoid attenuates histological changes of hyperammonemic rats: A dose dependent study. Biomed. Pharmacother., 2016, 82, 345-354.
[http://dx.doi.org/10.1016/j.biopha.2016.05.013] [PMID: 27470372]
[30]
Das, S.; Bisht, S.S. The bioactive and therapeutic potential of hemidesmusindicus R. Br. (Indian Sarsaparilla) root. Phytother. Res., 2013, 27(6), 791-801.
[31]
Randive, D.S.; Shejawal, K.P.; Bhinge, S.D.; Bhutkar, M.A.; Patil, P.D.; Jadhav, N.R.; Patil, S.B. Green synthesis of gold nanoparticles of isolated citrus bioflavonoid from orange: Characterization and in vitro cytotoxicity against colon cancer cellines COLO 320DM and HT29. INDIAN DRUGS, 2020, 57(8), 61-69.
[http://dx.doi.org/10.53879/id.57.08.12514]
[32]
Randive, D.S.; Gavade, A.S.; Shejawal, K.P.; Bhutkar, M.A.; Bhinge, S.D.; Jadhav, N.R. Colon targeted dosage form of Capecitabine using folic acid anchored modified carbon nanotube: In vitro cytotoxicity, apoptosis and in vivo roentgenographic study. Drug Dev. Ind. Pharm., 2021, 47(9), 1401-1412.
[http://dx.doi.org/10.1080/03639045.2021.1994988] [PMID: 34663149]
[33]
Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci., 2020, 7, 193.
[http://dx.doi.org/10.3389/fmolb.2020.00193] [PMID: 32974385]
[34]
Chavan, R.R.; Bhinge, S.D.; Bhutkar, M.A.; Randive, D.S.; Wadkar, G.H.; Todkar, S.S.; Urade, M.N. Characterization, antioxidant, antimicrobial and cytotoxic activities of green synthesized silver and iron nanoparticles using alcoholic Blumea eriantha DC plant extract. Mater. Today Commun., 2020, 24, 101320.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101320]
[35]
Randive, D.S.; Shejawal, K.P.; Bhinge, S.D.; Bhutkar, M.A.; Wadkar, G.H.; Jadhav, N.R. Green synthesis of Silver and iron nanoparticles of isolated proanthrocynidine: Its Characterization, antioxidant, antimicrobial and cytotoxic activities against COLO320DM and HT29. J. Genet. Eng. Biotechnol., 2020, 18S, 43.
[36]
Pimentel-Moral, S.; Teixeira, M.C.; Fernandes, A.R.; Arráez-Román, D.; Martínez-Férez, A.; Segura-Carretero, A.; Souto, E.B. Lipid nanocarriers for the loading of polyphenols-a comprehensive review. Adv. Colloid Interface Sci., 2018, 260, 85-94.
[http://dx.doi.org/10.1016/j.cis.2018.08.007] [PMID: 30177215]
[37]
da Volta Soares, M.; Oliveira, M.R.; dos Santos, E.P.; de Brito Gitirana, L.; Barbosa, G.M.; Quaresma, C.H.; Ricci-Júnior, E. Nanostructured delivery system for zinc phthalocyanine: Preparation, characterization, and phototoxicity study against human lung adenocarcinoma A549 cells. Int. J. Nanomedicine, 2011, 6, 227-238.
[PMID: 21499420]
[38]
Magro, M.; Venerando, A.; Macone, A.; Canettieri, G.; Agostinelli, E.; Vianello, F. Nanotechnology-based strategies to develop new anticancer therapies. Biomolecules, 2020, 10(5), 735.
[http://dx.doi.org/10.3390/biom10050735] [PMID: 32397196]
[39]
Berta, L.; Coman, N.A.; Rusu, A.; Tanase, C. A review on plant-mediated synthesis of bimetallic nanoparticles, characterisation and their biological applications. Materials, 2021, 14(24), 7677.
[http://dx.doi.org/10.3390/ma14247677] [PMID: 34947271]
[40]
Maney, V.; Singh, M. The synergism of platinum-gold bimetallic nanoconjugates enhances 5-fluorouracil delivery in vitro. Pharmaceutics, 2019, 11(9), 439.
[http://dx.doi.org/10.3390/pharmaceutics11090439] [PMID: 31480562]
[41]
Chavan, R.R.; Bhinge, S.D.; Bhutkar, M.A.; Randive, D.S.; Wadkar, G.H.; Todkar, S.S. In vivo and in vitro hair growth-promoting effect of silver and iron nanoparticles synthesized via Blumeaeriantha DC plant extract. J. Cosmet. Dermatol., 2020, 1-15.
[PMID: 32897621]
[42]
Sawant, V.J.; Bamane, S.R.; Shejwal, R.V.; Patil, S.B. Comparison of drug delivery potentials of surface functionalized cobalt and zinc ferrite nanohybrids for curcumin in to MCF-7 breast cancer cells. J. Magn. Magn. Mater., 2016, 417, 222-229.
[http://dx.doi.org/10.1016/j.jmmm.2016.05.061]
[43]
Hemanth, K.M.; Sunil, K.J.; Spandana, V.; Sandeep, B.P. Anticancer activity of terpenoid saponin extract of Psidium guajava on MCF-7 cancer cell line using DAPI and MTT assays. Afr. J. Pharm. Pharmacol., 2021, 15(12), 206-211.
[http://dx.doi.org/10.5897/AJPP2020.5216]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy