Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

A Recent Advance on Phytochemicals, Nutraceutical and Pharmacological Activities of Buckwheat

Author(s): Shweta Sharma, Sahil Kumar and Rajesh Kumar Singh*

Volume 27, Issue 18, 2024

Published on: 10 October, 2023

Page: [2654 - 2666] Pages: 13

DOI: 10.2174/0113862073265824231004115334

Price: $65

Abstract

Buckwheat, a member of the Fagopyrum genus in the Polygonaceae family, is an ancient pseudocereal with noteworthy nutraceutical properties that have been relatively less explored. This crop holds great promise for the future due to its gluten-free protein, wellbalanced amino acid profile, and the presence of bioactive flavonoids that promote good health. With its gluten-free nature and a combination of beneficial nutritional components, buckwheat shows significant potential for a variety of health benefits. The objective of the present review aims to explore various nutritional and pharmacological properties of buckwheat. With the help of various search engines such as, Pubmed, Google and Semantic Scholar, research and review papers were carefully investigated and summarized in a comprehensive review. A fascinating spectrum of nutritional and pharmacological activities of common buckwheat and Tartary buckwheat were explored such as antidiabetic, anti-inflammatory, neurological disorders, antiobesity, anticancer, cardiovascular agents and many more. This review provides a concise overview of the current understanding of the chemical composition of both common buckwheat and Tartary buckwheat and the captivating spectrum of pharmacological activity and also underscoring their immense potential for future advancements.

[1]
Kumar, N.; Wani, Z.A.; Dhyani, S. Ethanobotanical study of the plants used by local people of Gulmarg and its allied areas, Jammu & Kashmir, India. Int. J. Curr. Res. Biosci. Plant Biol., 2015, 2(9), 16-23.
[2]
Shakhya, A.K. Medicinal plants: future source of new drugs. Int. J. Hebrs Med., 2016, 4(4), 59-64.
[3]
Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect., 2001, 109(Suppl 1), 69-75.
[http://dx.doi.org/10.1289/ehp.01109s169] [PMID: 11250806]
[4]
Hajiagahee, R.; Akhondzadeh, S. Herbal Medicine in treatment of Alzehimer’s disease. J. Med. Plant., 2012, 11(41), 1-7.
[5]
Mehta, S.; Sharma, A.K.; Singh, R.K. Advances in ethnobotany, synthetic phytochemistry and pharmacology of endangered herb Picrorhiza kurroa (Kutki): A comprehensive review (2010-2020). Mini Rev. Med. Chem., 2021, 21(19), 2976-2995.
[http://dx.doi.org/10.2174/1389557521666210401090028] [PMID: 33797375]
[6]
Mehta, S.; Sharma, A.K.; Singh, R.K. Therapeutic journey of Andrographis paniculata (Burm.f.) nees from natural to synthetic and nanoformulations. Mini Rev. Med. Chem., 2021, 21(12), 1556-1577.
[http://dx.doi.org/10.2174/1389557521666210315162354] [PMID: 33719961]
[7]
Mehta, S.; Sharma, A.K.; Singh, R.K. Pharmacological activities and molecular mechanisms of pure and crude extract of Andrographis paniculata: An update. Phytomedicine Plus, 2021, 1(4), 100085.
[8]
Mehta, S.; Sharma, A.K.; Singh, R.K. Development and validation of HPTLC method for simultaneous estimation of bioactive components in combined extracts of three hepatoprotective plants. J. Liq. Chromatogr. Relat. Technol., 2021, 44(7-8), 375-381.
[http://dx.doi.org/10.1080/10826076.2021.1939046]
[9]
Bodeker, C.; Bodeker, G.; Ong, C.K.; Grundy, C.K.; Burford, G.; Shein, K. WHO Global Atlas of Traditional, Complementary and Alternative Medicine; World Health Organisation: Geneva, Switzerland, 2005.
[10]
Peng, L.; Zhang, Q.; Zhang, Y.; Yao, Z.; Song, P.; Wei, L.; Zhao, G.; Yan, Z. Effect of tartary buckwheat, rutin, and quercetin on lipid metabolism in rats during high dietary fat intake. Food Sci. Nutr., 2020, 8(1), 199-213.
[http://dx.doi.org/10.1002/fsn3.1291] [PMID: 31993146]
[11]
Han, L.; Wang, H.; Cao, J.; Li, Y.; Jin, X.; He, C.; Wang, M. Inhibition mechanism of α-glucosidase inhibitors screened from Tartary buckwheat and synergistic effect with acarbose. Food Chem., 2023, 420, 136102.
[http://dx.doi.org/10.1016/j.foodchem.2023.136102] [PMID: 37060666]
[12]
Kumar, A.; Metwal, M.; Kaur, S.; Gupta, A.K.; Puranik, S.; Singh, S.; Singh, M.; Gupta, S.; Babu, B.K.; Sood, S.; Yadav, R. Nutraceutical value of finger millet [Eleusine coracana (L.) Gaertn.], and their improvement using Omics approaches. Front. Plant Sci., 2016, 7, 934.
[http://dx.doi.org/10.3389/fpls.2016.00934] [PMID: 27446162]
[13]
Li, W.; Zhang, X.; He, X.; Li, F.; Zhao, J.; Yin, R.; Ming, J. Effects of steam explosion pretreatment on the composition and biological activities of tartary buckwheat bran phenolics. Food Funct., 2020, 11(5), 4648-4658.
[http://dx.doi.org/10.1039/D0FO00493F] [PMID: 32401260]
[14]
Lee, C.C.; Shen, S.R.; Lai, Y.J.; Wu, S.C. Rutin and quercetin, bioactive compounds from tartary buckwheat, prevent liver inflammatory injury. Food Funct., 2013, 4(5), 794-802.
[http://dx.doi.org/10.1039/c3fo30389f] [PMID: 23584161]
[15]
Wang, H.; Liu, S.; Cui, Y.; Wang, Y.; Guo, Y.; Wang, X.; Liu, J.; Piao, C. Hepatoprotective effects of flavonoids from common buckwheat hulls in type 2 diabetic rats and HepG2 cells. Food Sci. Nutr., 2021, 9(9), 4793-4802.
[http://dx.doi.org/10.1002/fsn3.2390] [PMID: 34531992]
[16]
Ohsako, T.; Ohnishi, O. Intra- and interspecific phylogeny of wild Fagopyrum (Polygonaceae) species based on nucleotide sequences of noncoding regions in chloroplast DNA. Am. J. Bot., 2000, 87(4), 573-582.
[http://dx.doi.org/10.2307/2656601] [PMID: 10766729]
[17]
Sharma, S.; Rehman Ansari, M.H.; Sharma, K.; Singh, R.K.; Ali, S.; Alam, M.M.; Zaman, M.S.; Alam, P.; Akhter, M. Pyrazoline scaffold: hit identification to lead synthesis and biological evaluation as antidiabetic agents. Future Med. Chem., 2023, 15(1), 9-24.
[http://dx.doi.org/10.4155/fmc-2022-0141] [PMID: 36655571]
[18]
Sharma, S.; Srivastava, S.; Shrivastava, A.; Malik, R.; Almalki, F.; Saifullah, K.; Alam, M.M.; Shaqiquzzaman, M.; Ali, S.; Akhter, M. Mining of potential dipeptidyl peptidase-IV inhibitors as anti-diabetic agents using integrated in silico approaches. J. Biomol. Struct. Dyn., 2020, 38(18), 5349-5361.
[http://dx.doi.org/10.1080/07391102.2019.1701553] [PMID: 31813365]
[19]
Facts & Figures. Available from: https://worlddiabetesday.org/about/facts (Accessed on 20th June 2023).
[20]
Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; Pavkov, M.E.; Ramachandaran, A.; Wild, S.H.; James, S.; Herman, W.H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E.J.; Magliano, D.J. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183, 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[21]
Skrabanja, V.; Liljeberg Elmståhl, H.G.M.; Kreft, I.; Björck, I.M.E. Nutritional properties of starch in buckwheat products: studies in vitro and in vivo. J. Agric. Food Chem., 2001, 49(1), 490-496.
[http://dx.doi.org/10.1021/jf000779w] [PMID: 11170616]
[22]
Curran, J.M.; Stringer, D.M.; Wright, B.; Taylor, C.G.; Przybylski, R.; Zahradka, P. Biological response of hepatomas to an extract of Fagopyrum esculentum M. (buckwheat) is not mediated by inositols or rutin. J. Agric. Food Chem., 2010, 58(5), 3197-3204.
[http://dx.doi.org/10.1021/jf903890c] [PMID: 20128593]
[23]
Han, G.; Yao, G.; Lin, Q.; Zhai, G.; Fan, Y. Effect of extracts of buckwheat seed on blood glucose in type 2 diabetes mellitus rat. Mod. Prev. Med., 2008, 35, 4677-4678.
[http://dx.doi.org/10.17221/1602-CJFS]
[24]
Lee, C.C.; Lee, B.H.; Lai, Y.J. Antioxidation and antiglycation of Fagopyrum tataricum ethanol extract. J. Food Sci. Technol., 2015, 52(2), 1110-1116.
[http://dx.doi.org/10.1007/s13197-013-1098-4] [PMID: 25694726]
[25]
Lee, C.C.; Hsu, W.H.; Shen, S.R.; Cheng, Y.H.; Wu, S.C. Fagopyrum tataricum (buckwheat) improved high-glucose-induced insulin resistance in mouse hepatocytes and diabetes in fructose-rich diet-induced mice. Exp. Diabetes Res., 2012, 2012, 1-10.
[http://dx.doi.org/10.1155/2012/375673] [PMID: 22548048]
[26]
Cai, E.P.; Lin, J.K. Epigallocatechin gallate (EGCG) and rutin suppress the glucotoxicity through activating IRS2 and AMPK signaling in rat pancreatic beta cells. J. Agric. Food Chem., 2009, 57(20), 9817-9827.
[http://dx.doi.org/10.1021/jf902618v] [PMID: 19803520]
[27]
Hosaka, T.; Nii, Y.; Tomotake, H.; Ito, T.; Tamanaha, A.; Yamasaka, Y.; Sasaga, S.; Edazawa, K.; Tsutsumi, R.; Shuto, E.; Okahisa, N.; Iwata, S.; Sakai, T. Extracts of common buckwheat bran prevent sucrose digestion. J. Nutr. Sci. Vitaminol. (Tokyo), 2011, 57(6), 441-445.
[http://dx.doi.org/10.3177/jnsv.57.441] [PMID: 22472288]
[28]
Bao, T.; Wang, Y.; Li, Y.; Gowd, V.; Niu, X.; Yang, H.; Chen, L.; Chen, W.; Sun, C. Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion. J. Zhejiang Univ. Sci. B, 2016, 17(12), 941-951.
[http://dx.doi.org/10.1631/jzus.B1600243] [PMID: 27921399]
[29]
Wu, W.; Wang, L.; Qiu, J.; Li, Z. The analysis of fagopyritols from tartary buckwheat and their anti-diabetic effects in KK-Ay type 2 diabetic mice and HepG2 cells. J. Funct. Foods, 2018, 50, 137-146.
[http://dx.doi.org/10.1016/j.jff.2018.09.032]
[30]
Steadman, K.J.; Burgoon, M.S.; Schuster, R.L.; Lewis, B.A.; Edwardson, S.E.; Obendorf, R.L. Fagopyritols, D-chiro-inositol, and other soluble carbohydrates in buckwheat seed milling fractions. J. Agric. Food Chem., 2000, 48(7), 2843-2847.
[http://dx.doi.org/10.1021/jf990709t] [PMID: 10898633]
[31]
Obendorf, R.L.; Horbowicz, M.; Ueda, T.; Steadman, K.J. Fagopyritols occurrence, biosynthesis, analyses and possible role. Eur. J. Plant Sci. Biotechnol., 2012, 62, 27-36.
[33]
Đurendić - Brenesel, M.; Popović, T.; Pilija, V.; Arsić, A.; Milić, M.; Kojić, D.; Jojić, N.; Milić, N. Hypolipidemic and antioxidant effects of buckwheat leaf and flower mixture in hyperlipidemic rats. Bosn. J. Basic Med. Sci., 2013, 13(2), 100-108.
[http://dx.doi.org/10.17305/bjbms.2013.2389] [PMID: 23725506]
[34]
Nishimura, M.; Ohkawara, T.; Sato, Y.; Satoh, H.; Suzuki, T.; Ishiguro, K.; Noda, T.; Morishita, T.; Nishihira, J. Effectiveness of rutin-rich Tartary buckwheat ( Fagopyrum tataricum Gaertn.) ‘Manten-Kirari’ in body weight reduction related to its antioxidant properties: A randomised, double-blind, placebo-controlled study. J. Funct. Foods, 2016, 26, 460-469.
[http://dx.doi.org/10.1016/j.jff.2016.08.004]
[35]
Zhou, Y.; Zhao, S.; Jiang, Y.; Wei, Y.; Zhou, X. Regulatory function of buckwheat-resistant starch supplementation on lipid profile and gut microbiota in mice fed with a high-fat diet. J. Food Sci., 2019, 84(9), 2674-2681.
[http://dx.doi.org/10.1111/1750-3841.14747] [PMID: 31441507]
[36]
Lee, M.S.; Shin, Y.; Jung, S.; Kim, S.Y.; Jo, Y.H.; Kim, C.T.; Yun, M.K.; Lee, S.J.; Sohn, J.; Yu, H.J.; Kim, Y. The inhibitory effect of tartary buckwheat extracts on adipogenesis and inflammatory response. Molecules, 2017, 22(7), 1160.
[http://dx.doi.org/10.3390/molecules22071160] [PMID: 28704952]
[37]
Kim, S.Y.; Lee, M.S.; Chang, E.; Jung, S.; Ko, H.; Lee, E.; Lee, S.; Kim, C.T.; Kim, I.H.; Kim, Y. Tartary buckwheat extract attenuated the obesity-induced inflammation and increased muscle PGC-1a/SIRT1 expression in high fat diet-induced obese rats. Nutrients, 2019, 11(3), 654.
[http://dx.doi.org/10.3390/nu11030654] [PMID: 30889894]
[38]
Bae, H.G.; Kim, M.J. Antioxidant and anti-obesity effects of in vitro digesta of germinated buckwheat. Food Sci. Biotechnol., 2022, 31(7), 879-892.
[http://dx.doi.org/10.1007/s10068-022-01086-z] [PMID: 35720456]
[39]
Wu, S.C.; Lee, B.H. Buckwheat polysaccharide exerts antiproliferative effects in THP-1 human leukemia cells by inducing differentiation. J. Med. Food, 2011, 14(1-2), 26-33.
[http://dx.doi.org/10.1089/jmf.2010.1252] [PMID: 21138372]
[40]
Bai, C.Z.; Feng, M.A.L.I.; Hao, X.L.; Zhao, Z.J.; Li, Y.Y.; Wang, Z.H. Anti-tumoral effects of a trypsin inhibitor derived from buckwheat in vitro and in vivo. Mol. Med. Rep., 2015, 12(2), 1777-1782. b
[http://dx.doi.org/10.3892/mmr.2015.3649] [PMID: 25901645]
[41]
Liu, W.; Li, S.; Huang, X.; Cui, J.; Zhao, T.; Zhang, H. Inhibition of tumor growth in vitro by a combination of extracts from Rosa ruxburghii Tratt and Fagopyrum cymosum. Asian. Pac. J. Cancer. Prev., 2012, 13(5), 2409-2414.
[http://dx.doi.org/10.7314/apjcp.2012.13.5.2409]
[42]
Zheng, C.; Hu, C.; Ma, X.; Peng, C.; Zhang, H.; Qin, L. Cytotoxic phenylpropanoid glycosides from Fagopyrum tataricum (L.) Gaertn. Food Chem., 2012, 132(1), 433-438.
[http://dx.doi.org/10.1016/j.foodchem.2011.11.017] [PMID: 26434312]
[43]
Sun, G.J.; Cui, T.H.; Jin, Q.K.; Li, X.D.; Li, S.J.; Cui, C.B. Cytotoxicity of different extract parts of buckwheat sprout. Food Sci. Technol. Int., 2012, 10, 200-203.
[44]
Sytar, O.; Brestic, M.; Zivcak, M.; Tran, L.S. Plant natural compounds with anticancer activity: a review. Zeitschrift fur Naturforschung C, 2015, 70(7-8), 185-194.
[45]
Zheng, S.; Chenghua, H.; Kaifeng, H. Research on Se content of different tartary buckwheat genotypes. Agric. Sci. Technol. Hunan., 2011, 12, 102-156.
[46]
Giménez-Bastida, J.A.; Zieliński, H. Buckwheat as a functional food and its effects on health. J. Agric. Food Chem., 2015, 63(36), 7896-7913.
[http://dx.doi.org/10.1021/acs.jafc.5b02498] [PMID: 26270637]
[47]
Jing, R.; Li, H.Q.; Hu, C.L.; Jiang, Y.P.; Qin, L.P.; Zheng, C.J. Phytochemical and pharmacological profiles of three Fagopyrum buckwheats. Int. J. Mol. Sci., 2016, 17(4), 589.
[http://dx.doi.org/10.3390/ijms17040589] [PMID: 27104519]
[48]
Dzah, C.S.; Duan, Y.; Zhang, H.; Authur, D.A.; Ma, H. Ultrasound-, subcritical water- and ultrasound assisted subcritical water-derived Tartary buckwheat polyphenols show superior antioxidant activity and cytotoxicity in human liver carcinoma cells. Food Res. Int., 2020, 137, 109598.
[http://dx.doi.org/10.1016/j.foodres.2020.109598] [PMID: 33233198]
[49]
Li, F.; Zhang, X.; Li, Y.; Lu, K.; Yin, R.; Ming, J. Phenolics extracted from tartary (Fagopyrum tartaricum L. Gaerth) buckwheat bran exhibit antioxidant activity, and an antiproliferative effect on human breast cancer MDA-MB-231 cells through the p38/MAP kinase pathway. Food Funct., 2017, 8(1), 177-188.
[http://dx.doi.org/10.1039/C6FO01230B] [PMID: 27942664]
[50]
Zhou, X.L.; Chen, Z.D.; Zhou, Y.M.; Shi, R.H.; Li, Z.J. The effect of tartary buckwheat flavonoids in inhibiting the proliferation of MGC80-3 cells during seed germination. Molecules, 2019, 24(17), 3092.
[http://dx.doi.org/10.3390/molecules24173092] [PMID: 31454945]
[51]
World Health Organization Cardiovascular diseases (CVDs) Fact Sheet 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (Accessed on 5 September 2021).
[52]
Andriantsitohaina, R.; Auger, C.; Chataigneau, T.; Étienne-Selloum, N.; Li, H.; Martínez, M.C.; Schini-Kerth, V.B.; Laher, I. Molecular mechanisms of the cardiovascular protective effects of polyphenols. Br. J. Nutr., 2012, 108(9), 1532-1549.
[http://dx.doi.org/10.1017/S0007114512003406] [PMID: 22935143]
[53]
Rodrigo, R.; Gil, D.; Miranda-Merchak, A.; Kalantzidis, G. Antihypertensive role of polyphenols. Adv. Clin. Chem., 2012, 58, 225-254.
[http://dx.doi.org/10.1016/B978-0-12-394383-5.00014-X] [PMID: 22950347]
[54]
Tomotake, H.; Yamamoto, N.; Kitabayashi, H.; Kawakami, A.; Kayashita, J.; Ohinata, H.; Karasawa, H.; Kato, N. Preparation of tartary buckwheat protein product and its improving effect on cholesterol metabolism in rats and mice fed cholesterol-enriched diet. J. Food Sci., 2007, 72(7), S528-S533.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00474.x] [PMID: 17995668]
[55]
Mellen, P. B.; Walsh, T. F.; Herrington, D. M. Whole grain intake and cardiovascular disease: a meta-analysis. Nutr Metab Cardiovasc Dis, 2008, 18(4), 283-90.
[http://dx.doi.org/10.1016/j.numecd.2006.12.008]
[56]
He, J.; Klag, M.J.; Whelton, P.K.; Mo, J.P.; Chen, J.Y.; Qian, M.C.; Mo, P.S.; He, G.Q. Oats and buckwheat intakes and cardiovascular disease risk factors in an ethnic minority of China. Am. J. Clin. Nutr., 1995, 61(2), 366-372.
[http://dx.doi.org/10.1093/ajcn/61.2.366] [PMID: 7840076]
[57]
Zhang, Y.; Li, S.; Wu, X. Pressurized liquid extraction of flavonoids from Houttuynia cordata Thunb. Separ. Purif. Tech., 2008, 58(3), 305-310.
[http://dx.doi.org/10.1016/j.seppur.2007.04.010]
[58]
Wang, M.; Liu, J.R.; Gao, J.M.; Parry, J.W.; Wei, Y.M. Antioxidant activity of Tartary buckwheat bran extract and its effect on the lipid profile of hyperlipidemic rats. J. Agric. Food Chem., 2009, 57(11), 5106-5112.
[http://dx.doi.org/10.1021/jf900194s] [PMID: 19419146]
[59]
Merendino, N.; Molinari, R.; Costantini, L.; Mazzucato, A.; Pucci, A.; Bonafaccia, F.; Esti, M.; Ceccantoni, B.; Papeschi, C.; Bonafaccia, G. A new “functional” pasta containing tartary buckwheat sprouts as an ingredient improves the oxidative status and normalizes some blood pressure parameters in spontaneously hypertensive rats. Food Funct., 2014, 5(5), 1017-1026.
[http://dx.doi.org/10.1039/C3FO60683J] [PMID: 24658587]
[60]
Li, L.; Lietz, G.; Seal, C. Buckwheat and CVD Risk Markers: A systematic review and meta-analysis. Nutrients, 2018, 10(5), 619.
[http://dx.doi.org/10.3390/nu10050619] [PMID: 29762481]
[61]
Ushida, Y.; Matsui, T.; Tanaka, M.; Matsumoto, K.; Hosoyama, H.; Mitomi, A.; Sagesaka, Y.; Takami Kakuda, T. Endothelium-dependent vasorelaxation effect of rutin-free tartary buckwheat extract in isolated rat thoracic aorta. J Nutr Biochem, 2008, 19(10), 700-7.
[http://dx.doi.org/10.1016/j.jnutbio.2007.09.005]
[62]
Chu, J.X.; Li, G.M.; Gao, X.J.; Wang, J.X.; Han, S.Y. Buckwheat rutin inhibits AngII-induced cardiomyocyte hypertrophy via blockade of CaN-dependent signal pathway. Iran. J. Pharm. Res., 2014, 13(4), 1347-1355.
[PMID: 25587324]
[63]
Kayashita, J.; Shimaoka, I.; Nakajoh, M.; Yamazaki, M.; Kato, N. Consumption of buckwheat protein lowers plasma cholesterol and raises fecal neutral sterols in cholesterol-Fed rats because of its low digestibility. J. Nutr., 1997, 127(7), 1395-1400.
[http://dx.doi.org/10.1093/jn/127.7.1395] [PMID: 9202097]
[64]
Zhang, C.; Zhang, R.; Li, Y.M.; Liang, N.; Zhao, Y.; Zhu, H.; He, Z.; Liu, J.; Hao, W.; Jiao, R.; Ma, K.Y.; Chen, Z.Y. Cholesterol-Lowering Activity of Tartary Buckwheat Protein. J. Agric. Food Chem., 2017, 65(9), 1900-1906.
[http://dx.doi.org/10.1021/acs.jafc.7b00066] [PMID: 28199789]
[65]
Zou, L.; Jia, K.; Li, R.; Wang, P.; Lin, J.Z.; Chen, H.J.; Zhao, G.; Peng, L.X. Pharmacokinetic study of eplerenone in rats after long-term coadministration with buckwheat tea. Kaohsiung J. Med. Sci., 2016, 32(4), 177-184.
[http://dx.doi.org/10.1016/j.kjms.2016.03.004] [PMID: 27185599]
[66]
Stokić, E.; Mandić, A.; Sakač, M.; Mišan, A.; Pestorić, M.; Šimurina, O.; Jambrec, D.; Jovanov, P.; Nedeljković, N.; Milovanović, I.; Sedej, I. Quality of buckwheat-enriched wheat bread and its antihyperlipidemic effect in statin treated patients. Lebensm. Wiss. Technol., 2015, 63(1), 556-561.
[http://dx.doi.org/10.1016/j.lwt.2015.03.023]
[67]
Yu, H.; Liu, S.; Li, M.; Wu, B. Influence of diet, vitamin, tea, trace elements and exogenous antioxidants on arsenic metabolism and toxicity. Environ. Geochem. Health, 2016, 38(2), 339-351.
[http://dx.doi.org/10.1007/s10653-015-9742-8] [PMID: 26169729]
[68]
Dinu, M.; Ghiselli, L.; Whittaker, A.; Pagliai, G.; Cesari, F.; Fiorillo, C.; Becatti, M.; Marcucci, R.; Benedettelli, S.; Sofi, F. Consumption of buckwheat products and cardiovascular risk profile: A randomized, single-blinded crossover trial. Nutr. Metab. Cardiovasc. Dis., 2017, 27(1), e20-e21.
[http://dx.doi.org/10.1016/j.numecd.2016.11.054]
[69]
Hu, Y.; Hou, Z.; Liu, D.; Yang, X. Tartary buckwheat flavonoids protect hepatic cells against high glucose-induced oxidative stress and insulin resistance via MAPK signaling pathways. Food Funct., 2016, 7(3), 1523-1536.
[http://dx.doi.org/10.1039/C5FO01467K] [PMID: 26899161]
[70]
Choi, I.; Seog, H.; Park, Y.; Kim, Y.; Choi, H. Suppressive effects of germinated buckwheat on development of fatty liver in mice fed with high-fat diet. Phytomedicine, 2007, 14(7-8), 563-567.
[http://dx.doi.org/10.1016/j.phymed.2007.05.002] [PMID: 17601714]
[71]
Wojcicki, J.; Skowron, J.; Rozewicka, L.; Samochowiec, L.; Juzwiak, S. Hepatoprotective effects of buckwheat extract in rabbits fed on a high -fat diet. Acta Med. Biol. (Niigata), 1996, 44, 147-151.
[72]
Cheng, N.; Wu, L.; Zheng, J.; Cao, W. Buckwheat honey attenuates carbon tetrachloride -induced liver and DNA damage in mice. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/987385] [PMID: 26508989]
[73]
Yang, Q.; Luo, C.; Zhang, X.; Liu, Y.; Wang, Z.; Cacciamani, P.; Shi, J.; Cui, Y.; Wang, C.; Sinha, B.; Peng, B.; Tong, G.; Das, G.; Shah, E.; Gao, Y.; Li, W.; Tu, Y.; Qian, D.; Shah, K.; Akbar, M.; Zhou, S.; Song, B.J.; Wang, X. Tartary buckwheat extract alleviates alcohol-induced acute and chronic liver injuries through the inhibition of oxidative stress and mitochondrial cell death pathway. Am. J. Transl. Res., 2020, 12(1), 70-89.
[PMID: 32051738]
[74]
Hu, Y.; Zhao, Y.; Ren, D.; Guo, J.; Luo, Y.; Yang, X. Hypoglycemic and hepatoprotective effects of D -chiro-inositol-enriched tartary buckwheat extract in high fructose-fed mice. Food Funct., 2015, 6(12), 3760-3769.
[http://dx.doi.org/10.1039/C5FO00612K] [PMID: 26412138]
[75]
Zhou, X.; Wang, Q.; Yang, Y.; Zhou, Y.; Tang, W.; Li, Z. Anti -infection effects of buckwheat flavonoid extracts (BWFEs) from germinated sprouts. J. Med. Plants Res., 2012, 6, 24-29.
[76]
Deng, J.; Liu, R.; Lu, Q.; Hao, P.; Xu, A.; Zhang, J.; Tan, J. Biochemical properties, antibacterial and cellular antioxidant activities of buckwheat honey in comparison to manuka honey. Food Chem., 2018, 252, 243-249.
[http://dx.doi.org/10.1016/j.foodchem.2018.01.115] [PMID: 29478537]
[77]
Dong, L.Y.; Wang, C.Y.; Wu, C.Q.; Jiang, Q.; Zhang, Z.F. Protection and mechanism of Fagopyrum cymosum on lung injury in rats with Klebsiella pneumonia.. Zhong Yao Cai, 2012, 35(4), 603-607.
[PMID: 23019909]
[78]
Sehajpal, S.; Prasad, D.N.; Singh, R.K. Novel ketoprofen–antioxidants mutual codrugs as safer nonsteroidal anti‐inflammatory drugs: Synthesis, kinetic and pharmacological evaluation. Arch. Pharm. (Weinheim), 2019, 352(7), 1800339.
[http://dx.doi.org/10.1002/ardp.201800339] [PMID: 31231875]
[79]
Quettier-Deleu, C.; Gressier, B.; Vasseur, J.; Dine, T.; Brunet, C.; Luyckx, M.; Cazin, M.; Cazin, J.C.; Bailleul, F.; Trotin, F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol., 2000, 72(1-2), 35-42.
[http://dx.doi.org/10.1016/S0378-8741(00)00196-3] [PMID: 10967451]
[80]
Hęś, M.; Górecka, D.; Dziedzic, K. Antioxidant properties of extracts from buckwheat by-products. Acta Sci. Pol. Technol. Aliment., 2012, 11(2), 167-174.
[PMID: 22493158]
[81]
Kim, J.Y.; Son, B.K.; Lee, S.S. Effects of adlay, buckwheat, and barley on transit time and the antioxidative system in obesity induced rats. Nutr. Res. Pract., 2012, 6(3), 208-212.
[http://dx.doi.org/10.4162/nrp.2012.6.3.208] [PMID: 22808344]
[82]
Zhou, Q.; Lu, W.; Niu, Y.; Liu, J.; Zhang, X.; Gao, B.; Akoh, C.C.; Shi, H.; Yu, L.L. Identification and quantification of phytochemical composition and anti-inflammatory, cellular antioxidant, and radical scavenging activities of 12 Plantago species. J. Agric. Food Chem., 2013, 61(27), 6693-6702.
[http://dx.doi.org/10.1021/jf401191q] [PMID: 23767948]
[83]
Krupa-Kozak, U.; Świątecka, D.; Bączek, N.; Brzóska, M.M. Inulin and fructooligosaccharide affect in vitro calcium uptake and absorption from calcium-enriched gluten-free bread. Food Funct., 2016, 7(4), 1950-1958.
[http://dx.doi.org/10.1039/C6FO00140H] [PMID: 26965706]
[84]
Vici, G.; Belli, L.; Biondi, M.; Polzonetti, V. Gluten free diet and nutrient deficiencies: A review. Clin. Nutr., 2016, 35(6), 1236-1241.
[http://dx.doi.org/10.1016/j.clnu.2016.05.002] [PMID: 27211234]
[85]
Choi, J.Y.; Lee, J.M.; Lee, D.G.; Cho, S.; Yoon, Y.H.; Cho, E.J.; Lee, S. The n-butanol fraction and rutin from Tartary buckwheat improve cognition and memory in an in vivo model of amyloid-β-induced Alzheimer’s disease. J. Med. Food, 2015, 18(6), 631-641.
[http://dx.doi.org/10.1089/jmf.2014.3292] [PMID: 25785882]
[86]
Song, K.; Kim, S.; Na, J.Y.; Park, J.H.; Kim, J.K.; Kim, J.H.; Kwon, J. Rutin attenuates ethanol-induced neurotoxicity in hippocampal neuronal cells by increasing aldehyde dehydrogenase 2. Food Chem. Toxicol., 2014, 72, 228-233.
[http://dx.doi.org/10.1016/j.fct.2014.07.028] [PMID: 25084483]
[87]
Bishnoi, M.; Chopra, K.; Kulkarni, S.K. Protective effect of rutin, a polyphenolic flavonoid against haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes. Fundam. Clin. Pharmacol., 2007, 21(5), 521-529.
[http://dx.doi.org/10.1111/j.1472-8206.2007.00512.x] [PMID: 17868205]
[88]
Álvarez, P.; Alvarado, C.; Puerto, M.; Schlumberger, A.; Jiménez, L.; De la Fuente, M. Improvement of leukocyte functions in prematurely aging mice after five weeks of diet supplementation with polyphenol-rich cereals. Nutrition, 2006, 22(9), 913-921.
[http://dx.doi.org/10.1016/j.nut.2005.12.012] [PMID: 16809023]
[89]
Garrett, R.; Romanos, M.T.V.; Borges, R.M.; Santos, M.G.; Rocha, L.; Silva, A.J.R. Antiherpetic activity of a flavonoid fraction from Ocotea notata leaves. Rev. Bras. Farmacogn., 2012, 22(2), 306-313.
[http://dx.doi.org/10.1590/S0102-695X2012005000003]
[90]
Paul, I.M.; Beiler, J.; McMonagle, A.; Shaffer, M.L.; Duda, L.; Berlin, C.M., Jr Effect of honey, dextromethorphan, and no treatment on nocturnal cough and sleep quality for coughing children and their parents. Arch. Pediatr. Adolesc. Med., 2007, 161(12), 1140-1146.
[http://dx.doi.org/10.1001/archpedi.161.12.1140] [PMID: 18056558]
[91]
Ihme, N.; Kiesewetter, H.; Jung, F.; Hoffmann, K.H.; Birk, A.; Müller, A.; Grützner, K.I. Leg oedema protection from a buckwheat herb tea in patients with chronic venous insufficiency: a single-centre, randomised, double-blind, placebo-controlled clinical trial. Eur. J. Clin. Pharmacol., 1996, 50(6), 443-447.
[http://dx.doi.org/10.1007/s002280050138] [PMID: 8858269]
[92]
Ku, S.K.; Lee, I.C.; Han, M.S.; Bae, J.S. Inhibitory effects of rutin on the endothelial protein C receptor shedding in vitro and in vivo. Inflammation, 2014, 37(5), 1424-1431.
[http://dx.doi.org/10.1007/s10753-014-9866-5] [PMID: 24622777]
[93]
Karki, R.; Park, C. H.; Kim, D. W. Extract of buckwheat sprouts scavenges oxidation and inhibits pro-inflammatory mediators in lipopolysaccharide-stimulated macrophages (RAW264.7). J Integr Med, 2013, 11(4), 246-52.
[http://dx.doi.org/10.3736/jintegrmed2013036]
[94]
Kayashita, J.; Shimaoka, I.; Nakajoh, M.; Kondoh, M.; Hayashi, K.; Kato, N. Muscle hypertrophy in rats fed on a buckwheat protein extract. Biosci. Biotechnol. Biochem., 1999, 63(7), 1242-1245.
[http://dx.doi.org/10.1271/bbb.63.1242] [PMID: 10478451]
[95]
Wieslander, G.; Fabjan, N.; Vogrincic, M.; Kreft, I.; Vombergar, B.; Norback, D. Effects of common and Tartary buckwheat consumption on mucosal symptoms, headache and tiredness: A double-blind crossover intervention study. J. Food Agric. Environ., 2012, 10, 107-110.
[96]
Kreft, I.; Fabjan, N.; Yasumoto, K. Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chem., 2006, 98(3), 508-512.
[http://dx.doi.org/10.1016/j.foodchem.2005.05.081]
[97]
Gheldof, N.; Wang, X.H.; Engeseth, N.J. Buckwheat honey increases serum antioxidant capacity in humans. J. Agric. Food Chem., 2003, 51(5), 1500-1505.
[http://dx.doi.org/10.1021/jf025897t] [PMID: 12590505]
[98]
Przybylski, R.; Gruczynska, E. A review of nutritional and nutraceutical components of buckwheat. Eur. J. Plant Sci. Biotechnol, 2009, 3(Special issue 1), 10-22.
[99]
Goel, C.; Semwal, A.D.; Anantham, P.; Sharma, G.K. Development and storage stability of buckwheat chips using response surface methodology (RSM). J. Food Sci. Technol., 2018, 55(12), 5064-5074. https://doi.orh/10.1007/s13197-018-3445-y

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy