Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Investigation of Therapeutic Potential of Biosynthesized Silver and Gold Nanoparticles Using Extract of Wrightia tinctoria

Author(s): Shivani V. Kadam*, Chandrakant S. Magdum, Sandip R. Kane, Mangesh A. Bhutkar*, Dheeraj S. Randive, Somnath D. Bhinge and Kailas D. Sonawane

Volume 14, Issue 2, 2024

Published on: 10 October, 2023

Article ID: e101023222010 Pages: 13

DOI: 10.2174/0122106812264073230929170021

Price: $65

Abstract

Background: In Indian traditional medicine, the seeds and bark of Wrightia tinctoria are utilized as remedies for antidiarrheal and antidysenteric purposes, as well as for other medicinal uses.

Aim: The primary aim of the study was to explore the green synthesis of silver and gold nanoparticles by employing an extract obtained from the Wrightia tinctoria plant and to explore their potential medicinal properties.

Objective: This study involved the characterization of the nanoparticles in terms of their properties and quality, as well as an investigation of their potential anti-bacterial, anticancer, and antiinflammatory properties.

Methods: Various characterization techniques, including UV spectroscopy, XRD spectra, FTIR, SEM, particle size and zeta potential analysis, were used in this study for the synthesized nanoparticles. Our study investigated the impact of concentration, pH, and incubation time on nanoparticle synthesis, providing a comprehensive description of the synthesis procedure for both silver and gold nanoparticles.

Result: Experimental findings confirmed that silver and gold nanoparticles derived from Wrightia tinctoria exhibited irregular shape, with an average diameter ranging from approximately 0.08 to 0.34 μm and 0.09 to 0.30 μm, respectively. Appreciably, the biologically synthesized WTAgNPs and WTAuNPs demonstrated promising antibacterial, anticancer, and anti-inflammatory properties without any signs of toxicity. The enhanced biological activity of WTAgNPs and WTAuNPs can be attributed to their distinctive properties at the nanoscale, as both exhibit lower polydispersity and average particle size, contributing to increased reactivity and interactions with biological systems.

Conclusion: The nanoparticles synthesized through the biogenic approach using Wrightia tinctoria extract have immense potential for a wide range of pharmaceutical applications.

Graphical Abstract

[1]
Min, Y.; Caster, J.M.; Eblan, M.J.; Wang, A.Z. Clinical translation of nanomedicine. Chem. Rev., 2015, 115(19), 11147-11190.
[http://dx.doi.org/10.1021/acs.chemrev.5b00116] [PMID: 26088284]
[2]
Hua, S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front. Pharmacol., 2015, 6, 219.
[http://dx.doi.org/10.3389/fphar.2015.00219] [PMID: 26483690]
[3]
Barenholz, Y.C. Doxil®: The first FDA-approved nano-drug: Lessons learned. J. Control. Release, 2012, 160(2), 117-134.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[4]
Moyer, C.A. A treatment of burns. Trans. Stud. Coll. Physicians Phila., 1965, 33(2), 53-103.
[PMID: 5832646]
[5]
Henglein, A. Physicochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem., 1993, 97(21), 5457-5471.
[http://dx.doi.org/10.1021/j100123a004]
[6]
Chavan, R.R.; Bhinge, S.D.; Bhutkar, M.A.; Randive, D.S.; Wadkar, G.H.; Todkar, S.S.; Urade, M.N. Characterization, antioxidant, antimicrobial and cytotoxic activities of green synthesized silver and iron nanoparticles using alcoholic Blumea eriantha DC plant extract. Mater. Today Commun., 2020, 24, 101320.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101320]
[7]
Shejawal, K.P.; Randive, D.S.; Bhinge, S.D.; Bhutkar, M.A.; Wadkar, G.H.; Jadhav, N.R. Green synthesis of silver and iron nanoparticles of isolated proanthocyanidin: Its characterization, antioxidant, antimicrobial, and cytotoxic activities against COLO320DM and HT29. J. Genet. Eng. Biotechnol., 2020, 18(1), 43.
[http://dx.doi.org/10.1186/s43141-020-00058-2] [PMID: 32816164]
[8]
Batarseh, K.I. Anomaly and correlation of killing in the therapeutic properties of silver (I) chelation with glutamic and tartaric acids. J. Antimicrob. Chemother., 2004, 54(2), 546-548.
[http://dx.doi.org/10.1093/jac/dkh349] [PMID: 15243026]
[9]
Ravindran, A.; Chandran, P.; Khan, S.S. Biofunctionalized silver nanoparticles: Advances and prospects. Colloids Surf. B Biointerfaces, 2013, 105, 342-352.
[http://dx.doi.org/10.1016/j.colsurfb.2012.07.036] [PMID: 23411404]
[10]
Randive, D.S.; Shejawal, K.P.; Bhinge, S.D.; Bhutkar, M.A.; Patil, P.D.; Jadhav, N.R.; Patil, S.B. Green synthesis of gold nanoparticles of isolated citrus bioflavonoid from orange: Characterization and in vitro cytotoxicity against colon cancer cellines COLO 320DM and HT29. Ind. Drugs, 2020, 57(8), 61-69.
[http://dx.doi.org/10.53879/id.57.08.12514]
[11]
Hayat, M.A. Colloidal gold: Principles, methods, and applications; Academic Press: San Diego, 1989.
[12]
Edwards, P.P.; Thomas, J.M. Gold in a metallic divided state: From Faraday to present-day nanoscience. Angew. Chem. Int. Ed., 2007, 46(29), 5480-5486.
[http://dx.doi.org/10.1002/anie.200700428] [PMID: 17562538]
[13]
Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S.E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed., 2009, 48(1), 60-103.
[http://dx.doi.org/10.1002/anie.200802248] [PMID: 19053095]
[14]
Chen, H.; Kou, X.; Yang, Z.; Ni, W.; Wang, J. Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir, 2008, 24(10), 5233-5237.
[http://dx.doi.org/10.1021/la800305j] [PMID: 18435552]
[15]
Afrooz, A.R.M.N.; Sivalapalan, S.T.; Murphy, C.J.; Hussain, S.M.; Schlager, J.J.; Saleh, N.B. Spheres vs. rods: The shape of gold nanoparticles influences aggregation and deposition behavior. Chemosphere, 2013, 91(1), 93-98.
[http://dx.doi.org/10.1016/j.chemosphere.2012.11.031] [PMID: 23246723]
[16]
Zou, L.; Wang, H.; He, B.; Zeng, L.; Tan, T.; Cao, H.; He, X.; Zhang, Z.; Guo, S.; Li, Y. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics, 2016, 6(6), 762-772.
[http://dx.doi.org/10.7150/thno.14988] [PMID: 27162548]
[17]
Lu, X.; Dong, X.; Zhang, K.; Han, X.; Fang, X.; Zhang, Y. A gold nanorods-based fluorescent biosensor for the detection of hepatitis B virus DNA based on fluorescence resonance energy transfer. Analyst , 2013, 138(2), 642-650.
[http://dx.doi.org/10.1039/C2AN36099C] [PMID: 23172079]
[18]
Love, A.J.; Makarov, V.V.; Sinitsyna, O.V.; Shaw, J.; Yaminsky, I.V.; Kalinina, N.O.; Taliansky, M.E. A genetically modified tobacco mosaic virus that can produce gold nanoparticles from a metal salt precursor. Front. Plant Sci., 2015, 6, 984.
[http://dx.doi.org/10.3389/fpls.2015.00984] [PMID: 26617624]
[19]
Lohse, S.E.; Murphy, C.J. The quest for shape control: A history of gold nanorodsynthesis. Chem. Mater., 2013, 25(8), 1250-1261.
[http://dx.doi.org/10.1021/cm303708p]
[20]
Liu, H.; Lian, T.; Liu, Y.; Hong, Y.; Sun, D.; Li, Q. Plant-mediated synthesis of Au nanoparticles: Separation and identification of active biomolecule in the water extract of CacumenPlatycladi. Ind. Eng. Chem. Res., 2017, 56(18), 5262-5270.
[http://dx.doi.org/10.1021/acs.iecr.7b00064]
[21]
Ghosh, A.; Sarkar, A.; Mitra, P.; Banerji, A.; Banerji, J.; Mandal, S.; Das, M. Crystal structure and DFT calculations of 3,4-seco-lup-20(29)-en-3-oic acid isolated from Wrightia tinctoria: Stacking of supramolecular dimers in the crystal lattice. J. Mol. Struct., 2010, 980(1-3), 7-12.
[http://dx.doi.org/10.1016/j.molstruc.2010.06.011]
[22]
Joshi, M.C.; Patel, M.B.; Mehtha, P.J. Some folk medicines of drugs. Bull.Med.Ethnobot. Res., 1980, 1, 8-24.
[23]
Reddy, M.B.; Reddy, K.R.; Reddy, M.N. A survey of plant crude drugs of Ananthapur District, Andhra Pradesh, India. Int. J. Crude Drug Res., 1989, 27(3), 145-155.
[http://dx.doi.org/10.3109/13880208909053955]
[24]
Shah, G.L.; Gopal, G.V. Ethnomedical notes from the tribal inhabitants of the north Gujarat (India). J.Eco.Tox. Bot., 1988, 6, 193-221.
[25]
Siddiqui, M.B.; Hussain, W. Traditional antidotes of snake poison. Fitoterapia, 1990, 61, 41-44.
[26]
Singh, V.P.; Sharma, S.K.; Kare, V.S. Medicinal plants from Ujjain District, Madhya Pradesh, Part 2. Ind. Drugs, 1980, 17, 7-12.
[27]
Reddy, Y.S.R.; Venkatesh, S.; Ravichandran, T.; Subburaju, T.; Suresh, B. Pharmacognostical studies on wrightiatinctoria bark. Pharm. Biol., 1999, 37(4), 291-295.
[http://dx.doi.org/10.1076/phbi.37.4.291.5798]
[28]
Chavan, R.R.; Bhinge, S.D.; Bhutkar, M.A.; Randive, D.D.; Wadkar, G.H.; Todkar, S.S. Green synthesis of silver and iron nanoparticles using fresh plant extracts of blumeaeriantha dc: Evaluation of its hair growth promoting activity and partial characterization. J. Cosmet. Dermatol., 2020, 20(04), 1283-1297.
[http://dx.doi.org/10.1111/jocd.13713] [PMID: 32897621]
[29]
Sasidharan, S.; Darah, I.; Jain, K. In Vivo and In Vitro. toxicity study of Gracilaria changii. Pharm. Biol., 2008, 46(6), 413-417.
[http://dx.doi.org/10.1080/13880200802055867]
[30]
Ellis, M.D.; Baxendale, F.P. Toxicity of seven monoterpenoids to tracheal mites (Acari:Tarsonemidae) and their honey bee (Hymenoptera: Apidae) hosts when applied as fumigants. J. Econ. Entomol., 1997, 90(5), 1087-1091.
[http://dx.doi.org/10.1093/jee/90.5.1087]
[31]
Bastos, M.L.A.; Lima, M.R.F.; Conserva, L.M.; Andrade, V.S.; Rocha, E.M.M.; Lemos, R.P.L. Studies on the antimicrobial activity and brine shrimp toxicity of Zeyheria tuberculosa (Vell.) Bur. (Bignoniaceae) extracts and their main constituents. Ann. Clin. Microbiol. Antimicrob., 2009, 8(1), 16.
[http://dx.doi.org/10.1186/1476-0711-8-16]
[32]
Bhinge, S.; Bhutkar, M.A.; Randive, D.S.; Wadkar, G.H.; Kamble, S.Y.; Kalel, P.D.; Kadam, S.S. Formulation and evaluation of polyherbal gel containing extracts of Azadirachta indica, Adhatoda vasica, Piper betle, Ocimum tenuiflorum and Pongamia pinnata. J. Res. Pharmacy, 2018, 23(1), 44-54.
[http://dx.doi.org/10.12991/jrp.2018.107]
[33]
Bhinge, S.D.; Bhutkar, M.A.; Randive, D.S.; Wadkar, G.H.; Todkar, S.S.; Kakade, P.M.; Kadam, P.M. Formulation development and evaluation of antimicrobial polyherbal gel. Ann. Pharm. Fr., 2017, 75(5), 349-358.
[http://dx.doi.org/10.1016/j.pharma.2017.04.006] [PMID: 28583316]
[34]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[35]
Shejawal, K.P.; Randive, D.S.; Bhinge, S.D.; Bhutkar, M.A.; Wadkar, G.H.; Todkar, S.S.; Mohite, S.K. Functionalized carbon nanotube for colon-targeted delivery of isolated lycopene in colorectal cancer: In vitro cytotoxicity and in vivo roentgenographic study. J. Mater. Res., 2021, 36(24), 4894-4907.
[http://dx.doi.org/10.1557/s43578-021-00431-y]
[36]
Laouini, S.E.; Bouafia, A.; Soldatov, A.V.; Algarni, H.; Tedjani, M.L.; Ali, G.A.M.; Barhoum, A. Green synthesized of Ag/Ag2O nanoparticles using aqueous leaves extracts of Phoenix dactylifera L. and their Azo Dye photodegradation. Membranes, 2021, 11(7), 468.
[http://dx.doi.org/10.3390/membranes11070468] [PMID: 34202049]
[37]
Bouafia, A.; Laouini, S.E.; Ahmed, A.S.A.; Soldatov, A.V.; Algarni, H.; Feng Chong, K. Ali, G.A.M. The recent progress on silver nanoparticles: Synthesis and electronic applications. Nanomaterials , 2021, 11(9), 2318.
[http://dx.doi.org/10.3390/nano11092318] [PMID: 34578634]
[38]
Elshazly, E.H.; Mohamed, A.K.S.H.; Aboelmagd, H.A.; Gouda, G.A.; Abdallah, M.H.; Ewais, E.A.; Assiri, M.A.; Ali, G.A.M. Phytotoxicity and antimicrobial activity of green synthesized silver nanoparticles using nigella sativa seeds on wheat seedlings. J. Chem., 2022, 2022, 1-9.
[http://dx.doi.org/10.1155/2022/9609559]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy