Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Physicochemical Stimulus-Responsive Systems Targeted with Antibody Derivatives

Author(s): Rezvan Mohammadi, Sepideh Ghani, Roghaye Arezumand, Shohreh Farhadi, Yalda Khazaee-poul, Bahram Kazemi*, Fatemeh Yarian*, Somaye Noruzi, Abbas Alibakhshi, Mahsa Jalili and Shahin Aghamiri

Volume 24, Issue 10, 2024

Published on: 18 October, 2023

Page: [1250 - 1268] Pages: 19

DOI: 10.2174/1566524023666230818093016

Price: $65

Abstract

The application of monoclonal antibodies and antibody fragments with the advent of recombinant antibody technology has made notable progress in clinical trials to provide a regulated drug release and extra targeting to the special conditions in the function site. Modification of antibodies has facilitated using mAbs and antibody fragments in numerous models of therapeutic and detection utilizations, such as stimuliresponsive systems. Antibodies and antibody derivatives conjugated with diverse stimuliresponsive materials have been constructed for drug delivery in response to a wide range of endogenous (electric, magnetic, light, radiation, ultrasound) and exogenous (temperature, pH, redox potential, enzymes) stimuli. In this report, we highlighted the recent progress on antibody-conjugated stimuli-responsive and dual/multi-responsive systems that affect modern medicine by improving a multitude of diagnostic and treatment strategies.

[1]
Hafeez U, Parakh S, Gan HK, Scott AMJM. Antibody–drug conjugates for cancer therapy. Molecules 2020; 25(20): 4764.
[http://dx.doi.org/10.3390/molecules25204764] [PMID: 33081383]
[2]
Goulet DR. Considerations for the design of antibody-based therapeutics. J Pharm Sci 2020; 109(1): 74-103.
[http://dx.doi.org/10.1016/j.xphs.2019.05.031] [PMID: 31173761]
[3]
Bayer V. Ed; An overview of monoclonal antibodies Seminars in oncology nursing. Amsterdam: Elsevier 2019.
[4]
Buss NA, Henderson SJ, McFarlane M, Shenton JM. Monoclonal antibody therapeutics: History and future. Curr Opin Pharmacol 2012; 12(5): 615-22.
[http://dx.doi.org/10.1016/j.coph.2012.08.001] [PMID: 22920732]
[5]
Ghagane SC, Puranik SI, Gan SH, Hiremath MB, Nerli R. Frontiers of monoclonal antibodies: Applications in medical practices. Hum Antibodies 2018; 26(3): 135-42.
[http://dx.doi.org/10.3233/HAB-170331] [PMID: 29060935]
[6]
Chau CH, Steeg PS, Figg WDJTL. Antibody–drug conjugates for cancer. Lancet 2019; 394(10200): 793-804.
[http://dx.doi.org/10.1016/S0140-6736(19)31774-X] [PMID: 31478503]
[7]
Thomas A, Teicher BA, Hassan RJTLO. Antibody–drug conjugates for cancer therapy. Lancet Oncol 2016; 17(6): e254-62.
[http://dx.doi.org/10.1016/S1470-2045(16)30030-4]
[8]
Bumbaca D, Wong A, Drake E, Reyes AE II, Lin BC, Stephan J-P. Eds. Highly specific off-target binding identified and eliminated during the humanization of an antibody against FGF receptor 4. MAbs 2011; 3(4): 376-86.
[http://dx.doi.org/10.4161/mabs.3.4.15786] [PMID: 21540647]
[9]
Loberg LI, Chhaya M, Ibraghimov A, Tarcsa E, Striebinger A, Popp A. Eds. Off-target binding of an anti-amyloid beta monoclonal antibody to platelet factor 4 causes acute and chronic toxicity in cynomolgus monkeys. MAbs 2021; 13(1): 1887628.
[http://dx.doi.org/10.1080/19420862.2021.1887628] [PMID: 33596779]
[10]
Chou C-K, Liu Y-L, Chen Y-I, Huang P-J, Tsou P-H, Chen C-T, et al. Digital receptor occupancy assay in quantifying on-and off-target binding affinities of therapeutic antibodies. ACS Sens 2020; 5(2): 296-302.
[http://dx.doi.org/10.1021/acssensors.9b01736]
[11]
Gopalan D, Pandey A, Udupa N. Receptor specific, stimuli responsive and subcellular targeted approaches for effective therapy of Alzheimer: Role of surface engineered nanocarriers. J Control Release 2020.
[12]
Joubert N, Denevault-Sabourin C, Bryden F. Towards antibody-drug conjugates and prodrug strategies with extracellular stimuli-responsive drug delivery in the tumor microenvironment for cancer therapy. Eur J Med Chem 2017; 142: 393-415.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.049] [PMID: 28911823]
[13]
Hoffman JM, Stayton PS, Hoffman AS. Stimuli-responsive reagent system for enabling microfluidic immunoassays with biomarker purification and enrichment. Bioconjug Chem 2015; 26(1): 29-38.
[http://dx.doi.org/10.1021/bc500522k] [PMID: 25405605]
[14]
Golden AL, Battrell CF, Pennell S, Hoffman AS. Simple fluidic system for purifying and concentrating diagnostic biomarkers using stimuli-responsive antibody conjugates and membranes. Bioconjug Chem 2010; 21(10): 1820-6.
[http://dx.doi.org/10.1021/bc100169y] [PMID: 20845976]
[15]
Kaplon H, Muralidharan M, Schneider Z, Reichert JM. Antibodies to watch in 2020. MAbs 2020; 12(1): 1703531.
[http://dx.doi.org/10.1080/19420862.2019.1703531] [PMID: 31847708]
[16]
Chen K, Magri G, Grasset EK, Cerutti A. Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA. Nat Rev Immunol 2020; 20(7): 427-41.
[http://dx.doi.org/10.1038/s41577-019-0261-1] [PMID: 32015473]
[17]
Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI. Bispecific antibodies: A mechanistic review of the pipeline. Nat Rev Drug Discov 2019; 18(8): 585-608.
[http://dx.doi.org/10.1038/s41573-019-0028-1] [PMID: 31175342]
[18]
Cooper SL, Brown PA. Resistance to bispecific T-Cell engagers and bispecific antibodies. Resistance to Targeted Therapies in Lymphomas. Springer 2019; pp. 181-92.
[http://dx.doi.org/10.1007/978-3-030-24424-8_8]
[19]
Arezumand R, Alibakhshi A, Ranjbari J, Ramazani A, Muyldermans S. Nanobodies as novel agents for targeting angiogenesis in solid cancers. Front Immunol 2017; 8: 1746.
[http://dx.doi.org/10.3389/fimmu.2017.01746] [PMID: 29276515]
[20]
Yarian F, Alibakhshi A, Eyvazi S, Arezumand R, Ahangarzadeh S. Antibody-drug therapeutic conjugates: Potential of antibody-siRNAs in cancer therapy. J Cell Physiol 2019; 234(10): 16724-38.
[http://dx.doi.org/10.1002/jcp.28490] [PMID: 30908646]
[21]
Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody-drug conjugates: A comprehensive review. Mol Cancer Res 2019; 18(1): 3-19.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0582] [PMID: 31659006]
[22]
Nagayama A, Ellisen LW, Chabner B, Bardia A. Antibody–drug conjugates for the treatment of solid tumors: Clinical experience and latest developments. Target Oncol 2017; 12(6): 719-39.
[http://dx.doi.org/10.1007/s11523-017-0535-0] [PMID: 29116596]
[23]
Wang Z, Zhu J, Lu H. Antibody glycosylation: Impact on antibody drug characteristics and quality control. Appl Microbiol Biotechnol 2020; 104(5): 1905-14.
[http://dx.doi.org/10.1007/s00253-020-10368-7] [PMID: 31940081]
[24]
Ebrahimi Z, Asgari S, Ahangari Cohan R, Hosseinzadeh R, Hosseinzadeh G, Arezumand R. Rational affinity enhancement of fragmented antibody by ligand-based affinity improvement approach. Biochem Biophys Res Commun 2018; 506(3): 653-9.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.127] [PMID: 30454702]
[25]
Kaplon H, Reichert JM. Eds. Antibodies to watch in 2019. MAbs. MAbs 2019; 11(2): 219-38.
[http://dx.doi.org/10.1080/19420862.2018.1556465] [PMID: 30516432]
[26]
Su X-D, Shuai Y. Macromolecules and antibody-based drugs. Adv Exp Med Biol 2020; 1248: 485-530.
[http://dx.doi.org/10.1007/978-981-15-3266-5_20] [PMID: 32185723]
[27]
Team O. All about breast cancer 2016.
[28]
Alibakhshi A, Abarghooi Kahaki F, Ahangarzadeh S, et al. Targeted cancer therapy through antibody fragments-decorated nanomedicines. J Control Relea 2017; 268: 323-34.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.036] [PMID: 29107128]
[29]
Arezumand R, Ramazani A. Nanobody as a new generation of functional proteins. Indian J Pharm Sci 2018; 14(3): 91-106.
[http://dx.doi.org/10.22034/IJPS.2018.35933]
[30]
Peyvandi F, Scully M, Kremer Hovinga JA, et al. Caplacizumab for acquired thrombotic thrombocytopenic purpura. N Engl J Med 2016; 374(6): 511-22.
[http://dx.doi.org/10.1056/NEJMoa1505533] [PMID: 26863353]
[31]
Frejd FY, Kim K-T. Affibody molecules as engineered protein drugs. Exp Mol Med 2017; 49: e306.
[http://dx.doi.org/10.1038/emm.2017.35]
[32]
Gao Y, Huang X, Zhu Y, Lv Z. A brief review of monoclonal antibody technology and its representative applications in immunoassays. J Immunoassay Immunochem 2018; 39(4): 351-64.
[http://dx.doi.org/10.1080/15321819.2018.1515775] [PMID: 30204067]
[33]
Gonçalves GAR, Paiva RMA. Gene therapy: Advances, challenges and perspectives. Einstein 2017; 15(3): 369-75.
[http://dx.doi.org/10.1590/s1679-45082017rb4024] [PMID: 29091160]
[34]
Pattni BS, Torchilin VP. Targeted drug delivery systems: Strategies and challenges.Targeted drug delivery: Concepts and design. Springer 2015; pp. 3-38.
[http://dx.doi.org/10.1007/978-3-319-11355-5_1]
[35]
Yerushalmi R, Scherz A, van der Boom ME, Kraatz HB. Stimuli responsive materials: New avenues toward smart organic devices. J Mater Chem 2005; 15(42): 4480-7.
[http://dx.doi.org/10.1039/b505212b]
[36]
Bratek-Skicki A. Towards a new class of stimuli-responsive polymer-based materials – Recent advances and challenges. Appl Surf Sci 2021; 4(1): 100068.
[http://dx.doi.org/10.1016/j.apsadv.2021.100068]
[37]
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013; 12(11): 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[38]
Shen Y, Fu X, Fu W, Li Z. Biodegradable stimuli-responsive polypeptide materials prepared by ring opening polymerization. Chem Soc Rev 2015; 44(3): 612-22.
[http://dx.doi.org/10.1039/C4CS00271G] [PMID: 25335988]
[39]
Kelley EG, Albert JNL, Sullivan MO, Epps TH III. Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chem Soc Rev 2013; 42(17): 7057-71.
[http://dx.doi.org/10.1039/c3cs35512h] [PMID: 23403471]
[40]
Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 2014; 13(11): 813-27.
[http://dx.doi.org/10.1038/nrd4333] [PMID: 25287120]
[41]
Mrinalini M, Prasanthkumar S. Recent advances on stimuli-responsive smart materials and their applications. Chem PlusChem 2019; 84(8): 1103-21.
[http://dx.doi.org/10.1002/cplu.201900365] [PMID: 31943959]
[42]
Reineke TM. Stimuli-responsive polymers for biological detection and delivery. ACS Macro Lett 2016; 5(1): 14-8.
[http://dx.doi.org/10.1021/acsmacrolett.5b00862] [PMID: 35668593]
[43]
Bhaskar S, Tian F, Stoeger T, et al. Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: Perspectives on tracking and neuroimaging. Part Fibre Toxicol 2010; 7(1): 3.
[http://dx.doi.org/10.1186/1743-8977-7-3] [PMID: 20199661]
[44]
Trapani G, Denora N, Trapani A, Laquintana V. Recent advances in ligand targeted therapy. J Drug Target 2012; 20(1): 1-22.
[http://dx.doi.org/10.3109/1061186X.2011.611518] [PMID: 21942529]
[45]
Blake RC II, Pavlov AR, Blake DA. Automated kinetic exclusion assays to quantify protein binding interactions in homogeneous solution. Anal Biochem 1999; 272(2): 123-34.
[http://dx.doi.org/10.1006/abio.1999.4176] [PMID: 10415080]
[46]
Lai JJ, Nelson KE, Nash MA, Hoffman AS, Yager P, Stayton PS. Dynamic bioprocessing and microfluidic transport control with smart magnetic nanoparticles in laminar-flow devices. Lab Chip 2009; 9(14): 1997-2002.
[http://dx.doi.org/10.1039/b817754f] [PMID: 19568666]
[47]
Xia Y, Whitesides GM. Soft Lithography. Angew Chem Int Ed 1998; 37(5): 550-75.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G] [PMID: 29711088]
[48]
Squires TM, Quake SR. Microfluidics: Fluid physics at the nanoliter scale. Rev Mod Phys 2005; 77(3): 977-1026.
[http://dx.doi.org/10.1103/RevModPhys.77.977]
[49]
Studer V, Hang G, Pandolfi A, Ortiz M. French Anderson W, Quake SR. Scaling properties of a low-actuation pressure microfluidic valve. J Appl Phys 2004; 95(1): 393-8.
[http://dx.doi.org/10.1063/1.1629781]
[50]
Hsu CH, Folch A. Spatio-temporally-complex concentration profiles using a tunable chaotic micromixer. Appl Phys Lett 2006; 89(14): 144102.
[http://dx.doi.org/10.1063/1.2358194]
[51]
Rao NV, Ko H, Lee J, Park JH. Recent progress and advances in stimuli-responsive polymers for cancer therapy. Front Bioeng Biotechnol 2018; 6: 110.
[http://dx.doi.org/10.3389/fbioe.2018.00110] [PMID: 30159310]
[52]
Karimi M, Eslami M, Sahandi-Zangabad P, et al. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(5): 696-716.
[http://dx.doi.org/10.1002/wnan.1389] [PMID: 26762467]
[53]
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010; 148(2): 135-46.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[54]
Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics 2016; 6(9): 1306-23.
[http://dx.doi.org/10.7150/thno.14858] [PMID: 27375781]
[55]
Shaikh RP, Pillay V, Choonara YE, et al. A review of multi-responsive membranous systems for rate-modulated drug delivery. AAPS Pharm Sci Tech 2010; 11(1): 441-59.
[http://dx.doi.org/10.1208/s12249-010-9403-2] [PMID: 20300895]
[56]
Riaz M, Riaz M, Zhang X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int J Mol Sci 2018; 19(1): 195.
[http://dx.doi.org/10.3390/ijms19010195] [PMID: 29315231]
[57]
Benelmekki M, Kim JH. Stimulus-responsive ultrathin films for bioapplications: A concise review. Molecules 2023; 28(3): 1020.
[http://dx.doi.org/10.3390/molecules28031020] [PMID: 36770701]
[58]
Paliwal SR, Paliwal R, Vyas SP. A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Deliv 2015; 22(3): 231-42.
[http://dx.doi.org/10.3109/10717544.2014.882469] [PMID: 24524308]
[59]
Gibson TJ, Smyth P, McDaid WJ, et al. Single-domain antibody-functionalized ph-responsive amphiphilic block copolymer nanoparticles for epidermal growth factor receptor targeted cancer therapy. ACS Macro Letts 2018; 7(8): 1010-5.
[http://dx.doi.org/10.1021/acsmacrolett.8b00461] [PMID: 35650954]
[60]
Simard P, Leroux JC. pH-sensitive immunoliposomes specific to the CD33 cell surface antigen of leukemic cells. Int J Pharm 2009; 381(2): 86-96.
[http://dx.doi.org/10.1016/j.ijpharm.2009.05.013] [PMID: 19446624]
[61]
Kim IY, Kang YS, Lee DS, et al. Antitumor activity of EGFR targeted pH-sensitive immunoliposomes encapsulating gemcitabine in A549 xenograft nude mice. J Control Relea 2009; 140(1): 55-60.
[http://dx.doi.org/10.1016/j.jconrel.2009.07.005] [PMID: 19616596]
[62]
Deng Z, Zhen Z, Hu X, Wu S, Xu Z, Chu PK. Hollow chitosan–silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials 2011; 32(21): 4976-86.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.050] [PMID: 21486679]
[63]
Ulbrich K, Šubr V. Polymeric anticancer drugs with pH-controlled activation. Adv Drug Deliv Rev 2004; 56(7): 1023-50.
[http://dx.doi.org/10.1016/j.addr.2003.10.040] [PMID: 15066758]
[64]
Zardad AZ, Choonara Y, du Toit L, et al. A review of thermo-and ultrasound-responsive polymeric systems for delivery of chemotherapeutic agents. Polymers 2016; 8(10): 359.
[http://dx.doi.org/10.3390/polym8100359] [PMID: 30974645]
[65]
Kotsuchibashi Y, Ebara M, Aoyagi T, Narain R. Recent advances in dual temperature responsive block copolymers and their potential as biomedical applications. Polymers 2016; 8(11): 380.
[http://dx.doi.org/10.3390/polym8110380] [PMID: 30974657]
[66]
Shao P, Wang B, Wang Y, Li J, Zhang Y. The application of thermosensitive nanocarriers in controlled drug delivery. J Nanomater 2011; 2011: 1-12.
[http://dx.doi.org/10.1155/2011/389640]
[67]
Li W, Zhao H, Qian W, et al. Chemotherapy for gastric cancer by finely tailoring anti-Her2 anchored dual targeting immunomicelles. Biomaterials 2012; 33(21): 5349-62.
[http://dx.doi.org/10.1016/j.biomaterials.2012.04.016] [PMID: 22542611]
[68]
Al-Ahmady ZS, Chaloin O, Kostarelos K. Monoclonal antibody-targeted, temperature-sensitive liposomes: in vivo tumor chemotherapeutics in combination with mild hyperthermia. J Control Relea 2014; 196: 332-43.
[http://dx.doi.org/10.1016/j.jconrel.2014.10.013] [PMID: 25456832]
[69]
Sullivan SM, Huang L. Enhanced delivery to target cells by heat-sensitive immunoliposomes. Proc Natl Acad Sci USA 1986; 83(16): 6117-21.
[http://dx.doi.org/10.1073/pnas.83.16.6117] [PMID: 3461478]
[70]
Gaber MH, Hong K. Targeted sterically stabilized immunoliposomes: Effect of bilayer composition and temperature on the antitumor activity in vitro. Dtsch Z Onkol 2000; 32(3): 78-85.
[http://dx.doi.org/10.1055/s-2000-11211]
[71]
Sandeep D, AlSawaftah NM, Husseini GA. Immunoliposomes: Synthesis, structure, and their potential as drug delivery carriers. Curr Cancer Ther Rev 2020; 16(4): 306-19.
[http://dx.doi.org/10.2174/1573394716666200227095521]
[72]
Qiao Y, Wan J, Zhou L, et al. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019; 11(1): e1527.
[http://dx.doi.org/10.1002/wnan.1527] [PMID: 29726115]
[73]
Wells CM, Harris M, Choi L, Murali VP, Guerra FD, Jennings JA. Stimuli-responsive drug release from smart polymers. J Funct Biomater 2019; 10(3): 34.
[http://dx.doi.org/10.3390/jfb10030034] [PMID: 31370252]
[74]
Raza A, Rasheed T, Nabeel F, Hayat U, Bilal M, Iqbal H. Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release. Molecules 2019; 24(6): 1117.
[http://dx.doi.org/10.3390/molecules24061117] [PMID: 30901827]
[75]
Thévenot J, Oliveira H, Sandre O, Lecommandoux S. Magnetic responsive polymer composite materials. Chem Soc Rev 2013; 42(17): 7099-116.
[http://dx.doi.org/10.1039/c3cs60058k] [PMID: 23636413]
[76]
Rashid Z, Shokri F, Abbasi A, Khoobi M, Zarnani AH. Surface modification and bioconjugation of anti-CD4 monoclonal antibody to magnetic nanoparticles as a highly efficient affinity adsorbent for positive selection of peripheral blood T CD4+ lymphocytes. Int J Biol Macromol 2020; 161: 729-37.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.264] [PMID: 32497673]
[77]
Alavizadeh SH, Soltani F, Ramezani M. Recent advances in Immunoliposome-based Cancer therapy. Curr Pharmacol Rep 2016; 2(3): 129-41.
[http://dx.doi.org/10.1007/s40495-016-0056-z]
[78]
Ito A, Kuga Y, Honda H, et al. Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett 2004; 212(2): 167-75.
[http://dx.doi.org/10.1016/j.canlet.2004.03.038] [PMID: 15279897]
[79]
Kikumori T, Kobayashi T, Sawaki M, Imai T. Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes. Breast Cancer Res Treat 2009; 113(3): 435-41.
[http://dx.doi.org/10.1007/s10549-008-9948-x] [PMID: 18311580]
[80]
Yan C, Wu Y, Feng J, et al. Anti-αvβ3 antibody guided three-step pretargeting approach using magnetoliposomes for molecular magnetic resonance imaging of breast cancer angiogenesis. Int J Nanomedicine 2013; 8: 245-55.
[PMID: 23345972]
[81]
Vigor KL, Kyrtatos PG, Minogue S, et al. Nanoparticles functionalised with recombinant single chain Fv antibody fragments (scFv) for the magnetic resonance imaging of cancer cells. Biomaterials 2010; 31(6): 1307-15.
[http://dx.doi.org/10.1016/j.biomaterials.2009.10.036] [PMID: 19889453]
[82]
Jhaveri A, Deshpande P, Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. J Control Release 2014; 190: 352-70.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.002] [PMID: 24818767]
[83]
Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc Chem Res 2008; 41(12): 1842-51.
[http://dx.doi.org/10.1021/ar800150g] [PMID: 19053240]
[84]
Saneja A, Kumar R, Arora D, Kumar S, Panda AK, Jaglan S. Recent advances in near-infrared light-responsive nanocarriers for cancer therapy. Drug Discov Today 2018; 23(5): 1115-25.
[http://dx.doi.org/10.1016/j.drudis.2018.02.005] [PMID: 29481876]
[85]
Li L, Yang WW, Xu DG. Stimuli-responsive nanoscale drug delivery systems for cancer therapy. J Drug Target 2019; 27(4): 423-33.
[http://dx.doi.org/10.1080/1061186X.2018.1519029] [PMID: 30173577]
[86]
Yu H, Cui Z, Yu P, et al. Micelles: PH- and NIR light-responsive micelles with hyperthermia-triggered tumor penetration and cytoplasm drug release to reverse doxorubicin resistance in breast cancer. Adv Funct Mater 2015; 25(17): 2481.
[http://dx.doi.org/10.1002/adfm.201570112]
[87]
Lovell JF, Liu TWB, Chen J, Zheng G. Activatable photosensitizers for imaging and therapy. Chem Rev 2010; 110(5): 2839-57.
[http://dx.doi.org/10.1021/cr900236h] [PMID: 20104890]
[88]
Li Q, Tang Q, Zhang P, et al. Human epidermal growth factor receptor-2 antibodies enhance the specificity and anticancer activity of light-sensitive doxorubicin-labeled liposomes. Biomaterials 2015; 57: 1-11.
[http://dx.doi.org/10.1016/j.biomaterials.2015.04.009] [PMID: 25956192]
[89]
Kim H, Chung K, Lee S, Kim DH, Lee H. Near-infrared light-responsive nanomaterials for cancer theranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(1): 23-45.
[http://dx.doi.org/10.1002/wnan.1347] [PMID: 25903643]
[90]
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145-60.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[91]
Temprana CF, Duarte EL, Taira MC, Lamy MT, del Valle Alonso S. Structural characterization of photopolymerizable binary liposomes containing diacetylenic and saturated phospholipids. Langmuir 2010; 26(12): 10084-92.
[http://dx.doi.org/10.1021/la100214v] [PMID: 20355709]
[92]
Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res 2010; 62(2): 90-9.
[http://dx.doi.org/10.1016/j.phrs.2010.03.005] [PMID: 20380880]
[93]
Li H, Guo K, Wu C, et al. Controlled and targeted drug delivery by a UV-responsive liposome for overcoming chemo-resistance in non-hodgkin lymphoma. Chem Biol Drug Des 2015; 86(4): 783-94.
[http://dx.doi.org/10.1111/cbdd.12551] [PMID: 25739815]
[94]
Khosroshahi ME, Hassannejad Z, Firouzi M, Arshi AR. Nanoshell-mediated targeted photothermal therapy of HER2 human breast cancer cells using pulsed and continuous wave lasers: An in vitro study. Lasers Med Sci 2015; 30(7): 1913-22.
[http://dx.doi.org/10.1007/s10103-015-1782-x] [PMID: 26137934]
[95]
Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem Photobiol 2006; 82(2): 412-7.
[http://dx.doi.org/10.1562/2005-12-14-RA-754] [PMID: 16613493]
[96]
Sun X, Zhang G, Keynton RS, O’Toole MG, Patel D, Gobin AM. Enhanced drug delivery via hyperthermal membrane disruption using targeted gold nanoparticles with PEGylated Protein-G as a cofactor. Nanomedicine 2013; 9(8): 1214-22.
[http://dx.doi.org/10.1016/j.nano.2013.04.002] [PMID: 23603356]
[97]
Huang X, Qian W, El-Sayed IH, El-Sayed MA. The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Surg Med 2007; 39(9): 747-53.
[http://dx.doi.org/10.1002/lsm.20577] [PMID: 17960762]
[98]
Guragain S, Bastakoti BP, Malgras V, Nakashima K, Yamauchi Y. Multi-stimuli-responsive polymeric materials. Chemistry 2015; 21(38): 13164-74.
[http://dx.doi.org/10.1002/chem.201501101] [PMID: 26219746]
[99]
Hu J, Zhang G, Liu S. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem Soc Rev 2012; 41(18): 5933-49.
[http://dx.doi.org/10.1039/c2cs35103j] [PMID: 22695880]
[100]
Mori N, Wildes F, Takagi T, Glunde K, Bhujwalla ZM. The tumor microenvironment modulates choline and lipid metabolism. Front Oncol 2016; 6: 262.
[http://dx.doi.org/10.3389/fonc.2016.00262] [PMID: 28066718]
[101]
Zhang ZT, Huang-Fu MY, Xu WH, Han M. Stimulus-responsive nanoscale delivery systems triggered by the enzymes in the tumor microenvironment. Eur J Pharm Biopharm 2019; 137: 122-30.
[http://dx.doi.org/10.1016/j.ejpb.2019.02.009] [PMID: 30776412]
[102]
Liu M, Du H, Zhang W, Zhai G. Internal stimuli-responsive nanocarriers for drug delivery: Design strategies and applications. Mater Sci Eng C 2017; 71: 1267-80.
[http://dx.doi.org/10.1016/j.msec.2016.11.030] [PMID: 27987683]
[103]
Ghadiri MR, Granja JR, Milligan RA, McRee DE, Khazanovich N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 1993; 366(6453): 324-7.
[http://dx.doi.org/10.1038/366324a0] [PMID: 8247126]
[104]
Basel MT, Shrestha TB, Troyer DL, Bossmann SH. Protease-sensitive, polymer-caged liposomes: A method for making highly targeted liposomes using triggered release. ACS Nano 2011; 5(3): 2162-75.
[http://dx.doi.org/10.1021/nn103362n] [PMID: 21314184]
[105]
Li X, Burger S, O’Connor AJ, Ong L, Karas JA, Gras SL. An enzyme-responsive controlled release system based on a dual-functional peptide. Chem Commun 2016; 52(29): 5112-5.
[http://dx.doi.org/10.1039/C5CC10480G] [PMID: 26998533]
[106]
Zhu S, Nih L, Carmichael ST, Lu Y, Segura T. Enzyme-responsive delivery of multiple proteins with spatiotemporal control. Adv Mater 2015; 27(24): 3620-5.
[http://dx.doi.org/10.1002/adma.201500417] [PMID: 25962336]
[107]
Gao L, Zheng B, Chen W, Schalley CA. Enzyme-responsive pillar[5]arene-based polymer-substituted amphiphiles: Synthesis, self-assembly in water, and application in controlled drug release. Chem Commun 2015; 51(80): 14901-4.
[http://dx.doi.org/10.1039/C5CC06207A] [PMID: 26303199]
[108]
Zhang C, Pan D, Li J, et al. Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomater 2017; 55: 153-62.
[http://dx.doi.org/10.1016/j.actbio.2017.02.047] [PMID: 28259838]
[109]
Li N, Cai H, Jiang L, et al. Enzyme-sensitive and amphiphilic PEGylated dendrimer-paclitaxel prodrug-based nanoparticles for enhanced stability and anticancer efficacy. ACS Appl Mater Interfaces 2017; 9(8): 6865-77.
[http://dx.doi.org/10.1021/acsami.6b15505] [PMID: 28112512]
[110]
Li N, Li N, Yi Q, et al. Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent. Biomaterials 2014; 35(35): 9529-45.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.059] [PMID: 25145854]
[111]
Zhu L, Kate P, Torchilin VP. Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 2012; 6(4): 3491-8.
[http://dx.doi.org/10.1021/nn300524f] [PMID: 22409425]
[112]
Storm G, Vingerhoeds MH, Crommelin DJA, Haisma HJ. Immunoliposomes bearing enzymes (immuno-enzymosomes) for site-specific activation of anticancer prodrugs. Adv Drug Deliv Rev 1997; 24(2-3): 225-31.
[http://dx.doi.org/10.1016/S0169-409X(96)00461-9]
[113]
Vingerhoeds MH, Haisma HJ, Belliot SO, Smit RHP, Crommelin DJA, Storm G. Immunoliposomes as enzyme-carriers (immuno-enzymosomes) for antibody-directed enzyme prodrug therapy (ADEPT): Optimization of prodrug activating capacity. Pharm Res 1996; 13(4): 604-10.
[http://dx.doi.org/10.1023/A:1016010524510] [PMID: 8710754]
[114]
Yang C, Li Y, Du M, Chen Z. Recent advances in ultrasound-triggered therapy. J Drug Target 2019; 27(1): 33-50.
[http://dx.doi.org/10.1080/1061186X.2018.1464012] [PMID: 29659307]
[115]
Humphrey VF. Ultrasound and matter—Physical interactions. Prog Biophys Mol Biol 2007; 93(1-3): 195-211.
[http://dx.doi.org/10.1016/j.pbiomolbio.2006.07.024] [PMID: 17079004]
[116]
Biffi S, Voltan R, Rampazzo E, Prodi L, Zauli G, Secchiero P. Applications of nanoparticles in cancer medicine and beyond: Optical and multimodal in vivo imaging, tissue targeting and drug delivery. Expert Opin Drug Deliv 2015; 12(12): 1837-49.
[http://dx.doi.org/10.1517/17425247.2015.1071791] [PMID: 26289673]
[117]
Sboros V. Response of contrast agents to ultrasound. Adv Drug Deliv Rev 2008; 60(10): 1117-36.
[http://dx.doi.org/10.1016/j.addr.2008.03.011] [PMID: 18486270]
[118]
Troia A, Madonna Ripa D, Lago S, Spagnolo R. Evidence for liquid phase reactions during single bubble acoustic cavitation. Ultrason Sonochem 2004; 11(5): 317-21.
[http://dx.doi.org/10.1016/S1350-4177(03)00158-5] [PMID: 15157862]
[119]
Deckers R, Moonen CTW. Ultrasound triggered, image guided, local drug delivery. J Control Release 2010; 148(1): 25-33.
[http://dx.doi.org/10.1016/j.jconrel.2010.07.117] [PMID: 20709123]
[120]
Dreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 2006; 98(5): 335-44.
[http://dx.doi.org/10.1093/jnci/djj070] [PMID: 16507830]
[121]
Ranjan A, Jacobs GC, Woods DL, et al. Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model. J Control Release 2012; 158(3): 487-94.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.011] [PMID: 22210162]
[122]
Kheirolomoom A, Mahakian LM, Lai CY, et al. Copper-doxorubicin as a nanoparticle cargo retains efficacy with minimal toxicity. Mol Pharm 2010; 7(6): 1948-58.
[http://dx.doi.org/10.1021/mp100245u] [PMID: 20925429]
[123]
Hancock HA, Smith LH, Cuesta J, et al. Investigations into pulsed high-intensity focused ultrasound-enhanced delivery: Preliminary evidence for a novel mechanism. Ultrasound Med Biol 2009; 35(10): 1722-36.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2009.04.020] [PMID: 19616368]
[124]
Dittmar KM, Xie J, Hunter F, et al. Pulsed high-intensity focused ultrasound enhances systemic administration of naked DNA in squamous cell carcinoma model: Initial experience. Radio 2005; 235(2): 541-6.
[http://dx.doi.org/10.1148/radiol.2352040254] [PMID: 15798154]
[125]
Yoon YI, Kwon YS, Cho HS, et al. Ultrasound-mediated gene and drug delivery using a microbubble-liposome particle system. Theranostics 2014; 4(11): 1133-44.
[http://dx.doi.org/10.7150/thno.9945] [PMID: 25250094]
[126]
Shapiro G, Wong AW, Bez M, et al. Multiparameter evaluation of in vivo gene delivery using ultrasound-guided, microbubble-enhanced sonoporation. J Control Release 2016; 223: 157-64.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.001] [PMID: 26682505]
[127]
Qin J, Wang T-Y, Willmann JK. Sonoporation: Applications for cancer therapy. Therapeutic Ultrasound. Berlin: Springer 2016; pp. 263-91.
[http://dx.doi.org/10.1007/978-3-319-22536-4_15]
[128]
Luo MH, Yeh C-K, Situ B, Yu JS, Li BC, Chen ZY. Microbubbles: A novel strategy for chemotherapy. Curr Pharm Des 2017; 23(23): 3383-90.
[http://dx.doi.org/10.1007/978-3-319-22536-4_15] [PMID: 28088911]
[129]
Sabir F, Zeeshan M, Laraib U, Barani M, Rahdar A, Cucchiarini M. DNA based and stimuli-responsive smart nanocarrier for diagnosis and treatment of cancer: Applications and challenges. Cancers 2021; 13(14): 3396.
[http://dx.doi.org/10.3390/cancers13143396] [PMID: 34298610]
[130]
Wei P, Cornel EJ, Du J. Ultrasound-responsive polymer-based drug delivery systems. Drug Deliv Transl Res 2021; 11(4): 1323-39.
[http://dx.doi.org/10.1007/s13346-021-00963-0] [PMID: 33761101]
[131]
Kiessling F, Fokong S, Bzyl J, Lederle W, Palmowski M, Lammers T. Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv Drug Deliv Rev 2014; 72: 15-27.
[http://dx.doi.org/10.1016/j.addr.2013.11.013] [PMID: 24316070]
[132]
Huang P, Qian X, Chen Y, et al. Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J Am Chem Soc 2017; 139(3): 1275-84.
[http://dx.doi.org/10.1021/jacs.6b11846] [PMID: 28024395]
[133]
Morey M, Pandit A. Responsive triggering systems for delivery in chronic wound healing. Adv Drug Deliv Rev 2018; 129: 169-93.
[http://dx.doi.org/10.1016/j.addr.2018.02.008] [PMID: 29501700]
[134]
Soni SR, Ghosh A. Thermo-and ultrasound-responsive polysaccharides for controlled drug delivery. Polysaccharide Carriers for Drug Delivery. Amsterdam: Elsevier 2019; pp. 217-70.
[http://dx.doi.org/10.1016/B978-0-08-102553-6.00009-X]
[135]
Huebsch N, Kearney CJ, Zhao X, et al. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc Natl Acad Sci USA 2014; 111(27): 9762-7.
[http://dx.doi.org/10.1073/pnas.1405469111] [PMID: 24961369]
[136]
Liang X, Gao J, Jiang L, et al. Nanohybrid liposomal cerasomes with good physiological stability and rapid temperature responsiveness for high intensity focused ultrasound triggered local chemotherapy of cancer. ACS Nano 2015; 9s(2): 1280-93.
[http://dx.doi.org/10.1021/nn507482w] [PMID: 25599568]
[137]
Xing L, Shi Q, Zheng K, et al. Ultrasound-mediated microbubble destruction (UMMD) facilitates the delivery of CA19-9 targeted and paclitaxel loaded mPEG-PLGA-PLL nanoparticles in pancreatic cancer. Theranostics 2016; 6(10): 1573-87.
[http://dx.doi.org/10.7150/thno.15164] [PMID: 27446491]
[138]
Wu B, Qiao Q, Han X, et al. Targeted nanobubbles in low-frequency ultrasound-mediated gene transfection and growth inhibition of hepatocellular carcinoma cells. Tumour Biol 2016; 37(9): 12113-21.
[http://dx.doi.org/10.1007/s13277-016-5082-2] [PMID: 27216880]
[139]
Ishijima A, Minamihata K, Yamaguchi S, et al. Selective intracellular vaporisation of antibody-conjugated phase-change nano-droplets in vitro. Sci Rep 2017; 7(1): 44077.
[http://dx.doi.org/10.1038/srep44077] [PMID: 28333127]
[140]
Phillips WT, Goins BA, Bao A. Radioactive liposomes. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009; 1(1): 69-83.
[http://dx.doi.org/10.1002/wnan.3] [PMID: 20049780]
[141]
Xu L. Boron neutron capture therapy of human gastric cancer by boron-containing immunoliposomes under thermal neutron irradiation. Zhonghua Yi Xue Za Zhi 1991; 140(10): 568-71.
[PMID: 1665391]
[142]
Wang QW, Lü H-L, Song C-C, Liu H, Xu C-G. Radiosensitivity of human colon cancer cell enhanced by immunoliposomal docetaxel. W J G 2005; 11(26): 4003-7.
[http://dx.doi.org/10.3748/wjg.v11.i26.4003] [PMID: 15996023]
[143]
Jung J, Jeong SY, Park SS, et al. A cisplatin-incorporated liposome that targets the epidermal growth factor receptor enhances radiotherapeutic efficacy without nephrotoxicity. Int J Oncol 2015; 46(3): 1268-74.
[http://dx.doi.org/10.3892/ijo.2014.2806] [PMID: 25544240]
[144]
Elbayoumi TA, Torchilin VP. Enhanced accumulation of long-circulating liposomes modified with the nucleosome-specific monoclonal antibody 2C5 in various tumours in mice: Gamma-imaging studies. Eur J Nucl Med Mol Imaging 2006; 33(10): 1196-205.
[http://dx.doi.org/10.1007/s00259-006-0139-x] [PMID: 16763815]
[145]
Kitamura N, Shigematsu N, Nakahara T, et al. Biodistribution of immunoliposome labeled with Tc-99m in tumor xenografted mice. Ann Nucl Med 2009; 23(2): 149-53.
[http://dx.doi.org/10.1007/s12149-008-0222-4] [PMID: 19225938]
[146]
Li S, Goins B, Hrycushko BA, Phillips WT, Bao A. Feasibility of eradication of breast cancer cells remaining in postlumpectomy cavity and draining lymph nodes following intracavitary injection of radioactive immunoliposomes. Mol Pharm 2012; 9(9): 2513-22.
[http://dx.doi.org/10.1021/mp300132f] [PMID: 22894603]
[147]
Pattillo CB, Venegas B, Donelson FJ, et al. Radiation-guided targeting of combretastatin encapsulated immunoliposomes to mammary tumors. Pharm Res 2009; 26(5): 1093-100.
[http://dx.doi.org/10.1007/s11095-009-9826-1] [PMID: 19172383]
[148]
Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 2001; 30(11): 1191-212.
[http://dx.doi.org/10.1016/S0891-5849(01)00480-4] [PMID: 11368918]
[149]
Kim H, Kim S, Park C, Lee H, Park HJ, Kim C. Glutathione-induced intracellular release of guests from mesoporous silica nanocontainers with cyclodextrin gatekeepers. Adv Mater 2010; 22(38): 4280-3.
[http://dx.doi.org/10.1002/adma.201001417] [PMID: 20803535]
[150]
Carvalho AM, Teixeira R, Novoa-Carballal R, Pires RA, Reis RL, Pashkuleva I. Novoa-Carballal Rn, Pires RA, Reis RL, Pashkuleva I. Redox-responsive micellar nanoparticles from glycosaminoglycans for CD44 targeted drug delivery. Biomacromolecules 2018; 19(7): 2991-9.
[http://dx.doi.org/10.1021/acs.biomac.8b00561] [PMID: 29758159]
[151]
Chen M, Hu J, Wang L, et al. Targeted and redox-responsive drug delivery systems based on carbonic anhydrase IX-decorated mesoporous silica nanoparticles for cancer therapy. Sci Rep 2020; 10(1): 14447.
[http://dx.doi.org/10.1038/s41598-020-71071-1] [PMID: 32879359]
[152]
Biswas S, Dodwadkar NS, Sawant RR, Torchilin VP. Development of the novel PEG-PE-based polymer for the reversible attachment of specific ligands to liposomes: Synthesis and in vitro characterization. Bioconjug Chem 2011; 22(10): 2005-13.
[http://dx.doi.org/10.1021/bc2002133] [PMID: 21870873]
[153]
Karve S, Alaouie A, Zhou Y, Rotolo J, Sofou S. The use of pH-triggered leaky heterogeneities on rigid lipid bilayers to improve intracellular trafficking and therapeutic potential of targeted liposomal immunochemotherapy. Biomaterials 2009; 30(30): 6055-64.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.038] [PMID: 19665223]
[154]
Guo P, You JO, Yang J, Jia D, Moses MA, Auguste DT. Inhibiting metastatic breast cancer cell migration via the synergy of targeted, pH-triggered siRNA delivery and chemokine axis blockade. Mol Pharm 2014; 11(3): 755-65.
[http://dx.doi.org/10.1021/mp4004699] [PMID: 24467226]
[155]
Koren E, Apte A, Jani A, Torchilin VP. Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J Control Release 2012; 160(2): 264-73.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.002] [PMID: 22182771]
[156]
Apte A, Koren E, Koshkaryev A, Torchilin VP. Doxorubicin in TAT peptide-modified multifunctional immunoliposomes demonstrates increased activity against both drug-sensitive and drug-resistant ovarian cancer models. Cancer Biol Ther 2014; 15(1): 69-80.
[http://dx.doi.org/10.4161/cbt.26609] [PMID: 24145298]
[157]
Liu Y, Li LL, Qi GB, Chen XG, Wang H. Dynamic disordering of liposomal cocktails and the spatio-temporal favorable release of cargoes to circumvent drug resistance. Biomaterials 2014; 35(10): 3406-15.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.089] [PMID: 24456605]
[158]
Li T, Amari T, Semba K, Yamamoto T, Takeoka S. Construction and evaluation of pH-sensitive immune-liposomes for enhanced delivery of anticancer drug to ErbB2 over-expressing breast cancer cells. Nanomedicine 2017; 13(3): 1219-27.
[http://dx.doi.org/10.1016/j.nano.2016.11.018] [PMID: 27965166]
[159]
Zang X, Ding H, Zhao X, et al. Anti-EphA10 antibody-conjugated pH-sensitive liposomes for specific intracellular delivery of siRNA. Int J Nanomedicine 2016; 11: 3951-67.
[http://dx.doi.org/10.2147/IJN.S107952] [PMID: 27574425]
[160]
Simard P, Leroux JC. In vivo evaluation of pH-sensitive polymer-based immunoliposomes targeting the CD33 antigen. Mol Pharm 2010; 7(4): 1098-107.
[http://dx.doi.org/10.1021/mp900261m] [PMID: 20476756]
[161]
Fonseca MJ, Haisma HJ, Klaassen S, Vingerhoeds MH, Storm G. Design of immuno-enzymosomes with maximum enzyme targeting capability: Effect of the enzyme density on the enzyme targeting capability and cell binding properties. Biochim Biophys Acta Biomembr 1999; 1419(2): 272-82.
[http://dx.doi.org/10.1016/S0005-2736(99)00073-5] [PMID: 10407077]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy