Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Network-Pharmacology-Based Study on Active Phytochemicals and Molecular Mechanism of Cnidii Fructus in Treating Colorectal Cancer

Author(s): Zhihui Wei, Xiaoyun Zhang, Antang Peng, Chenxu Liu, Jianying Pang, Yajing Zhang* and Xuhong Duan*

Volume 27, Issue 18, 2024

Published on: 11 October, 2023

Page: [2667 - 2680] Pages: 14

DOI: 10.2174/0113862073273396231010102606

Price: $65

Abstract

Aims: Cnidii Fructus (CF) is known for its antibacterial, anti-inflammatory, and antitumor properties, as well as its activities against kidney deficiency and impotence. In this study, we aimed to explore the anti-CRC cancer effect and molecular mechanism of CF via network pharmacology and in vitro antitumor experiments.

Methods: Network pharmacology was used to investigate the anti-CRC mechanism of CF. First, a series of databases was used to screen the active phytochemical targets and anti-CRC core targets. Then, the GO and KEGG pathways were analyzed to predict possible mechanisms. Molecular docking analysis explore core targets-phytochemicals interactions. In vitro antitumor experiments were carried on verifying anti-CRC mechanism of CF.

Results: In this study, 20 active ingredient targets and 50 intersecting targets were analyzed by Cytoscape software 3.9.1 to obtain the core genes and phytochemicals. Then, the GO and KEGG pathways of 50 intersecting targets were analyzed to predict possible mechanisms. The results from GO and KEGG indicated that CF has significant antitumor efficacy, which involves many signaling pathways, such as PI3K/AKT and p53. The five core targets and five core phytochemicals were screened for molecular docking to show protein-ligand interactions. According to the results of molecular docking, the compound O-acetylcolumbianetin was selected for the anti- CRC functional verification in vitro. MTT assay showed that O-acetylcolumbianetin significantly inhibited the proliferation of colorectal HCT116 cells in a time- and quantity-dependent manner. O-acetylcolumbianetin can promote the expression of CASP3 protein, induce HCT116 cells apoptosis, thus exert anti-CRC effect.

Conclusion: This study preliminarily verified the anti-CRC effect and molecular mechanism of CF and provided a reference for Traditional Chinese Medicine anti-tumor subsequent research.

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet, 2019, 394(10207), 1467-1480.
[http://dx.doi.org/10.1016/S0140-6736(19)32319-0] [PMID: 31631858]
[3]
Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut, 2017, 66(4), 683-691.
[http://dx.doi.org/10.1136/gutjnl-2015-310912] [PMID: 26818619]
[4]
Siegel, R.L.; Miller, K.D.; Fedewa, S.A.; Ahnen, D.J.; Meester, R.G.S.; Barzi, A.; Jemal, A. Colorectal cancer statistics, 2017. CA Cancer J. Clin., 2017, 67(3), 177-193.
[http://dx.doi.org/10.3322/caac.21395] [PMID: 28248415]
[5]
Wei, J.; Ge, X.; Tang, Y.; Qian, Y.; Lu, W.; Jiang, K.; Fang, Y.; Hwang, M.; Fu, D.; Xiao, Q.; Ding, K. An autophagy-related long noncoding RNA signature contributes to poor prognosis in colorectal cancer. J. Oncol., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/4728947] [PMID: 33149738]
[6]
Sato, H.; Kotake, K.; Sugihara, K.; Takahashi, H.; Maeda, K.; Uyama, I. Clinicopathological factors associated with recurrence and prognosis after R0 resection for stage IV colorectal cancer with peritoneal metastasis. Dig. Surg., 2016, 33(5), 382-391.
[http://dx.doi.org/10.1159/000444097] [PMID: 27119565]
[7]
Paty, P.B.; Garcia-Aguilar, J. Colorectal cancer. J. Surg. Oncol., 2022, 126(5), 881-887.
[http://dx.doi.org/10.1002/jso.27079] [PMID: 36087081]
[8]
KRASG12D Promotes Immunosuppression in Colorectal Cancer. Cancer Discov., 2019, 9(5), 573.
[http://dx.doi.org/10.1158/2159-8290.CD-RW2019-043]
[9]
Ha, J. SMAP: Similarity-based matrix factorization framework for inferring miRNA-disease association. Knowl. Base. Syst., 2023, 263, 110295.
[http://dx.doi.org/10.1016/j.knosys.2023.110295]
[10]
Ha, J.; Park, S. NCMD: Node2vec-based neural collaborative filtering for predicting MiRNA-disease association. IEEE/ACM Trans. Comput. Biol. Bioinformat., 2023, 20(2), 1257-1268.
[http://dx.doi.org/10.1109/TCBB.2022.3191972] [PMID: 35849666]
[11]
Ha, J.; Park, C.; Park, C.; Park, S. Improved prediction of miRNA-disease associations based on matrix completion with network regularization. Cells, 2020, 9(4), 881.
[http://dx.doi.org/10.3390/cells9040881] [PMID: 32260218]
[12]
Ha, J. MDMF: Predicting miRNA–disease association based on matrix factorization with disease similarity constraint. J. Pers. Med., 2022, 12(6), 885.
[http://dx.doi.org/10.3390/jpm12060885] [PMID: 35743670]
[13]
Ha, J.; Park, C. MLMD: Metric learning for predicting MiRNA-disease associations. IEEE Access, 2021, 9, 78847-78858.
[http://dx.doi.org/10.1109/ACCESS.2021.3084148]
[14]
Wu, X.Y.; Zhai, J.; Huan, X.K.; Xu, W.W.; Tian, J.; Farhood, B. A systematic review of the therapeutic potential of resveratrol during colorectal cancer chemotherapy. Mini Rev. Med. Chem., 2023, 23(10), 1137-1152.
[http://dx.doi.org/10.2174/1389557522666220907145153] [PMID: 36173048]
[15]
Sałaga, M.; Zatorski, H.; Sobczak, M.; Chen, C.; Fichna, J. Chinese herbal medicines in the treatment of IBD and colorectal cancer: A review. Curr. Treat. Options Oncol., 2014, 15(3), 405-420.
[http://dx.doi.org/10.1007/s11864-014-0288-2] [PMID: 24792017]
[16]
Chinese Pharmacopoeia. Available from: http://wp.chp.org.cn/front/chpint/en/ (Accessed on: 20 March 2022).
[17]
Wang, K.; Chen, Q.; Shao, Y.; Yin, S.; Liu, C.; Liu, Y.; Wang, R.; Wang, T.; Qiu, Y.; Yu, H. Anticancer activities of TCM and their active components against tumor metastasis. Biomed. Pharmacother., 2021, 133, 111044.
[http://dx.doi.org/10.1016/j.biopha.2020.111044] [PMID: 33378952]
[18]
Wang, S.; Long, S.; Deng, Z.; Wu, W. Positive role of chinese herbal medicine in cancer immune regulation. Am. J. Chin. Med., 2020, 48(7), 1577-1592.
[http://dx.doi.org/10.1142/S0192415X20500780] [PMID: 33202152]
[19]
Chang, J.; Xavier, H.W.; Chen, D.; Liu, Y.; Li, H.; Bian, Z. Potential role of traditional Chinese medicines by Wnt/β-catenin pathway compared with targeted small molecules in colorectal cancer therapy. Front. Pharmacol., 2021, 12, 690501.
[http://dx.doi.org/10.3389/fphar.2021.690501] [PMID: 34381360]
[20]
Sun, Y.; Yang, A.W.H.; Lenon, G.B. Phytochemistry, ethnopharmacology, pharmacokinetics and toxicology of Cnidium monnieri (L.) cusson. Int. J. Mol. Sci., 2020, 21(3), 1006-1057.
[http://dx.doi.org/10.3390/ijms21031006] [PMID: 32028721]
[21]
Zhang, Q.; Qin, L.; He, W.; Van Puyvelde, L.; Maes, D.; Adams, A.; Zheng, H.; De Kimpe, N. Coumarins from Cnidium monnieri and their antiosteoporotic activity. Planta Med., 2007, 73(1), 13-19.
[http://dx.doi.org/10.1055/s-2006-951724] [PMID: 17315308]
[22]
Chen, G.; Xu, Q.; Dai, M.; Liu, X. Bergapten suppresses RANKL-induced osteoclastogenesis and ovariectomy-induced osteoporosis via suppression of NF-κB and JNK signaling pathways. Biochem. Biophys. Res. Commun., 2019, 509(2), 329-334.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.112]
[23]
Shao, M.; Ye, C.; Bayliss, G.; Zhuang, S. New insights into the effects of individual chinese herbal medicines on chronic kidney disease. Front. Pharmacol., 2021, 12, 774414.
[http://dx.doi.org/10.3389/fphar.2021.774414] [PMID: 34803715]
[24]
Li, Y.M.; Jia, M.; Li, H.Q.; Zhang, N.D.; Wen, X.; Rahman, K.; Zhang, Q.Y.; Qin, L.P. Cnidium monnieri: A review of traditional uses, phytochemical and ethnopharmacological properties. Am. J. Chin. Med., 2015, 43(5), 835-877.
[http://dx.doi.org/10.1142/S0192415X15500500] [PMID: 26243582]
[25]
Lim, E.G.; Kim, G.T.; Kim, B.M.; Kim, E.J.; Kim, S.Y.; Kim, Y.M. Ethanol extract from Cnidium monnieri (L.) Cusson induces cell cycle arrest and apoptosis via regulation of the p53 independent pathway in HepG2 and Hep3B hepatocellular carcinoma cells. Mol. Med. Rep., 2018, 17(2), 2572-2580.
[PMID: 29207130]
[26]
Pan, Z.; Fang, Z.; Lu, W.; Liu, X.; Zhang, Y. Osthole, a coumadin analog from Cnidium monnieri (L.) Cusson, stimulates corticosterone secretion by increasing steroidogenic enzyme expression in mouse Y1 adrenocortical tumor cells. J. Ethnopharmacol., 2015, 175, 456-462.
[http://dx.doi.org/10.1016/j.jep.2015.10.009] [PMID: 26456364]
[27]
Jiang, G.; Liu, J.; Ren, B.; Tang, Y.; Owusu, L.; Li, M.; Zhang, J.; Liu, L.; Li, W. Anti-tumor effects of osthole on ovarian cancer cells in vitro. J. Ethnopharmacol., 2016, 193, 368-376.
[http://dx.doi.org/10.1016/j.jep.2016.08.045] [PMID: 27566206]
[28]
Khan, S.A.; Lee, T.K.W. Network-pharmacology-based study on active phytochemicals and molecular mechanism of cnidium monnieri in treating hepatocellular carcinoma. Int. J. Mol. Sci., 2022, 23(10), 5400-5419.
[http://dx.doi.org/10.3390/ijms23105400] [PMID: 35628212]
[29]
Gao, R.; Zhang, X-B. Pharmacological mechanism of Ganlu Powder in the treatment of NASH based on network pharmacology and molecular docking. Dis. Markers, 2022, 2022, 1-12.
[30]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[31]
Jiang, N.; Li, H.; Sun, Y.; Zeng, J.; Yang, F.; Kantawong, F.; Wu, J. Network pharmacology and pharmacological evaluation reveals the mechanism of the sanguisorba officinalis in suppressing hepatocellular carcinoma. Front. Pharmacol., 2021, 12, 618522.
[32]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[33]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[34]
Lopes, C.T.; Franz, M.; Kazi, F.; Donaldson, S.L.; Morris, Q.; Bader, G.D. Cytoscape Web: An interactive web-based network browser. Bioinformatics, 2010, 26(18), 2347-2348.
[http://dx.doi.org/10.1093/bioinformatics/btq430] [PMID: 20656902]
[35]
Tian, S.; Wang, J.; Li, Y.; Li, D.; Xu, L.; Hou, T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv. Drug Deliv. Rev., 2015, 86, 2-10.
[http://dx.doi.org/10.1016/j.addr.2015.01.009] [PMID: 25666163]
[36]
Zhang, X.; Zhao, Y.; Kong, P.; Han, M.; Li, B. Expression of circZNF609 is down-regulated in colorectal cancer tissue and promotes apoptosis in colorectal cancer cells by upregulating p53. Med. Sci. Monit., 2019, 25, 5977-5985.
[http://dx.doi.org/10.12659/MSM.915926] [PMID: 31401644]
[37]
Cui, D.; Zhao, D.; Wang, B.; Liu, B.; Yang, L.; Xie, H.; Wang, Z.; Cheng, L.; Qiu, X.; Ma, Z.; Yu, M.; Wu, D.; Long, H. Safflower (Carthamus tinctorius L.) polysaccharide attenuates cellular apoptosis in steroid-induced avascular necrosis of femoral head by targeting caspase-3-dependent signaling pathway. Int. J. Biol. Macromol., 2018, 116, 106-112.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.181] [PMID: 29729342]
[38]
Lee, J.H.; Yun, C.W.; Lee, S.H. Cellular prion protein enhances drug resistance of colorectal cancer cells via regulation of a survival signal pathway. Biomol. Ther., 2018, 26(3), 313-321.
[http://dx.doi.org/10.4062/biomolther.2017.033] [PMID: 28822989]
[39]
Bhardwaj, M.; Cho, H.J.; Paul, S.; Jakhar, R.; Khan, I.; Lee, S.J.; Kim, B.Y.; Krishnan, M.; Khaket, T.P.; Lee, H.G.; Kang, S.C. Vitexin induces apoptosis by suppressing autophagy in multi-drug resistant colorectal cancer cells. Oncotarget, 2018, 9(3), 3278-3291.
[http://dx.doi.org/10.18632/oncotarget.22890] [PMID: 29423046]
[40]
Zhou, M.; Liu, X.; Li, Z.; Huang, Q.; Li, F.; Li, C.Y. Caspase‐3 regulates the migration, invasion and metastasis of colon cancer cells. Int. J. Cancer, 2018, 143(4), 921-930.
[http://dx.doi.org/10.1002/ijc.31374] [PMID: 29524226]
[41]
Jin, X.; Ge, L.P.; Li, D.Q.; Shao, Z.M.; Di, G.H.; Xu, X.E.; Jiang, Y.Z. LncRNA TROJAN promotes proliferation and resistance to CDK4/6 inhibitor via CDK2 transcriptional activation in ER+ breast cancer. Mol. Cancer, 2020, 19(1), 87.
[http://dx.doi.org/10.1186/s12943-020-01210-9] [PMID: 32393270]
[42]
Li, J.Q.; Miki, H.; Ohmori, M.; Wu, F.; Funamoto, Y. Expression of cyclin E and cyclin-dependent kinase 2 correlates with metastasis and prognosis in colorectal carcinoma. Hum. Pathol., 2001, 32(9), 945-953.
[http://dx.doi.org/10.1053/hupa.2001.27116] [PMID: 11567224]
[43]
Frum, R.A.; Grossman, S.R. Mechanisms of mutant p53 stabilization in cancer. Subcell. Biochem., 2014, 85, 187-197.
[http://dx.doi.org/10.1007/978-94-017-9211-0_10] [PMID: 25201195]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy