Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Nanotheranostic Approach for the Management of Colorectal Cancer

Author(s): Saloni Sharma, Gowthamarajan Kuppusamy*, Parikshit Roy Chowdhury and Divya Pamu

Volume 14, Issue 3, 2024

Published on: 03 November, 2023

Article ID: e230823220278 Pages: 14

DOI: 10.2174/2210681213666230823160616

Price: $65

Abstract

Colorectal Cancer (CRC) is a highly prevalent and the most frequent reason for death. The choice of nanotheranostic technology for the management of colorectal cancer is one of the emerging strategies to overcome Colorectal Cancer (CRC). Magnetic nanoparticles are employed in this case because they have biomedical applications, such as diagnostic imaging, thermal treatment, and medication transport. There has been evidence of the usage of various chemicals on the surface of nano-particles, such as ligands, to highlight the contact with tumour cells at the target region in order to induce effective cytotoxic drug release. This review will highlight current breakthroughs in targeting magnetic nanoparticles against colorectal cancer, as well as the selection of ligands and their cellular targets with ionizing radiation employing in vitro and in vivo energies for Colorectal Cancer management.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[2]
Siegel, R.L.; Fedewa, S.A.; Anderson, W.F.; Miller, K.D.; Ma, J.; Rosenberg, P.S.; Jemal, A. Colorectal cancer incidence patterns in the United States, 1974–2013. J. Natl. Cancer Inst., 2017, 109(8), djw322.
[http://dx.doi.org/10.1093/jnci/djw322] [PMID: 28376186]
[3]
Biswal, B.M.; Yusoff, Z. Application of nanotechnology in cancer treatment.In: Engineering Applications of Nanotechnology; ; , 2017, pp. 269-311.
[http://dx.doi.org/10.1007/978-3-319-29761-3_11]
[4]
Abbas, Z.; Rehman, S. An overview of cancer treatment modalities. In: Neoplasm; Shahzad, H.N., Ed.; IntechOpen: London, 2018.
[http://dx.doi.org/10.5772/intechopen.76558]
[5]
Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut, 2017, 66(4), 683-691.
[http://dx.doi.org/10.1136/gutjnl-2015-310912] [PMID: 26818619]
[6]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
[7]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[8]
Kobayashi, H.; Watanabe, R.; Choyke, P.L. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics, 2014, 4(1), 81-89.
[http://dx.doi.org/10.7150/thno.7193] [PMID: 24396516]
[9]
Prabhakar, U.; Maeda, H.; Jain, R.K.; Sevick-Muraca, E.M. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res., 2013, 73(8), 2412-2417.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4561] [PMID: 23423979]
[10]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[11]
Rajora, A.; Ravishankar, D.; Osborn, H.; Greco, F. Impact of the enhanced permeability and retention (EPR) effect and cathepsins levels on the activity of polymer–drug conjugates. Polymers (Basel), 2014, 6(8), 2186-2220.
[http://dx.doi.org/10.3390/polym6082186]
[12]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[13]
Kim, T.H.; Lee, S.; Chen, X. Nanotheranostics for personalized medicine. Expert Rev. Mol. Diagn., 2013, 13(3), 257-269.
[http://dx.doi.org/10.1586/erm.13.15] [PMID: 23570404]
[14]
Mura, S.; Couvreur, P. Nanotheranostics for personalized medicine. Adv. Drug Deliv. Rev., 2012, 64(13), 1394-1416.
[http://dx.doi.org/10.1016/j.addr.2012.06.006] [PMID: 22728642]
[15]
Kunjachan, S.; Ehling, J.; Storm, G.; Kiessling, F.; Lammers, T. Noninvasive imaging of nanomedicines and nanotheranostics: Principles, progress, and prospects. Chem. Rev., 2015, 115(19), 10907-10937.
[http://dx.doi.org/10.1021/cr500314d] [PMID: 26166537]
[16]
Melancon, M.P.; Stafford, R.J.; Li, C. Challenges to effective cancer nanotheranostics. J. Control. Release, 2012, 164(2), 177-182.
[http://dx.doi.org/10.1016/j.jconrel.2012.07.045] [PMID: 22906841]
[17]
Mura, S.; Couvreur, P. Nanotheranostics for personalized medicine; World Scientific, 2016, p. 348.
[http://dx.doi.org/10.1142/9741]
[18]
Ponce, A.M.; Viglianti, B.L.; Yu, D.; Yarmolenko, P.S.; Michelich, C.R.; Woo, J.; Bally, M.B.; Dewhirst, M.W. Magnetic resonance imaging of temperature-sensitive liposome release: Drug dose painting and antitumor effects. J. Natl. Cancer Inst., 2007, 99(1), 53-63.
[http://dx.doi.org/10.1093/jnci/djk005] [PMID: 17202113]
[19]
Arrieta, O.; Medina, L.A.; Estrada-Lobato, E.; Ramírez-Tirado, L.A.; Mendoza-García, V.O.; de la Garza-Salazar, J. High liposomal doxorubicin tumour tissue distribution, as determined by radiopharmaceutical labelling with 99mTc-LD, is associated with the response and survival of patients with unresectable pleural mesothelioma treated with a combination of liposomal doxorubicin and cisplatin. Cancer Chemother. Pharmacol., 2014, 74(1), 211-215.
[http://dx.doi.org/10.1007/s00280-014-2477-x] [PMID: 24817602]
[20]
Phillips, E.; Penate-Medina, O.; Zanzonico, P.B.; Carvajal, R.D.; Mohan, P.; Ye, Y.; Humm, J.; Gönen, M.; Kalaigian, H.; Schöder, H.; Strauss, H.W.; Larson, S.M.; Wiesner, U.; Bradbury, M.S. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med., 2014, 6(260), 260ra149.
[http://dx.doi.org/10.1126/scitranslmed.3009524] [PMID: 25355699]
[21]
Seymour, L.W.; Ferry, D.R.; Kerr, D.J.; Rea, D.; Whitlock, M.; Poyner, R.; Boivin, C.; Hesslewood, S.; Twelves, C.; Blackie, R.; Schatzlein, A.; Jodrell, D.; Bissett, D.; Calvert, H.; Lind, M.; Robbins, A.; Burtles, S.; Duncan, R.; Cassidy, J. Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int. J. Oncol., 2009, 34(6), 1629-1636.
[http://dx.doi.org/10.3892/ijo_00000293] [PMID: 19424581]
[22]
Willett, C.G.; Boucher, Y.; di Tomaso, E.; Duda, D.G.; Munn, L.L.; Tong, R.T.; Chung, D.C.; Sahani, D.V.; Kalva, S.P.; Kozin, S.V.; Mino, M.; Cohen, K.S.; Scadden, D.T.; Hartford, A.C.; Fischman, A.J.; Clark, J.W.; Ryan, D.P.; Zhu, A.X.; Blaszkowsky, L.S.; Chen, H.X.; Shellito, P.C.; Lauwers, G.Y.; Jain, R.K. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat. Med., 2004, 10(2), 145-147.
[http://dx.doi.org/10.1038/nm988] [PMID: 14745444]
[23]
IDH1 and OCT4 in High Grade Astrocytoma. NCT Patent 06214689, , 2017.
[24]
Miller, M.A.; Gadde, S.; Pfirschke, C.; Engblom, C.; Sprachman, M.M.; Kohler, R.H.; Yang, K.S.; Laughney, A.M.; Wojtkiewicz, G.; Kamaly, N.; Bhonagiri, S.; Pittet, M.J.; Farokhzad, O.C.; Weissleder, R. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci. Transl. Med., 2015, 7(314), 314ra183.
[http://dx.doi.org/10.1126/scitranslmed.aac6522] [PMID: 26582898]
[25]
Pérez-Medina, C.; Abdel-Atti, D.; Tang, J.; Zhao, Y.; Fayad, Z.A.; Lewis, J.S.; Mulder, W.J.M.; Reiner, T. Nanoreporter PET predicts the efficacy of anti-cancer nanotherapy. Nat. Commun., 2016, 7(1), 11838.
[http://dx.doi.org/10.1038/ncomms11838] [PMID: 27319780]
[26]
Koukourakis, M.I.; Koukouraki, S.; Giatromanolaki, A.; Archimandritis, S.C.; Skarlatos, J.; Beroukas, K.; Bizakis, J.G.; Retalis, G.; Karkavitsas, N.; Helidonis, E.S. Liposomal doxorubicin and conventionally fractionated radiotherapy in the treatment of locally advanced non-small-cell lung cancer and head and neck cancer. J. Clin. Oncol., 1999, 17(11), 3512-3521.
[http://dx.doi.org/10.1200/JCO.1999.17.11.3512] [PMID: 10550149]
[27]
Harrington, K.J.; Mohammadtaghi, S.; Uster, P.S.; Glass, D. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin. Cancer Res., 2001, 7(2), 243-254.
[PMID: 11234875]
[28]
Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M.R.; Miyazono, K.; Uesaka, M.; Nishiyama, N.; Kataoka, K. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol., 2011, 6(12), 815-823.
[http://dx.doi.org/10.1038/nnano.2011.166] [PMID: 22020122]
[29]
Irvine, D.J. Materializing the future of vaccines and immunotherapy. Nat. Rev. Mater., 2016, 1(1), 15008.
[http://dx.doi.org/10.1038/natrevmats.2015.8]
[30]
Arrieta, Ó.; Medina, L.A.; Estrada-Lobato, E.; Hernández-Pedro, N.; Villanueva-Rodríguez, G.; Martínez-Barrera, L.; Macedo, E.O.; López-Rodríguez, V.; Motola-Kuba, D.; Corona-Cruz, J.F. First-line chemotherapy with liposomal doxorubicin plus cisplatin for patients with advanced malignant pleural mesothelioma: Phase II trial. Br. J. Cancer, 2012, 106(6), 1027-1032.
[http://dx.doi.org/10.1038/bjc.2012.44] [PMID: 22353806]
[31]
Zhang, J.; Lang, L.; Zhu, Z.; Li, F.; Niu, G.; Chen, X. Clinical translation of an albumin-binding PET radiotracer 68Ga-NEB. J. Nucl. Med., 2015, 56(10), 1609-1614.
[http://dx.doi.org/10.2967/jnumed.115.159640] [PMID: 26251416]
[32]
Chang, D.; Lim, M.; Goos, J.A.C.M.; Qiao, R.; Ng, Y.Y.; Mansfeld, F.M.; Jackson, M.; Davis, T.P.; Kavallaris, M. Biologically targeted magnetic hyperthermia: Potential and limitations. Front. Pharmacol., 2018, 9, 831.
[http://dx.doi.org/10.3389/fphar.2018.00831] [PMID: 30116191]
[33]
Dong, X.J.; Zhang, Z.L.; Wu, L.L.; Ma, X.Y.; Xu, C.M.; Pang, D.W. Coating magnetic nanospheres with PEG To reduce nonspecific adsorption on cells. ACS Omega, 2019, 4(4), 7391-7399.
[http://dx.doi.org/10.1021/acsomega.9b00245]
[34]
Chen, M.L.; Gao, Z.W.; Chen, X.M.; Pang, S.C.; Zhang, Y. Laser-assisted in situ synthesis of graphene-based magnetic-responsive hybrids for multimodal imaging-guided chemo/photothermal synergistic therapy. Talanta, 2018, 182, 433-442.
[http://dx.doi.org/10.1016/j.talanta.2018.02.030] [PMID: 29501175]
[35]
Bhatti, M.A. Study of Insulin Attached onto Magnetic Nanoparticles. Doctoral dissertation, University of Saskatchewan, 2018.
[36]
Zhang, Q.; Shan, W.; Ai, C.; Chen, Z.; Zhou, T.; Lv, X.; Zhou, X.; Ye, S.; Ren, L.; Wang, X. Construction of multifunctional Fe3O4MTX@ HBc nanoparticles for MR imaging and photothermal therapy/chemotherapy. Nanotheranostics, 2018, 2(1), 87-95.
[http://dx.doi.org/10.7150/ntno.21942] [PMID: 29291165]
[37]
Gonzalez-Valdivieso, J.; Girotti, A.; Schneider, J.; Arias, F.J. Advanced nanomedicine and cancer: Challenges and opportunities in clinical translation. Int. J. Pharm., 2021, 599, 120438.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120438] [PMID: 33662472]
[38]
Alirezaie Alavijeh, A.; Barati, M.; Barati, M.; Dehkordi, A.H. The potential of magnetic nanoparticles for diagnosis and treatment of cancer based on body magnetic field and organ-on-the-chip. Adv. Pharm. Bull., 2019, 9(3), 360-373.
[http://dx.doi.org/10.15171/apb.2019.043] [PMID: 31592054]
[39]
Xie, W.; Guo, Z.; Gao, F.; Gao, Q.; Wang, D.; Liaw, B.; Cai, Q.; Sun, X.; Wang, X.; Zhao, L. Shape-, sizeand structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics, 2018, 8(12), 3284-3307.
[http://dx.doi.org/10.7150/thno.25220] [PMID: 29930730]
[40]
Martín, M.J.; Spitzmaul, G.; Lassalle, V. Novel insights and perspectives for the diagnosis and treatment of hearing loss through the implementation of magnetic nanotheranostics. ChemMedChem, 2022, 17(5), e202100685.
[http://dx.doi.org/10.1002/cmdc.202100685] [PMID: 34978134]
[41]
Kurniawan, C.; Widodo, A.T.; Kim, D.H.; Djuhana, D. Micromagnetic investigation of magnetization reversal in sphere-shaped ferromagnetic nanoparticle. In: Key Engineering Materials; Trans Tech Publications Ltd , 2020; 855, pp. 237-242.
[42]
Ayubi, M.; Karimi, M.; Abdpour, S.; Rostamizadeh, K.; Parsa, M.; Zamani, M.; Saedi, A. Magnetic nanoparticles decorated with PEGylated curcumin as dual targeted drug delivery: Synthesis, toxicity and biocompatibility study. Mater. Sci. Eng. C, 2019, 104, 109810.
[http://dx.doi.org/10.1016/j.msec.2019.109810] [PMID: 31499939]
[43]
Kotakadi, S.M.; Borelli, D.P.R.; Nannepaga, J.S. Therapeutic applications of magnetotactic bacteria and magnetosomes: A review emphasizing on the cancer treatment. Front. Bioeng. Biotechnol., 2022, 10, 789016.
[http://dx.doi.org/10.3389/fbioe.2022.789016] [PMID: 35547173]
[44]
Ocsoy, I.; Tasdemir, D.; Mazicioglu, S.; Celik, C. Katı,; A.; Ulgen, F. Biomolecules incorporated metallic nanoparticles synthesis and their biomedical applications. Mater. Lett., 2018, 212, 45-50.
[http://dx.doi.org/10.1016/j.matlet.2017.10.068]
[45]
Kola, P.; Nagesh, P.K.B.; Roy, P.K.; Deepak, K.; Reis, R.L.; Kundu, S.C.; Mandal, M. Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemoand radioresistances. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2023, 15(4), e1876.
[http://dx.doi.org/10.1002/wnan.1876] [PMID: 36600447]
[46]
Ali, A.; Zafar, H.; Zia, M. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl., 2016, 9, 49-67.
[http://dx.doi.org/10.2147/NSA.S99986] [PMID: 27578966]
[47]
Verma, J.; Lal, S.; Van Noorden, C.J. Nanoparticles for hyperthermic therapy: Synthesis strategies and applications in glioblastoma. Int. J. Nanomedicine, 2014, 9, 2863-2877.
[PMID: 24959075]
[48]
Kallu, J.; Banerjee, T.; Sulthana, S.; Darji, S.; Higginbotham, R.; Fletcher, C.; Gerasimchuk, N.N.; Santra, S. Nanomedicine-assisted combination therapy of NSCLC: New platinum-based anticancer drug synergizes the therapeutic efficacy of ganetespib. Nanotheranostics, 2019, 3(1), 120-134.
[http://dx.doi.org/10.7150/ntno.28468] [PMID: 30899640]
[49]
Baranwal, A.; Mahato, K.; Srivastava, A.; Maurya, P.K.; Chandra, P. Phytofabricated metallic nanoparticles and their clinical applications. RSC Advances, 2016, 6(107), 105996-106010.
[http://dx.doi.org/10.1039/C6RA23411A]
[50]
Ang, M.J.Y.; Chan, S.Y.; Goh, Y.Y.; Luo, Z.; Lau, J.W.; Liu, X. Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics. Adv. Drug Deliv. Rev., 2021, 178, 113907.
[http://dx.doi.org/10.1016/j.addr.2021.113907] [PMID: 34371084]
[51]
D’Agata, F.; Ruffinatti, F.; Boschi, S.; Stura, I.; Rainero, I. Magnetic nanoparticles in the central nervous system: Targeting principles, applications and safety issues. Molecules, 2017, 23(1), 9.
[http://dx.doi.org/10.3390/molecules23010009] [PMID: 29267188]
[52]
Ramin, N.A.; Asman, S.; Ramachandran, M.R.; Saleh, N.M.; Mat Ali, Z.M. Magnetic nanoparticles molecularly imprinted polymers: A review. Curr. Nanosci., 2023, 19(3), 372-400.
[http://dx.doi.org/10.2174/1573413718666220727111319]
[53]
Ruiz, A.; Gutiérrez, L.; Cáceres-Vélez, P.R.; Santos, D.; Chaves, S.B.; Fascineli, M.L.; García, M.P.; Azevedo, R.B.; Morales, M.P. Biotransformation of magnetic nanoparticles as a function of coating in a rat model. Nanoscale, 2015, 7(39), 16321-16329.
[http://dx.doi.org/10.1039/C5NR03780H] [PMID: 26381991]
[54]
Gupta, A. Nutritional anemia in preschool children; Springer: Berlin, 2017.
[http://dx.doi.org/10.1007/978-981-10-5178-4]
[55]
Tiwari, A.; Tiwari, A. , Eds.; Nanomaterials in drug delivery, imaging, and tissue engineering; John Wiley & Sons: Chichester, 2013.
[http://dx.doi.org/10.1002/9781118644591]
[56]
Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci., 2014, 19(2), 164-174.
[PMID: 24778671]
[57]
Khorasani, A.; Shahbazi-Gahrouei, D.; Safari, A. Recent metal nanotheranostics for cancer diagnosis and therapy: A review. Diagnostics , 2023, 13(5), 833.
[http://dx.doi.org/10.3390/diagnostics13050833] [PMID: 36899980]
[58]
Yu, D.H.; Lu, Q.; Xie, J.; Fang, C.; Chen, H.Z. Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature. Biomaterials, 2010, 31(8), 2278-2292.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.047] [PMID: 20053444]
[59]
Tiernan, J.P.; Perry, S.L.; Verghese, E.T.; West, N.P.; Yeluri, S.; Jayne, D.G.; Hughes, T.A. Carcinoembryonic antigen is the preferred biomarker for in vivo colorectal cancer targeting. Br. J. Cancer, 2013, 108(3), 662-667.
[http://dx.doi.org/10.1038/bjc.2012.605] [PMID: 23322207]
[60]
Andrés Vergés, M.; Costo, R.; Roca, A.G.; Marco, J.F.; Goya, G.F.; Serna, C.J.; Morales, M.P. Uniform and water stable magnetite nanoparticles with diameters around the monodomain–multidomain limit. J. Phys. D Appl. Phys., 2008, 41(13), 134003.
[http://dx.doi.org/10.1088/0022-3727/41/13/134003]
[61]
Jaffer, H.; Murphy, K.J. Magnetic resonance imaging-induced DNA damage. Can. Assoc. Radiol. J., 2017, 68(1), 2-3.
[http://dx.doi.org/10.1016/j.carj.2016.12.004] [PMID: 28117069]
[62]
Gonzalez-Fernandez, M.A.; Torres, T.E.; Andrés-Vergés, M.; Costo, R.; de la Presa, P.; Serna, C.J.; Morales, M.P.; Marquina, C.; Ibarra, M.R.; Goya, G.F. Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties. J. Solid State Chem., 2009, 182(10), 2779-2784.
[http://dx.doi.org/10.1016/j.jssc.2009.07.047]
[63]
Zhang, W.; Xu, C.; Yin, G.Q.; Zhang, X.E.; Wang, Q.; Li, F. Encapsulation of inorganic nanomaterials inside virus-based nanoparticles for bioimaging. Nanotheranostics, 2017, 1(4), 358-368.
[http://dx.doi.org/10.7150/ntno.21384] [PMID: 29071199]
[64]
Duru, I.P.; Ozugurlu, E.; Arda, L. Size effect on magnetic properties of Zn0.95-xMgxNi0.05O nanoparticles by Monte Carlo simulation. Ceram. Int., 2019, 45(5), 5259-5265.
[http://dx.doi.org/10.1016/j.ceramint.2018.11.223]
[65]
Palanisamy, S.; Wang, Y.M. Superparamagnetic iron oxide nanoparticulate system: Synthesis, targeting, drug delivery and therapy in cancer. Dalton Trans., 2019, 48(26), 9490-9515.
[http://dx.doi.org/10.1039/C9DT00459A] [PMID: 31211303]
[66]
Kudr, J.; Haddad, Y.; Richtera, L.; Heger, Z.; Cernak, M.; Adam, V.; Zitka, O. Magnetic nanoparticles: From design and synthesis to real world applications. Nanomaterials, 2017, 7(9), 243.
[http://dx.doi.org/10.3390/nano7090243] [PMID: 28850089]
[67]
Ziegler-Borowska, M. Chełminiak, D.; Siódmiak, T.; Sikora, A.; Piotr Marszałł, M.; Kaczmarek, H. Synthesis of new chitosan coated magnetic nanoparticles with surface modified with long-distanced amino groups as a support for bioligands binding. Mater. Lett., 2014, 132, 63-65.
[http://dx.doi.org/10.1016/j.matlet.2014.06.020]
[68]
Li, Y.; Dhawan, U.; Wang, H.Y.; Liu, X.; Ku, H.H.; Tsai, M.T.; Yen, H.W.; Chung, R.J. theranostic iron@gold core-shell nanoparticles for simultaneous hyperthermia-chemotherapy upon photostimulation. Part. Part. Syst. Charact., 2019, 36(6), 1800419.
[http://dx.doi.org/10.1002/ppsc.201800419]
[69]
Chertok, B.; David, A.E.; Yang, V.C. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials, 2010, 31(24), 6317-6324.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.043] [PMID: 20494439]
[70]
Khizar, S.; Ahmad, N.M.; Ahmed, N.; Manzoor, S.; Elaissari, A. Encapsulation of doxorubicin in magnetic-polymer hybrid colloidal particles of Eudragit E100 and their hyperthermia and drug release studies. Polym. Adv. Technol., 2020, 31(8), 1732-1743.
[http://dx.doi.org/10.1002/pat.4900]
[71]
Jordan, A.; Scholz, R.; Maier-Hauff, K.; van Landeghem, F.K.H.; Waldoefner, N.; Teichgraeber, U.; Pinkernelle, J.; Bruhn, H. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J. Neurooncol., 2006, 78(1), 7-14.
[http://dx.doi.org/10.1007/s11060-005-9059-z] [PMID: 16314937]
[72]
Sirivisoot, S.; Harrison, B. Magnetically stimulated ciprofloxacin release from polymeric microspheres entrapping iron oxide nanoparticles. Int. J. Nanomedicine, 2015, 10, 4447-4458.
[http://dx.doi.org/10.2147/IJN.S82830] [PMID: 26185446]
[73]
Jia, Y.; Yuan, M.; Yuan, H.; Huang, X.; Sui, X.; Cui, X.; Tang, F.; Peng, J.; Chen, J.; Lu, S.; Xu, W.; Zhang, L.; Guo, Q. Coencapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biodegradable PLGA nanocarriers for intratumoral drug delivery. Int. J. Nanomedicine, 2012, 7, 1697-1708.
[PMID: 22619520]
[74]
Schleich, N.; Sibret, P.; Danhier, P.; Ucakar, B.; Laurent, S.; Muller, R.N.; Jérôme, C.; Gallez, B.; Préat, V.; Danhier, F. Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int. J. Pharm., 2013, 447(1-2), 94-101.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.042] [PMID: 23485340]
[75]
Ferreira, M.; Sousa, J.; Pais, A.; Vitorino, C. The role of magnetic nanoparticles in cancer nanotheranostics. Materials , 2020, 13(2), 266.
[http://dx.doi.org/10.3390/ma13020266] [PMID: 31936128]
[76]
Yu, B.; Li, S.Y.; An, P.; Zhang, Y.N.; Liang, Z.J.; Yuan, S.J.; Cai, H.Y. Comparative study of proteome between primary cancer and hepatic metastatic tumor in colorectal cancer. World J. Gastroenterol., 2004, 10(18), 2652-2656.
[http://dx.doi.org/10.3748/wjg.v10.i18.2652] [PMID: 15309713]
[77]
Oshima, T.; Akaike, M.; Yoshihara, K.; Shiozawa, M.; Yamamoto, N.; Sato, T.; Yamada, R.; Fujii, S.; Rino, Y.; Kunisaki, C.; Tanaka, K.; Masuda, M.; Imada, T. Clinicopathological significance of the gene expression of matrix metalloproteinase-7, insulin-like growth factor-1, insulin-like growth factor-2 and insulin-like growth factor-1 receptor in patients with colorectal cancer: Insulin-like growth factor-1 receptor gene expression is a useful predictor of liver metastasis from colorectal cancer. Oncol. Rep., 2008, 20(2), 359-364.
[PMID: 18636198]
[78]
Oshima, T.; Yamamoto, N.; Sato, T.; Nagano, Y.; Fujii, S. Overexpression of EphA4 gene and reduced expression of EphB2 gene: Correlation with liver metastasis in colorectal cancer. J. Clin. Oncol., 2008, 33(3), 573-577.
[http://dx.doi.org/10.1200/jco.2009.27.15_suppl.e15129] [PMID: 18695888]
[79]
Zlobec, I.; Terracciano, L.; Tornillo, L.; Günthert, U.; Vuong, T.; Jass, J.R.; Lugli, A. Role of RHAMM within the hierarchy of well-established prognostic factors in colorectal cancer. Gut, 2008, 57(10), 1413-1419.
[http://dx.doi.org/10.1136/gut.2007.141192] [PMID: 18436576]
[80]
van der Bij, G.J.; Oosterling, S.J.; Bögels, M.; Bhoelan, F. Blocking α2 integrins on rat CC531s colon carcinoma cells prevents operation-induced augmentation of liver metastases outgrowth. Hepatology, 2008, 47(2), 532-543.
[http://dx.doi.org/10.1002/hep.22013] [PMID: 18098323]
[81]
Conaghan, P.J.; Ashraf, S.Q.; Tytherleigh, M.G.; Wilding, J.L.; Tchilian, E.; Bicknell, D.; Mortensen, N.J.M.; Bodmer, W.F. Targeted killing of colorectal cancer cell lines by a humanised IgG1 monoclonal antibody that binds to membrane-bound carcinoembryonic antigen. Br. J. Cancer, 2008, 98(7), 1217-1225.
[http://dx.doi.org/10.1038/sj.bjc.6604289] [PMID: 18349843]
[82]
Oukkal, M.; Djilat, K.; Hadjam, R.M.; Mahgoun, M.; Bentabak, K.; Graba, A.; Smail, N.; Kaci, N.A.; Ahmed, R.B.; Bouzid, K. Treatment of advanced and/or metastatic colorectal cancer with bevacizumab in combination with oxaliplatin-based chemotherapy (Folfox7 regimen) Bull. Cancer, 2010, 97(4), 469-474.
[http://dx.doi.org/10.1684/bdc.2010.1088] [PMID: 20385517]
[83]
Cassidy, J.; Clarke, S.; Díaz-Rubio, E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T.S.; Rivera, F.; Couture, F.; Sirzén, F.; Saltz, L. Randomized phase III study of capecitabine plus oxaliplatin compared with fluorouracil/folinic acid plus oxaliplatin as first-line therapy for metastatic colorectal cancer. J. Clin. Oncol., 2008, 26(12), 2006-2012.
[http://dx.doi.org/10.1200/JCO.2007.14.9898] [PMID: 18421053]
[84]
Douillard, J.Y.; Siena, S.; Cassidy, J.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; Rivera, F.; Kocákova, I.; Ruff, P. Błasińska-Morawiec, M.; Šmakal, M.; Canon, J.L.; Rother, M.; Oliner, K.S.; Wolf, M.; Gansert, J. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: The PRIME study. J. Clin. Oncol., 2010, 28(31), 4697-4705.
[http://dx.doi.org/10.1200/JCO.2009.27.4860] [PMID: 20921465]
[85]
Chong, G.; Lee, F.T.; Hopkins, W.; Tebbutt, N.; Cebon, J.S.; Mountain, A.J.; Chappell, B.; Papenfuss, A.; Schleyer, P. U, P.; Murphy, R.; Wirth, V.; Smyth, F.E.; Potasz, N.; Poon, A.; Davis, I.D.; Saunder, T.; O’Keefe, G.J.; Burgess, A.W.; Hoffman, E.W.; Old, L.J.; Scott, A.M. Phase I trial of 131I-huA33 in patients with advanced colorectal carcinoma. Clin. Cancer Res., 2005, 11(13), 4818-4826.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2330] [PMID: 16000579]
[86]
Wang, H.; Picchio, M.L.; Calderón, M. One stone, many birds: Recent advances in functional nanogels for cancer nanotheranostics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2022, 14(4), e1791.
[http://dx.doi.org/10.1002/wnan.1791] [PMID: 35338603]
[87]
Ranucci, E.; Manfredi, A. Polyamidoamines: Versatile bioactive polymers with potential for biotechnological applications. Chemistry. Chemistry Africa, 2019, 2(2), 167-193.
[http://dx.doi.org/10.1007/s42250-019-00046-1]
[88]
Jamal, T.B. A review paper on nanotheranostic insight into combatting impediments of the COVID-19 pandemic Thesis (Bachelor of Science in Biotechnology),, 2020.
[89]
Chen, Y.T.; Kolhatkar, A.G.; Zenasni, O.; Xu, S.; Lee, T.R. Biosensing using magnetic particle detection techniques. Sensors , 2017, 17(10), 2300.
[http://dx.doi.org/10.3390/s17102300] [PMID: 28994727]
[90]
Roy Chowdhury, M.; Schumann, C.; Bhakta-Guha, D.; Guha, G. Cancer nanotheranostics: Strategies, promises and impediments. Biomed. Pharmacother., 2016, 84, 291-304.
[http://dx.doi.org/10.1016/j.biopha.2016.09.035] [PMID: 27665475]
[91]
Liu, Z.; Wang, P.; Xie, F.; Chen, J.; Cai, M.; Li, Y.; Yan, J.; Lin, Q.; Luo, F. Virus-inspired hollow mesoporous gadolinium-bismuth nanotheranostics for magnetic resonance imaging-guided synergistic photodynamic-radiotherapy. Adv. Healthc. Mater., 2022, 11(6), 2102060.
[http://dx.doi.org/10.1002/adhm.202102060] [PMID: 34894092]
[92]
Katz, S. properties and applications of magnetic nanoparticles and nanowires—A brief introduction. Magnetochemistry, 2019, 5(4), 61.
[http://dx.doi.org/10.3390/magnetochemistry5040061]
[93]
Silva, C.O.; Pinho, J.O.; Lopes, J.M.; Almeida, A.J.; Gaspar, M.M.; Reis, C. Current trends in cancer nanotheranostics: Metallic, polymeric, and lipid-based systems. Pharmaceutics, 2019, 11(1), 22.
[http://dx.doi.org/10.3390/pharmaceutics11010022] [PMID: 30625999]
[94]
Sandler, S.E.; Fellows, B.; Mefford, O.T. Best practices for characterization of magnetic nanoparticles for biomedical applications. Anal. Chem., 2019, 91(22), 14159-14169.
[http://dx.doi.org/10.1021/acs.analchem.9b03518] [PMID: 31566353]
[95]
Yadollahpour, A.; Rashidi, S. Magnetic nanoparticles: A review of chemical and physical characteristics important in medical applications. Orient. J. Chem., 2015, 31(S1), 25-30.
[http://dx.doi.org/10.13005/ojc/31.Special-Issue1.03]
[96]
Malik, A.; Tahir Butt, T.; Zahid, S.; Zahid, F.; Waquar, S.; Rasool, M.; Qazi, M.H.; Qazi, A.M. Use of magnetic nanoparticles as targeted therapy: Theranostic approach to treat and diagnose cancer. J. Nanotechnol., 2017, 2017, 1-8.
[http://dx.doi.org/10.1155/2017/1098765]
[97]
Wáng, Y.X.J.; Idée, J.M. A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant. Imaging Med. Surg., 2017, 7(1), 88-122.
[http://dx.doi.org/10.21037/qims.2017.02.09] [PMID: 28275562]
[98]
Gupta, A. Nutritional anemia in preschool children; Springer: Berlin, 2017.
[http://dx.doi.org/10.1007/978-981-10-5178-4]
[99]
Tiwari, A.; Tiwari, A. , Eds.; Nanomaterials in drug delivery, imaging, and tissue engineering; John Wiley & Sons: Chichester, 2013.
[http://dx.doi.org/10.1002/9781118644591]
[100]
Jiang, S.; Huang, K.; Qu, J.; Lin, J.; Huang, P. Cancer nanotheranostics in the second near-infrared window. VIEW, 2021, 2(1), 20200075.
[http://dx.doi.org/10.1002/VIW.20200075]
[101]
Arruebo, M.; Valladares, M.; González-Fernández, Á. Antibodyconjugated nanoparticles for biomedical applications. J. Nanomater., 2009, 2009, 1-24.
[http://dx.doi.org/10.1155/2009/439389]
[102]
Wang, Y.; Song, S.; Liu, J.; Liu, D.; Zhang, H. ZnO-functionalized upconverting nanotheranostic agent: Multi-modality imaging-guided chemotherapy with on-demand drug release triggered by pH. Angew. Chem. Int. Ed., 2015, 54(2), 536-540.
[http://dx.doi.org/10.1002/anie.201409519] [PMID: 25366670]
[103]
Unzueta, U.; Céspedes, M.V.; Ferrer-Miralles, N.; Casanova, I.; Cedano, J.; Corchero, J.L.; Domingo-Espín, J.; Villaverde, A.; Mangues, R.; Vázquez, E. Intracellular CXCR4⁺ cell targeting with T22-empowered proteinonly nanoparticles. Int. J. Nanomedicine, 2012, 7, 4533-4544.
[PMID: 22923991]
[104]
Idris, N.M.; Gnanasammandhan, M.K.; Zhang, J.; Ho, P.C.; Mahendran, R.; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med., 2012, 18(10), 1580-1585.
[http://dx.doi.org/10.1038/nm.2933] [PMID: 22983397]
[105]
Lecaros, R.L.G.; Huang, L.; Lee, T.C.; Hsu, Y.C. Nanoparticle delivered VEGF-A siRNA enhances photodynamic therapy for head and neck cancer treatment. Mol. Ther., 2016, 24(1), 106-116.
[http://dx.doi.org/10.1038/mt.2015.169] [PMID: 26373346]
[106]
Muhanna, N.; Jin, C.S.; Huynh, E.; Chan, H.; Qiu, Y.; Jiang, W.; Cui, L.; Burgess, L.; Akens, M.K.; Chen, J.; Irish, J.C.; Zheng, G. Phototheranostic porphyrin nanoparticles enable visualization and targeted treatment of head and neck cancer in clinically relevant models. Theranostics, 2015, 5(12), 1428-1443.
[http://dx.doi.org/10.7150/thno.13451] [PMID: 26681987]
[107]
Jin, C.S.; Overchuk, M.; Cui, L.; Wilson, B.C.; Bristow, R.G.; Chen, J.; Zheng, G. Nanoparticle-enabled selective destruction of prostate tumor using MRI-Guided focal photothermal therapy. Prostate, 2016, 76(13), 1169-1181.
[http://dx.doi.org/10.1002/pros.23203] [PMID: 27198587]
[108]
Begg, A.C.; Stewart, F.A.; Vens, C. Strategies to improve radiotherapy with targeted drugs. Nat. Rev. Cancer, 2011, 11(4), 239-253.
[http://dx.doi.org/10.1038/nrc3007] [PMID: 21430696]
[109]
Tran, S.; DeGiovanni, P.J.; Piel, B.; Rai, P. Cancer nanomedicine: A review of recent success in drug delivery. Clin. Transl. Med., 2017, 6(1), e44.
[http://dx.doi.org/10.1186/s40169-017-0175-0] [PMID: 29230567]
[110]
Muhanna, N.; Cui, L.; Chan, H.; Burgess, L.; Jin, C.S. Multimodal image-guided surgical and photodynamic interventions in head and neck cancer: From primary tumor to metastatic drainage. Clin. Cancer Res., 2016, 22(4), 961-970.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1235] [PMID: 26463705]
[111]
Lu, W.; Melancon, M.P.; Xiong, C.; Huang, Q.; Elliott, A.; Song, S.; Zhang, R.; Flores, L.G., II; Gelovani, J.G.; Wang, L.V.; Ku, G.; Stafford, R.J.; Li, C. Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res., 2011, 71(19), 6116-6121.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4557] [PMID: 21856744]
[112]
Kim, J.W.; Galanzha, E.I.; Shashkov, E.V.; Moon, H.M.; Zharov, V.P. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat. Nanotechnol., 2009, 4(10), 688-694.
[http://dx.doi.org/10.1038/nnano.2009.231] [PMID: 19809462]
[113]
Jaffray, D.A. Image-guided radiotherapy: From current concept to future perspectives. Nat. Rev. Clin. Oncol., 2012, 9(12), 688-699.
[http://dx.doi.org/10.1038/nrclinonc.2012.194] [PMID: 23165124]
[114]
Strøm, H.H.; Bremnes, R.M.; Sundstrøm, S.H.; Helbekkmo, N.; Fløtten, Ø.; Aasebø, U. Concurrent palliative chemoradiation leads to survival and quality of life benefits in poor prognosis stage III non-small-cell lung cancer: A randomised trial by the Norwegian Lung Cancer Study Group. Br. J. Cancer, 2013, 109(6), 1467-1475.
[http://dx.doi.org/10.1038/bjc.2013.466] [PMID: 23963145]
[115]
Lukianova-Hleb, E.Y.; Ren, X.; Sawant, R.R.; Wu, X.; Torchilin, V.P.; Lapotko, D.O. On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles. Nat. Med., 2014, 20(7), 778-784.
[http://dx.doi.org/10.1038/nm.3484] [PMID: 24880615]
[116]
Schleich, N.; Danhier, F.; Préat, V. Iron oxide-loaded nanotheranostics: Major obstacles to in vivo studies and clinical translation. J. Control. Release, 2015, 198, 35-54.
[http://dx.doi.org/10.1016/j.jconrel.2014.11.024] [PMID: 25481448]
[117]
Adams, S.R.; Yang, H.C.; Savariar, E.N.; Aguilera, J.; Crisp, J.L.; Jones, K.A.; Whitney, M.A.; Lippman, S.M.; Cohen, E.E.W.; Tsien, R.Y.; Advani, S.J. Anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize. Nat. Commun., 2016, 7(1), 13019.
[http://dx.doi.org/10.1038/ncomms13019] [PMID: 27698471]
[118]
Cortez, C.; Tomaskovic-Crook, E.; Johnston, A.P.R.; Scott, A.M.; Nice, E.C.; Heath, J.K.; Caruso, F. Influence of size, surface, cell line, and kinetic properties on the specific binding of A33 antigen-targeted multilayered particles and capsules to colorectal cancer cells. ACS Nano, 2007, 1(2), 93-102.
[http://dx.doi.org/10.1021/nn700060m] [PMID: 19206525]
[119]
Brennan, F.R.; Shaw, L.; Wing, M.G.; Robinson, C. Preclinical safety testing of biotechnology-derived pharmaceuticals. Mol. Biotechnol., 2004, 27(1), 59-74.
[http://dx.doi.org/10.1385/MB:27:1:59] [PMID: 15122047]
[120]
Weinberg, W.C.; Frazier-Jessen, M.R.; Wu, W.J.; Weir, A.; Hartsough, M.; Keegan, P.; Fuchs, C. Development and regulation of monoclonal antibody products: Challenges and opportunities. Cancer Metastasis Rev., 2005, 24(4), 569-584.
[http://dx.doi.org/10.1007/s10555-005-6196-y] [PMID: 16408162]
[121]
da Paz, M.C. Santos, Mde.F.; Santos, C.M.; da Silva, S.W.; de Souza, L.B.; Lima, E.C.; Silva, R.C.; Lucci, C.M.; Morais, P.C.; Azevedo, R.B.; Lacava, Z.G. Anti-CEA loaded maghemite nanoparticles as a theragnostic device for colorectal cancer. Int. J. Nanomedicine, 2012, 7, 5271-5282.
[PMID: 23055733]
[122]
Vigor, K.L.; Kyrtatos, P.G.; Minogue, S.; Al-Jamal, K.T.; Kogelberg, H.; Tolner, B.; Kostarelos, K.; Begent, R.H.; Pankhurst, Q.A.; Lythgoe, M.F.; Chester, K.A. Nanoparticles functionalised with recombinant single chain Fv antibody fragments (scFv) for the magnetic resonance imaging of cancer cells. Biomaterials, 2010, 31(6), 1307-1315.
[http://dx.doi.org/10.1016/j.biomaterials.2009.10.036] [PMID: 19889453]
[123]
Tiernan, J.P.; Ingram, N.; Marston, G.; Perry, S.L.; Rushworth, J.V.; Coletta, P.L.; Millner, P.A.; Jayne, D.G.; Hughes, T.A. CEA-targeted nanoparticles allow specific in vivo fluorescent imaging of colorectal cancer models. Nanomedicine , 2015, 10(8), 1223-1231.
[http://dx.doi.org/10.2217/nnm.14.202] [PMID: 25694062]
[124]
Fay, F.; McLaughlin, K.M.; Small, D.M.; Fennell, D.A.; Johnston, P.G.; Longley, D.B.; Scott, C.J. Conatumumab (AMG 655) coated nanoparticles for targeted pro-apoptotic drug delivery. Biomaterials, 2011, 32(33), 8645-8653.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.065] [PMID: 21875750]
[125]
Abdelghany, S.M.; Schmid, D.; Deacon, J.; Jaworski, J.; Fay, F.; McLaughlin, K.M.; Gormley, J.A.; Burrows, J.F.; Longley, D.B.; Donnelly, R.F.; Scott, C.J. Enhanced antitumor activity of the photosensitizer meso-Tetra(N-methyl-4-pyridyl) porphine tetra tosylate through encapsulation in antibody-targeted chitosan/alginate nanoparticles. Biomacromolecules, 2013, 14(2), 302-310.
[http://dx.doi.org/10.1021/bm301858a] [PMID: 23327610]
[126]
Kirui, D.K.; Rey, D.A.; Batt, C.A. Gold hybrid nanoparticles for targeted phototherapy and cancer imaging. Nanotechnology, 2010, 21(10), 105105.
[http://dx.doi.org/10.1088/0957-4484/21/10/105105] [PMID: 20154383]
[127]
McCarron, P.A.; Marouf, W.M.; Quinn, D.J.; Fay, F.; Burden, R.E.; Olwill, S.A.; Scott, C.J. Antibody targeting of camptothecin-loaded PLGA nanoparticles to tumor cells. Bioconjug. Chem., 2008, 19(8), 1561-1569.
[http://dx.doi.org/10.1021/bc800057g] [PMID: 18627195]
[128]
Yang, S.J.; Lin, F.H.; Tsai, K.C.; Wei, M.F.; Tsai, H.M.; Wong, J.M.; Shieh, M.J. Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells. Bioconjug. Chem., 2010, 21(4), 679-689.
[http://dx.doi.org/10.1021/bc9004798] [PMID: 20222677]
[129]
Li, P.; Wang, Y.; Zeng, F.; Chen, L.; Peng, Z.; Kong, L.X. Synthesis and characterization of folate conjugated chitosan and cellular uptake of its nanoparticles in HT-29 cells. Carbohydr. Res., 2011, 346(6), 801-806.
[http://dx.doi.org/10.1016/j.carres.2011.01.027] [PMID: 21397214]
[130]
a) Kopansky, E.; Shamay, Y.; David, A. Peptide-directed HPMA copolymer-doxorubicin conjugates as targeted therapeutics for colorectal cancer. J. Drug Target., 2011, 19(10), 933-943.
[http://dx.doi.org/10.3109/1061186X.2011.632011] [PMID: 22074249];
b) ErbB antibodies selectively radiosensitize. Nat. Commun.,2016, of NK911, a micelle-encapsulated doxorubicin. Br. J. Cancer, 2004, 91(10), 1775-1781.
[http://dx.doi.org/10.1038/sj.bjc.6602204] [PMID: 15477860]
[131]
Graf, N. Bielenberg, D.R.; Kolishetti, N.; Muus, C.; Banyard, J.; Farokhzad, O.C.; Lippard, S.J. α(V)β(3) integrin-targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt(IV) prodrug. ACS Nano, 2012, 6(5), 4530-4539.
[http://dx.doi.org/10.1021/nn301148e] [PMID: 22584163]
[132]
Strom, T.J.; Naghavi, A.O.; Trotti, A.M.; Russell, J.; Kish, J.A.; McCaffrey, J.; Otto, K.J.; Harrison, L.B.; Caudell, J.J. Increased acute mortality with chemoradiotherapy for locally advanced head and neck cancer in patients ≥70years. J. Geriatr. Oncol., 2017, 8(1), 50-55.
[http://dx.doi.org/10.1016/j.jgo.2016.09.003] [PMID: 27720129]
[133]
Eblan, M.J.; Wang, A.Z. Improving chemoradiotherapy with nanoparticle therapeutics. Transl. Cancer Res., 2013, 2(4), 320-329.
[PMID: 25429359]
[134]
Werner, M.E.; Cummings, N.D.; Sethi, M.; Wang, E.C.; Sukumar, R.; Moore, D.T.; Wang, A.Z. Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys., 2013, 86(3), 463-468.
[http://dx.doi.org/10.1016/j.ijrobp.2013.02.009] [PMID: 23708084]
[135]
Wang, E.C.; Min, Y.; Palm, R.C.; Fiordalisi, J.J.; Wagner, K.T.; Hyder, N.; Cox, A.D.; Caster, J.M.; Tian, X.; Wang, A.Z. Nanoparticle formulations of histone deacetylase inhibitors for effective chemoradiotherapy in solid tumors. Biomaterials, 2015, 51, 208-215.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.015] [PMID: 25771011]
[136]
Caster, J.M.; Sethi, M.; Kowalczyk, S.; Wang, E.; Tian, X.; Nabeel Hyder, S.; Wagner, K.T.; Zhang, Y.A.; Kapadia, C.; Man Au, K.; Wang, A.Z. Nanoparticle delivery of chemosensitizers improve chemotherapy efficacy without incurring additional toxicity. Nanoscale, 2015, 7(6), 2805-2811.
[http://dx.doi.org/10.1039/C4NR07102F] [PMID: 25584654]
[137]
Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature, 2012, 487(7407), 330-337.
[http://dx.doi.org/10.1038/nature11252] [PMID: 22810696]
[138]
Müller, M.F.; Ibrahim, A.E.K.; Arends, M.J. Molecular pathological classification of colorectal cancer. Virchows Arch., 2016, 469(2), 125-134.
[http://dx.doi.org/10.1007/s00428-016-1956-3] [PMID: 27325016]
[139]
Chabner, B.A.; Roberts, T.G., Jr Chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72.
[http://dx.doi.org/10.1038/nrc1529] [PMID: 15630416]
[140]
Field, K.M.; Kosmider, S.; Jefford, M.; Jennens, R.; Green, M.; Gibbs, P. Chemotherapy treatments for metastatic colorectal cancer: Is evidence-based medicine in practice? J. Oncol. Pract., 2008, 4(6), 271-276.
[http://dx.doi.org/10.1200/JOP.0852002] [PMID: 20856756]
[141]
Hill, B.T.; Moran, E.; Etiévant, C.; Perrin, D.; Masterson, A.; Larkin, A.; Whelan, R.D.H. Low-dose twice-daily fractionated X-irradiation of ovarian tumor cells in vitro generates drug-resistant cells overexpressing two multidrug resistance-associated proteins, P-glycoprotein and MRP1. Anticancer Drugs, 2000, 11(3), 193-200.
[http://dx.doi.org/10.1097/00001813-200003000-00007] [PMID: 10831278]
[142]
Emmert, M.; Pohl-Dernick, K.; Wein, A.; Dörje, F.; Merkel, S.; Boxberger, F.; Männlein, G.; Joost, R.; Harich, H.D.; Thiemann, R.; Lamberti, C.; Neurath, M.F.; Hohenberger, W.; Schöffski, O. Palliative treatment of colorectal cancer in Germany: Cost of care and quality of life. Eur. J. Health Econ., 2013, 14(4), 629-638.
[http://dx.doi.org/10.1007/s10198-012-0408-5] [PMID: 22688440]
[143]
Quach, C.; Sanoff, H.K.; Williams, G.R.; Lyons, J.C.; Reeve, B.B. Impact of colorectal cancer diagnosis and treatment on health-related quality of life among older Americans: A population-based, case-control study. Cancer, 2015, 121(6), 943-950.
[http://dx.doi.org/10.1002/cncr.29125] [PMID: 25377096]
[144]
Deeken, J.F.; Slack, R.; Weiss, G.J.; Ramanathan, R.K.; Pishvaian, M.J.; Hwang, J.; Lewandowski, K.; Subramaniam, D.; He, A.R.; Cotarla, I.; Rahman, A.; Marshall, J.L. A phase I study of liposomal-encapsulated docetaxel (LE-DT) in patients with advanced solid tumor malignancies. Cancer Chemother. Pharmacol., 2013, 71(3), 627-633.
[http://dx.doi.org/10.1007/s00280-012-2048-y] [PMID: 23274395]
[145]
Matsumura, Y.; Hamaguchi, T.; Ura, T.; Muro, K.; Yamada, Y.; Shimada, Y.; Shirao, K.; Okusaka, T.; Ueno, H.; Ikeda, M.; Watanabe, N. Phase I clinical trial and pharmacokinetic evaluation growth factor receptor-targeted therapy in metastatic colorectal cancer. J. Natl. Cancer Inst., 2009, 101(19), 1308-1324.
[http://dx.doi.org/10.1093/jnci/djp280] [PMID: 19738166]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy