Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Genetic Aspects of Glaucoma: An Updated Review

Author(s): Oscar Francisco Chacon-Camacho, Rocio Arce-Gonzalez, Fernanda Sanchez-de la Rosa, Andrés Urióstegui-Rojas, María Enriqueta Hofmann-Blancas, Felipe Mata-Flores and Juan Carlos Zenteno*

Volume 24, Issue 10, 2024

Published on: 17 October, 2023

Page: [1231 - 1249] Pages: 19

DOI: 10.2174/1566524023666230602143617

Price: $65

Abstract

Glaucoma is a group of diverse diseases characterized by cupping of the optic nerve head due to the loss of retinal ganglion cells. It is the most common cause of irreversible blindness throughout the world; therefore, its timely diagnosis and early detection through an ophthalmological examination are very important. We, herein, present the information on the epidemiology, pathophysiology, clinical diagnosis, and treatment of glaucoma. We also emphasize the investigations of the last decades that have allowed identifying numerous genes and susceptibility genetic factors. We have also described in detail the genes whose mutations cause or contribute to the development of the disease.

[1]
Bourne RRA, Stevens GA, White RA, et al. Causes of vision loss worldwide, 1990–2010: A systematic analysis. Lancet Glob Health 2013; 1(6): e339-49.
[http://dx.doi.org/10.1016/S2214-109X(13)70113-X] [PMID: 25104599]
[2]
Stevens GA, White RA, Flaxman SR, et al. Global prevalence of vision impairment and blindness: Magnitude and temporal trends, 1990-2010. Ophthalmology 2013; 120(12): 2377-84.
[http://dx.doi.org/10.1016/j.ophtha.2013.05.025] [PMID: 23850093]
[3]
Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014; 121(11): 2081-90.
[http://dx.doi.org/10.1016/j.ophtha.2014.05.013] [PMID: 24974815]
[4]
World Report On Vision. World Health Organization 2020.
[5]
Moschos MM, Nitoda E, Fenzel I, et al. Prognosis factors of paediatric glaucoma: A retrospective study. Int Ophthalmol 2019; 39: 359-73.
[6]
Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Lancet 2017; 390(10108): 2183-93.
[http://dx.doi.org/10.1016/S0140-6736(17)31469-1] [PMID: 28577860]
[7]
Wang R, Wiggs JL. Common and rare genetic risk factors for glaucoma. Cold Spring Harb Perspect Med 2014; 4(12): a017244.
[http://dx.doi.org/10.1101/cshperspect.a017244] [PMID: 25237143]
[8]
Wiggs JL. Glaucoma genes and mechanisms. Prog Mol Biol Transl Sci 2015; 134: 315-42.
[http://dx.doi.org/10.1016/bs.pmbts.2015.04.008]
[9]
Leffler CT, Schwartz SG, Hadi TM, Salman A, Vasuki V. The early history of glaucoma: The glaucous eye (800 BC to 1050 AD). Clin Ophthalmol 2015; 9: 207-15.
[10]
Leffler CT, Schwartz SG, Giliberti FM, Young MT, Bermudez D. What was glaucoma called before the 20th century? Ophthalmol Eye Dis 2015; 7: OED.S32004.
[http://dx.doi.org/10.4137/OED.S32004] [PMID: 26483611]
[11]
Leffler CT, Schwartz SG, Stackhouse R, Davenport B, Spetzler K. Evolution and impact of eye and vision terms in written English. JAMA Ophthalmol 2013; 131(12): 1625-31.
[http://dx.doi.org/10.1001/jamaophthalmol.2013.917] [PMID: 24337558]
[12]
Kniestedt C, Punjabi O, Lin S, Stamper RL. Tonometry through the ages. Surv Ophthalmol 2008; 53(6): 568-91.
[http://dx.doi.org/10.1016/j.survophthal.2008.08.024] [PMID: 19026320]
[13]
Alward WLM. A history of gonioscopy. Optom Vis Sci 2011; 88(1): 29-35.
[http://dx.doi.org/10.1097/OPX.0b013e3181fc3718] [PMID: 20966801]
[14]
Johnson CA, Wall M, Thompson HS. A history of perimetry and visual field testing. Optom Vis Sci 2011; 88(1): E8-E15.
[http://dx.doi.org/10.1097/OPX.0b013e3182004c3b] [PMID: 21131878]
[15]
Tezel G. Multifactorial pathogenic processes of retinal ganglio cell degeneration in glaucoma towards multi-target strategies for broader treatment effects. Cells 2021; 10(6): 1372.
[http://dx.doi.org/10.3390/cells10061372] [PMID: 34199494]
[16]
Killer HE, Pircher A. Normal tension glaucoma: Review of current understanding and mechanisms of the pathogenesis. Eye 2018; 32(5): 924-30.
[http://dx.doi.org/10.1038/s41433-018-0042-2] [PMID: 29456252]
[17]
Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol 1981; 99(4): 635-49.
[http://dx.doi.org/10.1001/archopht.1981.03930010635009] [PMID: 6164357]
[18]
Strouthidis NG, Girard MJA. Altering the way the optic nerve head responds to intraocular pressure—a potential approach to glaucoma therapy. Curr Opin Pharmacol 2013; 13(1): 83-9.
[http://dx.doi.org/10.1016/j.coph.2012.09.001] [PMID: 22999652]
[19]
Elhusseiny AM, El Sayed YM, El Sheikh RH, Gawdat GI, Elhilali HM. Circumferential Schlemm’s canal surgery in adult and pediatic glaucoma. Curr Eye Res 2019; 44(12): 1281-90.
[http://dx.doi.org/10.1080/02713683.2019.1659975] [PMID: 31438743]
[20]
Pilat AV, Proudlock FA, Shah S, et al. Assessment of the anterior segment of patients with primary congenital glaucoma using handheld optical coherence tomography. Eye 2019; 33(8): 1232-9.
[http://dx.doi.org/10.1038/s41433-019-0369-3] [PMID: 30886322]
[21]
Mocan MC, Mehta AA, Aref AA. Update in genetics and surgical primary congenital glaucoma. Turk J Ophthalmol 2019; 49(6): 347-55.
[http://dx.doi.org/10.4274/tjo.galenos.2019.28828] [PMID: 31893591]
[22]
Vranka JA, Kelley MJ, Acott TS, Keller KE. Extracellular matrix in the trabecular meshwork: Intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res 2015; 133: 112-25.
[http://dx.doi.org/10.1016/j.exer.2014.07.014] [PMID: 25819459]
[23]
Zhang Y, Jin G, Fan M, et al. Time trends and heterogeneity in the disease burden of glaucoma, 1990-2017: A global analysis. J Glob Health 2019; 9(2): 020436.
[http://dx.doi.org/10.7189/jogh.09.020436] [PMID: 31788231]
[24]
Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. Lancet Glob Health 2017; 5(12): e1221-34.
[http://dx.doi.org/10.1016/S2214-109X(17)30393-5] [PMID: 29032195]
[25]
Antón A, Andrada MT, Mujica V, Calle MA, Portela J, Mayo A. Prevalence of primary open-angle glaucoma in a Spanish population: The Segovia study. J Glaucoma 2004; 13(5): 371-6.
[http://dx.doi.org/10.1097/01.ijg.0000133385.74502.29] [PMID: 15354074]
[26]
Topouzis F, Wilson MR, Harris A, et al. Prevalence of open-angle glaucoma in greece: the thessaloniki eye study. Am J Ophthalmol 2007; 144(4): 511-519.e1.
[http://dx.doi.org/10.1016/j.ajo.2007.06.029] [PMID: 17893012]
[27]
Weih L, Nanjan M, McCarty CA, Taylor HR. Prevalence and predictors of open-angle glaucoma Results from the visual impairment project. Ophthalmology 2001; 108(11): 1966-72.
[http://dx.doi.org/10.1016/S0161-6420(01)00799-0] [PMID: 11713063]
[28]
Vijaya L, George R, Paul PG, et al. Prevalence of open-angle glaucoma in a rural south Indian population. Invest Ophthalmol Vis Sci 2005; 46(12): 4461-7.
[29]
Wang YX, Xu L, Yang H, Jonas JB. Prevalence of glaucoma in North China: The beijing eye study. Am J Ophthalmol 2010; 150(6): 917-24.
[http://dx.doi.org/10.1016/j.ajo.2010.06.037] [PMID: 20970107]
[30]
Varma R, Ying-Lai M, Francis BA, et al. Prevalence of open-angle glaucoma and ocular hypertension in Latinos. Ophthalmology 2004; 111(8): 1439-48.
[http://dx.doi.org/10.1016/j.ophtha.2004.01.025] [PMID: 15288969]
[31]
Murdoch IE, Cousens SN, Babalola OE, Yang YF, Abiose A, Jones BR. Glaucoma prevalence may not be uniformly high in all ‘black’ populations. Afr J Med Med Sci 2001; 30(4): 337-9.
[PMID: 14510115]
[32]
Ntim-Amposah CT, Amoaku WMA, Ofosu-Amaah S, et al. Prevalence of glaucoma in an Africa population. Eye 2004; 18: 491-7.
[33]
Leske MC, Connell AM, Schachat AP, Hyman L. The barbados eye study prevalence of open angle glaucoma. Arch Ophthalmol 1994; 112(6): 821-9.
[http://dx.doi.org/10.1001/archopht.1994.01090180121046] [PMID: 8002842]
[34]
Zukerman R, Harris A, Verticchio Vercellin A, Siesky B, Pasquale LR, Ciulla TAA. Molecular genetics of glaucoma: Subtype and ethnicity considerations. Genes 2020; 12(1): 55.
[http://dx.doi.org/10.3390/genes12010055] [PMID: 33396423]
[35]
Taylor RH, Ainsworth JR, Evans AR, Levin AV. The epidemiology of pediatric glaucoma: The Toronto experience. J AAPOS 1999; 3(5): 308-15.
[http://dx.doi.org/10.1016/S1091-8531(99)70028-5] [PMID: 10532577]
[36]
Dada R, Sharma R, Mohanty K, Dada T, Faiq M, Saluja D. Genetic, biochemical and clinical insight into primary congenital glaucoma. J Curr Glaucoma Pract 2013; 7(2): 66-84.
[http://dx.doi.org/10.5005/jp-journals-10008-1140] [PMID: 26997785]
[37]
McMonnies CW. Glaucoma history and risk factors. J Optom 2017; 10(2): 71-8.
[http://dx.doi.org/10.1016/j.optom.2016.02.003] [PMID: 27025415]
[38]
Ekici E, Moghimi S, Hou H, et al. Central visual field defects in patients with distinct glaucomatous optic disc phenotypes. Am J Ophthalmol 2021; 223: 229-40. [Epub]
[http://dx.doi.org/10.1016/j.ajo.2020.10.015] [PMID: 33129812]
[39]
Nicolela MT, Drance SM. Various glaucomatous optic nerve appearances: Clinical correlations. Ophthalmology 1996; 103(4): 640-9.
[http://dx.doi.org/10.1016/S0161-6420(96)30640-4] [PMID: 8618765]
[40]
Spaeth GL. A new classification of glaucoma including focal glaucoma. Surv Ophthalmol 1994; S38: S9-S17.
[http://dx.doi.org/10.1016/0039-6257(94)90042-6] [PMID: 7940153]
[41]
Kondkar AA. Updates on genes and genetic mechanisms implicated in primary angle-closure glaucoma. Appl Clin Genet 2021; 14: 89-112.
[http://dx.doi.org/10.2147/TACG.S274884] [PMID: 33727852]
[42]
Abu-Amero KK, Edward DP. Primary congenital glaucoma. In: Adam MP, Ardinger HH, Pagon RA, Eds. GeneReviews®. Seattle, WA: University of Washington 2004; pp. 1993-2019.
[43]
Alward WLM. Axenfeld-Rieger syndrome in the age of molecular genetics. Am J Ophthalmol 2000; 130(1): 107-15.
[http://dx.doi.org/10.1016/S0002-9394(00)00525-0] [PMID: 11004268]
[44]
Idrees F, Vaideanu D, Fraser SG, Sowden JC, Khaw PT. A review of anterior segment dysgeneses. Surv Ophthalmol 2006; 51(3): 213-31.
[http://dx.doi.org/10.1016/j.survophthal.2006.02.006] [PMID: 16644364]
[45]
Tümer Z, Bach-Holm D. Axenfeld–Rieger syndrome and spectrum of PITX2 and FOXC1 mutations. Eur J Hum Genet 2009; 17(12): 1527-39.
[http://dx.doi.org/10.1038/ejhg.2009.93] [PMID: 19513095]
[46]
Clement CI, Parker DGA, Goldberg I. Intra-ocular pressure measurement in a patient with thin, thick or abnormal cornea. Open Ophthalmol J 2016; 10(S1): 35-43.
[http://dx.doi.org/10.2174/1874364101610010035] [PMID: 27014386]
[47]
Patel DE, Cumberland PM, Walters BC, et al. Comparison of quality and output of different optimal perimetric testing approaches in children with glaucoma. JAMA Ophthalmol 2018; 136(2): 155-61.
[http://dx.doi.org/10.1001/jamaophthalmol.2017.5898] [PMID: 29285534]
[48]
Scuderi G, Fragiotta S, Scuderi L, Iodice CM, Perdicchi A. Ganglion cell complex analysis in glaucoma patients: What can it tell us? Eye Brain 2020; 12: 33-44.
[http://dx.doi.org/10.2147/EB.S226319] [PMID: 32099501]
[49]
Shi Y, Han Y, Xin C, et al. Disease-related and age-related changes of anterior chamber angle structures in patients with primary congenital glaucoma: An in vivo high-frequency ultrasound biomicroscopy-based study. PLoS One 2020; 15(1): e0227602.
[http://dx.doi.org/10.1371/journal.pone.0227602] [PMID: 31990918]
[50]
Friedman DS, Wolfs RC, O’Colmain BJ, et al. Prevalence of open-angle glaucoma among adults in the United States. Arch Ophthalmol 2004; 122(4): 532-8.
[http://dx.doi.org/10.1001/archopht.122.4.532] [PMID: 15078671]
[51]
Wang X, Harmon J, Zabrieskie N, et al. Using the Utah Population Database to assess familial risk of primary open angle glaucoma. Vision Res 2010; 50(23): 2391-5.
[http://dx.doi.org/10.1016/j.visres.2010.09.018] [PMID: 20858511]
[52]
Alsbirk PH. Anterior chamber depth and primary angle-closure glaucoma. I. An epidemiologuc study in Greenland Eskimos. Acta Ophthalmol 1975; 53(3): 89-104.
[PMID: 1174403]
[53]
Hu CN. An epidemiologic study of glaucoma in Shunyi County, Beijing. Zhonghua Yan Ke Za Zhi 1989; 25(2): 115-9.
[PMID: 2507254]
[54]
Sakurada Y, Mabuchi F. Advances in glaucoma genetics. Prog Brain Res 2015; 220: 107-26.
[http://dx.doi.org/10.1016/bs.pbr.2015.04.006] [PMID: 26497787]
[55]
Choquet H, Wiggs JL, Khawaja AP. Clinical implications of recent advances in primary open-angle glaucoma genetics. Eye 2020; 34(1): 29-39.
[http://dx.doi.org/10.1038/s41433-019-0632-7] [PMID: 31645673]
[56]
van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. Trends Genet 2014; 30(9): 418-26.
[http://dx.doi.org/10.1016/j.tig.2014.07.001] [PMID: 25108476]
[57]
Fingert JH, Robin AL, Stone JL, et al. Copy number variations on chromosome 12q14 in patients with normal tension glaucoma. Hum Mol Genet 2011; 20(12): 2482-94.
[http://dx.doi.org/10.1093/hmg/ddr123] [PMID: 21447600]
[58]
Wang HW, Sun P, Chen Y, Jiang LP. Research progress on human genes involved in the pathogenesis of glaucoma. Mol Med Rep 2018; 18(1): 656-74.
[PMID: 29845210]
[59]
Vasiliou V, Gonzalez FJ. Role of CYP1B1 in glaucoma. Annu Rev Pharmacol Toxicol 2008; 48(1): 333-58.
[http://dx.doi.org/10.1146/annurev.pharmtox.48.061807.154729] [PMID: 17914928]
[60]
Dada R, Dada T, Faiq MA, Qadri R. CYP1B1-mediated pathobiology of primary congenital glaucoma. J Curr Glaucoma Pract 2015; 9(3): 77-80.
[http://dx.doi.org/10.5005/jp-journals-10008-1189] [PMID: 26997841]
[61]
Lim SH, Tran-Viet KN, Yanovitch TL, et al. CYP1B1, MYOC, and LTBP2 mutations in primary congenital glaucoma patients in the United States. Am J Ophthalmol 2013; 155(3): 508-517.e5.
[http://dx.doi.org/10.1016/j.ajo.2012.09.012] [PMID: 23218701]
[62]
Coêlho REA, Sena DR, Santa Cruz F, et al. CYP1B1 gene and phenotypic correlation in patients from Northeastern Brazil with primary congenital glaucoma. J Glaucoma 2019; 28(2): 161-4.
[http://dx.doi.org/10.1097/IJG.0000000000001132] [PMID: 30520782]
[63]
Chen Y, Jiang D, Yu L, et al. CYP1B1 and MYOC mutations in 116 Chinese patients with primary congenital glaucoma. Arch Ophthalmol 2008; 126(10): 1443-7.
[http://dx.doi.org/10.1001/archopht.126.10.1443] [PMID: 18852424]
[64]
Zenteno JC, Hernandez-Merino E, Mejia-Lopez H, et al. Contribution of CYP1B1 mutations and founder effect to primary congenital glaucoma in Mexico. J Glaucoma 2008; 17(3): 189-92.
[http://dx.doi.org/10.1097/IJG.0b013e31815678c3] [PMID: 18414103]
[65]
Stenson PD, Mort M, Ball EV, et al. The human gene mutation database (HGMD®): Optimizing its use in a clinical diagnostic or research setting. Hum Genet 2020; 139(10): 1197-207.
[http://dx.doi.org/10.1007/s00439-020-02199-3] [PMID: 32596782]
[66]
Ali M, McKibbin M, Booth A, et al. Null mutations in LTBP2 cause primary congenital glaucoma. Am J Hum Genet 2009; 84(5): 664-71.
[http://dx.doi.org/10.1016/j.ajhg.2009.03.017] [PMID: 19361779]
[67]
Khan AO. Genetics of primary glaucoma. Curr Opin Ophthalmol 2011; 22(5): 347-55.
[http://dx.doi.org/10.1097/ICU.0b013e32834922d2] [PMID: 21730848]
[68]
Sharafieh R, Child AH, Khaw PT, Fleck B, Sarfarazi M. LTBP2 gene analysis in the GLC3C -linked family and 94 CYP1B1 -negative cases with primary congenital glaucoma. Ophthalmic Genet 2013; 34(1-2): 14-20.
[http://dx.doi.org/10.3109/13816810.2012.716486] [PMID: 22924778]
[69]
Chen X, Chen Y, Fan BJ, Xia M, Wang L, Sun X. Screening of the LTBP2 gene in 214 Chinese sporadic CYP1B1-negative patients with primary congenital glaucoma. Mol Vis 2016; 22: 528-35.
[PMID: 27293371]
[70]
Souma T, Tompson SW, Thomson BR, et al. Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity. J Clin Invest 2016; 126(7): 2575-87.
[http://dx.doi.org/10.1172/JCI85830] [PMID: 27270174]
[71]
Kizhatil K, Ryan M, Marchant JK, Henrich S, John SWM. Schlemm’s canal is a unique vessel with a combination of blood vascular and lymphatic phenotypes that forms by a novel developmental process. PLoS Biol 2014; 12(7): e1001912.
[http://dx.doi.org/10.1371/journal.pbio.1001912] [PMID: 25051267]
[72]
Das J, Bhomaj S, Chaudhuri Z, Sharma P, Negi A, Dasgupta A. Profile of glaucoma in a major eye hospital in north India. Indian J Ophthalmol 2001; 49(1): 25-30.
[PMID: 15887712]
[73]
Siggs OM, Souzeau E, Taranath DA, et al. Biallelic variants are frequent cause of childhood and juvenile open-angle glaucoma. Ophthalmology 2020; 127(6): 758-66.
[http://dx.doi.org/10.1016/j.ophtha.2019.12.024] [PMID: 32085876]
[74]
Knight LSW, Ruddle JB, Taranath DA, et al. Childhood and early onset glaucoma classification and genetic profile in a large australasian disease registry. Ophthalmology 2021; 128(11): 1549-60.
[http://dx.doi.org/10.1016/j.ophtha.2021.04.016] [PMID: 33892047]
[75]
Gupta V, Somarajan BI, Gupta S, et al. The mutational spectrum of Myocilin gene among familial versus sporadic cases of Juvenile onset open angle glaucoma. Eye 2021; 35(2): 400-8.
[http://dx.doi.org/10.1038/s41433-020-0850-z] [PMID: 32300215]
[76]
Huang C, Xie L, Wu Z, et al. Detection of mutations in MYOC, OPTN, NTF4, WDR36 and CYP1B1 in Chinese juvenile onset open-angle glaucoma using exome sequencing. Sci Rep 2018; 8(1): 4498.
[http://dx.doi.org/10.1038/s41598-018-22337-2] [PMID: 29540704]
[77]
Svidnicki PV, Braghini CA, Costa VP, Schimiti RB, de Vasconcellos JPC, de Melo MB. Occurrence of MYOC and CYP1B1 variants in juvenile open angle glaucoma Brazilian patients. Ophthalmic Genet 2018; 39(6): 717-24.
[http://dx.doi.org/10.1080/13816810.2018.1546405] [PMID: 30484747]
[78]
Wang H, Li M, Zhang Z, Xue H, Chen X, Ji Y. Physiological function of myocilin and its role in the pathogenesis of glaucoma in the trabecular meshwork (Review). Int J Mol Med 2019; 43(2): 671-81.
[PMID: 30483726]
[79]
van der Heide CJ, Alward WLM, Flamme-Wiese M, et al. Histochemical analysis of glaucoma caused by a myocilin mutation in a human donor eye. Ophthalmol Glaucoma 2018; 1(2): 132-8.
[http://dx.doi.org/10.1016/j.ogla.2018.08.004] [PMID: 30906929]
[80]
Fingert JH, Stone EM, Sheffield VC, Alward WLM. Myocilin glaucoma. Surv Ophthalmol 2002; 47(6): 547-61.
[http://dx.doi.org/10.1016/S0039-6257(02)00353-3] [PMID: 12504739]
[81]
Vincent AL, Billingsley G, Buys Y, et al. Digenic inheritance of early-onset glaucoma: CYP1B1, a potential modifier gene. Am J Hum Genet 2002; 70(2): 448-60.
[http://dx.doi.org/10.1086/338709] [PMID: 11774072]
[82]
Mookherjee S, Acharya M, Banerjee D, Bhattacharjee A, Ray K. Molecular basis for involvement of CYP1B1 in MYOC upregulation and its potential implication in glaucoma pathogenesis. PLoS One 2012; 7(9): e45077.
[http://dx.doi.org/10.1371/journal.pone.0045077] [PMID: 23028769]
[83]
Rezaie T, Child A, Hitchings R, et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 2002; 295(5557): 1077-9.
[http://dx.doi.org/10.1126/science.1066901] [PMID: 11834836]
[84]
Sarfarazi M, Child A, Stoilova D, et al. Localization of the fourth locus (GLC1E) for adult-onset primary open-angle glaucoma to the 10p15-p14 region. Am J Hum Genet 1998; 62(3): 641-52.
[http://dx.doi.org/10.1086/301767] [PMID: 9497264]
[85]
Aung T, Rezaie T, Okada K, et al. Clinical features and course of patients with glaucoma with the E50K mutation in the optineurin gene. Investigative Ophthalmol Vis Sci 2005; 46: 2816-22.
[86]
Kachaner D, Génin P, Laplantine E, Weil R. Toward an integrative view of Optineurin functions. Cell Cycle 2012; 11(15): 2808-18.
[http://dx.doi.org/10.4161/cc.20946] [PMID: 22801549]
[87]
Tumbarello DA, Waxse BJ, Arden SD, Bright NA, Kendrick-Jones J, Buss F. Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat Cell Biol 2012; 14(10): 1024-35.
[http://dx.doi.org/10.1038/ncb2589] [PMID: 23023224]
[88]
Richter B, Sliter DA, Herhaus L, et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci 2016; 113(15): 4039-44.
[http://dx.doi.org/10.1073/pnas.1523926113] [PMID: 27035970]
[89]
Mou Y, Li M, Liu M, Wang J, Zhu G, Zha Y. OPTN variants in ALS cases: A case report of a novel mutation and literature review. Neurol Sci 2022; 43(9): 5391-6.
[http://dx.doi.org/10.1007/s10072-022-06125-5] [PMID: 35661277]
[90]
Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW. The PINK1-Parkin mithocondrial ubiquilylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell 2015; 60(1): 7-20.
[http://dx.doi.org/10.1016/j.molcel.2015.08.016] [PMID: 26365381]
[91]
A Tucker B, Solivan-Timpe F, Roos BR, et al. Duplication of TBK1 stimulates autophagy in iPSC-derived retinal cells from a patient with normal tension glaucoma. J Stem Cell Res Ther 2014; 4(1): 161.
[http://dx.doi.org/10.4172/2157-7633.1000161] [PMID: 24883232]
[92]
Kaurani L, Vishal M, Ray J, Sen A, Ray K, Mukhopadhyay A. TBK1 duplication is found in normal tension and not in high tension glaucoma patients of Indian origin. J Genet 2016; 95: 459-61.
[93]
Cheong SS, Hentschel L, Davidson AE, et al. Mutations in CPAMD8 cause a unique form of autosomal-recessive anterior segment dysgenesis. Am J Hum Genet 2016; 99(6): 1338-52.
[http://dx.doi.org/10.1016/j.ajhg.2016.09.022] [PMID: 27839872]
[94]
Siggs OM, Souzeau E, Taranath DA, et al. Biallelic CPAMD8 variants are a frequent cause of childhood and juvenile open-angle glaucoma. Ophthalmology 2020; 127(6): 758-66.
[http://dx.doi.org/10.1016/j.ophtha.2019.12.024] [PMID: 32085876]
[95]
Li X, Sun W, Xiao X, et al. Biallelic variants in CPAMD8 are associated with open-angle glaucoma and primary angle closure glaucoma. Br J Ophthalmol 2021. online ahead of print
[PMID: 34154991]
[96]
Wiggs JL. CPAMD8, a new gene for anterior segment dysgenesis and childhood glaucoma. Ophthalmology 2020; 127(6): 767-8.
[http://dx.doi.org/10.1016/j.ophtha.2020.02.035] [PMID: 32444017]
[97]
Bonet-Fernández JM, Aroca-Aguilar JD, Corton M, et al. CPAMD8 loss-of-function underlies non-dominant congenital glaucoma with variable anterior segment dysgenesis and abnormal extracellular matrix. Hum Genet 2020; 139(10): 1209-31.
[http://dx.doi.org/10.1007/s00439-020-02164-0] [PMID: 32274568]
[98]
Ma A, Yousoof S, Grigg JR, et al. Revealing hidden genetic diagnoses in the ocular anterior segment disorders. Genet Med 2020; 22(10): 1623-32.
[http://dx.doi.org/10.1038/s41436-020-0854-x] [PMID: 32499604]
[99]
Monemi S, Spaeth G, DaSilva A, et al. Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1. Hum Mol Genet 2005; 14(6): 725-33.
[http://dx.doi.org/10.1093/hmg/ddi068] [PMID: 15677485]
[100]
Miyazawa A, Fuse N, Mengkegale M, et al. Association between primary open-angle glaucoma and WDR36 DNA sequence variants in Japanese. Mol Vis 2007; 13: 1912-9.
[PMID: 17960130]
[101]
Pasutto F, Matsumoto T, Mardin CY, et al. Heterozygous NTF4 mutations impairing neurotrophin-4 signaling in patients with primary open-angle glaucoma. Am J Hum Genet 2009; 85(4): 447-56.
[http://dx.doi.org/10.1016/j.ajhg.2009.08.016] [PMID: 19765683]
[102]
Liu Y, Liu W, Crooks K, Schmidt S, Allingham RR, Hauser MA. No evidence of association of heterozygous NTF4 mutations in patients with primary open-angle glaucoma. Am J Hum Genet 2010; 86(3): 498-9.
[http://dx.doi.org/10.1016/j.ajhg.2009.11.018] [PMID: 20215012]
[103]
Seifi M, Walter MA. Axenfeld-Rieger syndrome. Clin Genet 2018; 93(6): 1123-30.
[http://dx.doi.org/10.1111/cge.13148] [PMID: 28972279]
[104]
Chrystal PW, Walter MA. Aniridia and axenfeld-rieger syndrome: Clinical presentations, molecular genetics and current/emerging therapies. Exp Eye Res 2019; 189: 107815.
[http://dx.doi.org/10.1016/j.exer.2019.107815] [PMID: 31560925]
[105]
Kulak SC, Kozlowski K, Semina EV, Pearce WG, Walter MA. Mutation in the RIEG1 gene in patients with iridogoniodysgenesis syndrome. Hum Mol Genet 1998; 7(7): 1113-7.
[http://dx.doi.org/10.1093/hmg/7.7.1113] [PMID: 9618168]
[106]
Essner JJ, Branford WW, Zhang J, Yost HJ. Mesendoderm and left-right brain, heart and gut development are differentially regulated by pitx2 isoforms. Development 2000; 127(5): 1081-93.
[http://dx.doi.org/10.1242/dev.127.5.1081] [PMID: 10662647]
[107]
Lehmann OJ, Sowden JC, Carlsson P, Jordan T, Bhattacharya SS. Fox’s in development and disease. Trends Genet 2003; 19(6): 339-44.
[http://dx.doi.org/10.1016/S0168-9525(03)00111-2] [PMID: 12801727]
[108]
Micheal S, Siddiqui SN, Zafar SN, et al. Whole exome sequencing identifies a heterozygous missense variant in the PRDM5 gene in a family with Axenfeld–Rieger syndrome. Neurogenetics 2016; 17(1): 17-23.
[http://dx.doi.org/10.1007/s10048-015-0462-0] [PMID: 26489929]
[109]
Sibon I, Coupry I, Menegon P, et al. COL4A1 mutation in Axenfeld-Rieger anomaly with leukoencephalopathy and stroke. Ann Neurol 2007; 62(2): 177-84.
[http://dx.doi.org/10.1002/ana.21191] [PMID: 17696175]
[110]
Riise R, Storhaug K, Brøndum-Nielsen K. Rieger syndrome is associated with PAX6 deletion. Acta Ophthalmol Scand 2001; 79(2): 201-3.
[http://dx.doi.org/10.1034/j.1600-0420.2001.079002201.x] [PMID: 11284764]
[111]
Phillips JC, del Bono EA, Haines JL, et al. A second locus for Rieger syndrome maps to chromosome 13q14. Am J Hum Genet 1996; 59(3): 613-9.
[PMID: 8751862]
[112]
Plaisier E, Ronco P. COL4A1-related disorders. In: Adam MP, Ardinger HH, Pagon RA, Eds. GeneReviews®. Seattle, WA: University of Washington, Seattle 2009; pp. 1993-2021.
[113]
Harissi-Dagher M, Colby K. Anterior segment dysgenesis: Peters anomaly and sclerocornea. Int Ophthalmol Clin 2008; 48(2): 35-42.
[http://dx.doi.org/10.1097/IIO.0b013e318169526c] [PMID: 18427259]
[114]
Darbari E, Zare-Abdollahi D, Alavi A, et al. A mutation in DOP1B identified as a probable cause for autosomal recessive Peters anomaly in a consanguineous family. Mol Vis 2020; 26: 757-65.
[PMID: 33273802]
[115]
Weh E, Reis LM, Happ HC, et al. Whole exome sequence analysis of Peters anomaly. Hum Genet 2014; 133(12): 1497-511.
[http://dx.doi.org/10.1007/s00439-014-1481-x] [PMID: 25182519]
[116]
Chesneau B, Aubert-Mucca M, Fremont F, et al. First evidence ofSOX2 mutations in Peters’ anomaly: Lessons from molecular screening of 95 patients. Clin Genet 2022; 101(5-6): 494-506.
[http://dx.doi.org/10.1111/cge.14123] [PMID: 35170016]
[117]
Muñoz-Negrete FJ, Teus MA, García-Feijoó J, Canut MI, Rebolleda G. Aniridic glaucoma: An update. Arch Soc Esp Oftalmol 2021; 96(S1): 52-9.
[http://dx.doi.org/10.1016/j.oftale.2020.11.011] [PMID: 34836589]
[118]
Wawrocka A, Krawczynski MR. The genetics of aniridia — simple things become complicated. J Appl Genet 2018; 59(2): 151-9.
[http://dx.doi.org/10.1007/s13353-017-0426-1] [PMID: 29460221]
[119]
McBride KL, Flanigan KM. Update in the mucopolysaccharidoses. Semin Pediatr Neurol 2021; 37: 100874.
[http://dx.doi.org/10.1016/j.spen.2021.100874] [PMID: 33892850]
[120]
Ashworth J, Flaherty M, Pitz S, Ramlee A. Assessment and diagnosis of suspected glaucoma in patients with mucopolysaccharidosis. Acta Ophthalmol 2015; 93(2): e111-7.
[http://dx.doi.org/10.1111/aos.12607] [PMID: 25688487]
[121]
Balikov DA, Jacobson A, Prasov L. Glaucoma syndromes: Insights into glaucoma genetics and pathogenesis from monogenic syndromic disorders. Genes 2021; 12(9): 1403.
[http://dx.doi.org/10.3390/genes12091403] [PMID: 34573386]
[122]
Knepper PA, Goossens W, Palmberg PF. Glycosaminoglycan stratification of the juxtacanalicular tissue in normal and primary open-angle glaucoma. Invest Ophthalmol Vis Sci 1996; 37(12): 2414-25.
[PMID: 8933758]
[123]
Moshirfar M, Kuang GT, Ronquillo Y. Ocular manifestation of alkaptonuria. Treasure Island, Florida, US: Stat Pearls Publishing 2022.
[124]
Okutucu M, Aslan MG, Findik H, Yavuz G. Glaucoma with alkaptonuria as a result of pigment accumulation. J Glaucoma 2019; 28(7): e112-4.
[http://dx.doi.org/10.1097/IJG.0000000000001208] [PMID: 31274704]
[125]
Choi KJ, Son KY, Kang SW, et al. Ocular manifestations of ASP38ALA and THR59LYS familial transthyretin amyloidosis. Retina 2022; 42(2): 396-403.
[http://dx.doi.org/10.1097/IAE.0000000000003296] [PMID: 34483316]
[126]
Minnella AM, Rissotto R, Antoniazzi E, et al. Ocular involvement in hereditary amyloidosis. Genes 2021; 12(7): 955.
[http://dx.doi.org/10.3390/genes12070955] [PMID: 34206500]
[127]
Xiao H, Wang J, Barwick SR, Yoon Y, Smith SB. Effect of long-term chronic hyperhomocysteinemia on retinal structure and function in the cystathionine-β-synthase mutant mouse. Exp Eye Res 2022; 214: 108894.
[http://dx.doi.org/10.1016/j.exer.2021.108894] [PMID: 34906600]
[128]
Schweigert A, Areaux RG Jr. Childhood glaucoma in association with congenital disorder of glycosylation caused by mutations in fucosyltransferase 8. J AAPOS 2019; 23(6): 351-2.
[http://dx.doi.org/10.1016/j.jaapos.2019.08.272] [PMID: 31580894]
[129]
Robin NH, Moran RT, Ala-Kokko L. Stickler Syndrome. In: Adam MP, Ardinger HH, Pagon RA, Eds. GeneReviews®. Seattle, WA: University of Washington 2000; pp. 1993-2022.
[130]
Boysen KB, La Cour M, Kessel L. Ocular complications and prophylactic strategies in Stickler syndrome: A systematic literature review. Ophthalmic Genet 2020; 41(3): 223-34.
[http://dx.doi.org/10.1080/13816810.2020.1747092] [PMID: 32316871]
[131]
Spallone A. Sickler’s syndrome. Stickler syndrome: A study of 12 families. Br J Ophthalmol 1987; 71(7): 504-9.
[http://dx.doi.org/10.1136/bjo.71.7.504] [PMID: 3651362]
[132]
Mauri L, Uebe S, Sticht H, et al. Expanding the clinical spectrum of COL1A1 mutations in different forms of glaucoma. Orphanet J Rare Dis 2016; 11(1): 108.
[http://dx.doi.org/10.1186/s13023-016-0495-y] [PMID: 27484908]
[133]
Thavikulwat AT, Edward DP, AlDarrab A, Vajaranant TS. Pathophysiology and management of glaucoma associated with phakomatoses. J Neurosci Res 2019; 97(1): 57-69.
[http://dx.doi.org/10.1002/jnr.24241] [PMID: 29607552]
[134]
Sullivan TJ, Clarke MP, Morin JD. The ocular manifestations of the Sturge-Weber syndrome. J Pediatr Ophthalmol Strabismus 1992; 29(6): 349-56.
[http://dx.doi.org/10.3928/0191-3913-19921101-05] [PMID: 1287171]
[135]
Weiss DI. Dual origin of glaucoma in encephalotrigeminal haemangiomatosis. Trans Ophthalmol Soc U K 1973; 93(0): 477-93.
[PMID: 4526462]
[136]
Ratner N, Miller SJ. A RASopathy gene commonly mutated in cancer: The neurofibromatosis type 1 tumour suppressor. Nat Rev Cancer 2015; 15(5): 290-301.
[http://dx.doi.org/10.1038/nrc3911] [PMID: 25877329]
[137]
Morales J, Chaudhry IA, Bosley TM. Glaucoma and globe enlargement associated with neurofibromatosis type 1. Ophthalmology 2009; 116(9): 1725-30.
[http://dx.doi.org/10.1016/j.ophtha.2009.06.019] [PMID: 19729098]
[138]
Edward DP, Morales J, Bouhenni RA, et al. Congenital ectropion uvea and mechanisms of glaucoma in neurofibromatosis type 1: New insights. Ophthalmology 2012; 119(7): 1485-94.
[http://dx.doi.org/10.1016/j.ophtha.2012.01.027] [PMID: 22480745]
[139]
Abdolrahimzadeh S, Pugi DM, de Paula A, Scuderi G. Ocular manifestations in phakomatosis pigmentovascularis: Current concepts on pathogenesis, diagnosis, and management. Surv Ophthalmol 2021; 66(3): 482-92.
[http://dx.doi.org/10.1016/j.survophthal.2020.10.002] [PMID: 33058925]
[140]
Teekhasaenee C, Ritch R, Rutnin U, Leelawongs N. Ocular findings in oculodermal melanocytosis. Arch Ophthalmol 1990; 108(8): 1114-20.
[http://dx.doi.org/10.1001/archopht.1990.01070100070037] [PMID: 2383200]
[141]
Thomas AC, Zeng Z, Riviere JB, et al. Mosaic activating mutations in GNA11 and GNAQ are associated with phakomatosis pigmentovascularis and extensive dermal melanocytosis. J Invest Dermatol 2016; 136: 770-8.
[142]
Stone EM, Fingert JH, Alward WLM, et al. Identification of a gene that causes primary open angle glaucoma. Science 1997; 275(5300): 668-70.
[http://dx.doi.org/10.1126/science.275.5300.668] [PMID: 9005853]
[143]
Mackay DS, Bennett TM, Shiels A. Exome sequencing identifies a missense variants in EFEMP1 co-segregating in a famly with autosomal dominant primary open-angle glaucoma. PLoS One 2015; 10(7): e0132529.
[http://dx.doi.org/10.1371/journal.pone.0132529] [PMID: 26162006]
[144]
Sears NC, Boese EA, Miller MA, Fingert JH. Mendelian genes in primary open angle glaucoma. Exp Eye Res 2019; 186: 107702.
[http://dx.doi.org/10.1016/j.exer.2019.107702] [PMID: 31238079]
[145]
Thorleifsson G, Walters GB, Hewitt AW, et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma. Nat Genet 2010; 42(10): 906-9.
[http://dx.doi.org/10.1038/ng.661] [PMID: 20835238]
[146]
Burdon KP, Macgregor S, Hewitt AW, et al. Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet 2011; 43(6): 574-8.
[http://dx.doi.org/10.1038/ng.824] [PMID: 21532571]
[147]
Trivli A, Zervou M, Goulielmos G, Spandidos D, Detorakis E. Primary open angle glaucoma genetics: The common variants and their clinical associations (Review). Mol Med Rep 2020; 22(2): 1103-10.
[http://dx.doi.org/10.3892/mmr.2020.11215] [PMID: 32626970]
[148]
Gharahkhani P, Jorgenson E, Hysi P, et al. Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries. Nat Commun 2021; 12(1): 1258.
[http://dx.doi.org/10.1038/s41467-020-20851-4] [PMID: 33627673]
[149]
Foster PJ. The epidemiology of primary angle closure and associated glaucomatous optic neuropathy. Semin Ophthalmol 2002; 17(2): 50-8.
[http://dx.doi.org/10.1076/soph.17.2.50.14718] [PMID: 15513457]
[150]
Othman MI, Sullivan SA, Skuta GL, et al. Autosomal dominant nanophthalmos (NNO1) with high hyperopia and angle-closure glaucoma maps to chromosome 11. Am J Hum Genet 1998; 63(5): 1411-8.
[http://dx.doi.org/10.1086/302113] [PMID: 9792868]
[151]
Vithana EN, Khor CC, Qiao C, et al. Genome-wide association analyses identify three new susceptibility loci for primary angle closure glaucoma. Nat Genet 2012; 44(10): 1142-6.
[http://dx.doi.org/10.1038/ng.2390] [PMID: 22922875]
[152]
Khor CC, Do T, Jia H, et al. Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma. Nat Genet 2016; 48(5): 556-62.
[http://dx.doi.org/10.1038/ng.3540] [PMID: 27064256]
[153]
Rong SS, Tang FY, Chu WK, et al. Genetic associations of primary angle-closure disease: A systematic review and meta-analysis. Ophthalmology 2016; 123(6): 1211-21.
[http://dx.doi.org/10.1016/j.ophtha.2015.12.027] [PMID: 26854036]
[154]
Suri F, Yazdani S, Chapi M, et al. COL18A1 is a candidate eye iridocorneal angle-closure gene in humans. Hum Mol Genet 2018; 27(21): 3772-86.
[http://dx.doi.org/10.1093/hmg/ddy256] [PMID: 30007336]
[155]
Li Z, Wang Z, Lee MC, et al. Association of rare CYP39A1 variants with Exfoliation syndrome involving the anterior chamber of the eye. JAMA 2021; 325(8): 753-64.
[http://dx.doi.org/10.1001/jama.2021.0507] [PMID: 33620406]
[156]
Ritch R, Schlötzer-Schrehardt U. Exfoliation syndrome. Surv Ophthalmol 2001; 45(4): 265-315.
[http://dx.doi.org/10.1016/S0039-6257(00)00196-X] [PMID: 11166342]
[157]
Thorleifsson G, Magnusson KP, Sulem P, et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science 2007; 317(5843): 1397-400.
[http://dx.doi.org/10.1126/science.1146554] [PMID: 17690259]
[158]
Hayashi H, Gotoh N, Ueda Y, Nakanishi H, Yoshimura N. Lysyl oxidase-like 1 polymorphisms and exfoliation syndrome in the Japanese population. Am J Ophthalmol 2008; 145(3): 582-5.
[http://dx.doi.org/10.1016/j.ajo.2007.10.023] [PMID: 18201684]
[159]
Fan BJ, Pasquale L, Grosskreutz CL, et al. DNA sequence variants in the LOXL1 gene are associated with pseudoexfoliation glaucoma in a US clinic-based population with broad ethnic diversity. BMG Med genet 2008; 9: 5.
[160]
Ramprasad VL, George R, Soumittra N, Sharmila F, Vijaya L, Kumaramanickavel G. Association of non-synonymous single nucleotide polymorphisms in the LOXL1 gene with pseudoexfoliation syndrome in India. Mol Vis 2008; 14: 318-22.
[PMID: 18334947]
[161]
Jaimes M, Rivera-Parra D, Miranda-Duarte A, Valdés G, Zenteno JC. Prevalence of high-risk alleles in the LOXL1 gene and its association with pseudoexfoliation syndrome and exfoliation glaucoma in a Latin American population. Ophthalmic Genet 2012; 33(1): 12-7.
[http://dx.doi.org/10.3109/13816810.2011.615078] [PMID: 21970694]
[162]
Williams SEI, Whigham BT, Liu Y, et al. Major LOXL1 risk allele is reversed in exfoliation glaucoma in a black South African population. Mol Vis 2010; 16: 705-12.
[PMID: 20431720]
[163]
Nakano M, Ikeda Y, Tokuda Y, et al. Novel common variants and susceptible haplotype for exfoliation glaucoma specific to Asian population. Sci Rep 2014; 4(1): 5340.
[http://dx.doi.org/10.1038/srep05340] [PMID: 24938310]
[164]
Aung T, Ozaki M, Lee MC, et al. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci. Nat Genet 2017; 49(7): 993-1004.
[http://dx.doi.org/10.1038/ng.3875] [PMID: 28553957]
[165]
George R, Murthy GJ, Ariga M, et al. A deep dive into the latest European glaucoma society and asia-pacific glaucoma society guidelines and their relevance to India. Indian J Ophthalmol 2022; 70(1): 24-35.
[http://dx.doi.org/10.4103/ijo.IJO_1762_21] [PMID: 34937204]
[166]
Badawi AH, Al-Muhaylib AA, Al Owaifeer AM, Al-Essa RS, Al-Shahwan SA. Primary congenital glaucoma: An updated review. Saudi J Ophthalmol 2019; 33(4): 382-8.
[http://dx.doi.org/10.1016/j.sjopt.2019.10.002] [PMID: 31920449]
[167]
Saha BC, Kumari R, Kushumesh R, Ambasta A, Sinha BP. Status of Rho kinase inhibitors in glaucoma therapeutics—an overview. Int Ophthalmol 2022; 42(1): 281-94.
[http://dx.doi.org/10.1007/s10792-021-02002-w] [PMID: 34453229]
[168]
Occhiutto ML, Maranhão RC, Costa VP, Konstas AG. Nanotechnology for medical and surgical glaucoma therapy – a review. Adv Ther 2020; 37(1): 155-99.
[http://dx.doi.org/10.1007/s12325-019-01163-6] [PMID: 31823205]
[169]
Sawada A, Yamamoto T. Correlation between extent of preexisting organic angle closure and long-term outcome after laser peripheral iridotomy in eyes with primary angle closure. J Glaucoma 2012; 21(3): 174-9.
[http://dx.doi.org/10.1097/IJG.0b013e3182070c98] [PMID: 21336152]
[170]
Gupta V, Kumar H, Mansoori T, Warjri GB, Somarajan BI, Bandil S. Lasers in glaucoma. Indian J Ophthalmol 2018; 66(11): 1539-53.
[http://dx.doi.org/10.4103/ijo.IJO_555_18] [PMID: 30355858]
[171]
Nagar M, Luhishi E, Shah N. Intraocular pressure control and fluctuation: the effect of treatment with selective laser trabeculoplasty. Br J Ophthalmol 2009; 93(4): 497-501.
[http://dx.doi.org/10.1136/bjo.2008.148510] [PMID: 19106150]
[172]
Pereira ICF, van de Wijdeven R, Wyss HM, Beckers HJM, den Toonder JMJ. Conventional glaucoma implants and the new MIGS devices: A comprehensive review of current options and future directions. Eye 2021; 35(12): 3202-21.
[http://dx.doi.org/10.1038/s41433-021-01595-x] [PMID: 34127842]
[173]
Yu Chan JY, Choy BNK, Ng ALK, Shum JWH. Review on the management of primary congenital glaucoma. J Curr Glaucoma Pract 2015; 9(3): 92-9.
[http://dx.doi.org/10.5005/jp-journals-10008-1192] [PMID: 26997844]
[174]
Wang HW, Sun P, Chen Y, et al. Research progress on human genes involved in the pathogenesis of glaucoma (Review). Mol Med Rep 2018; 18(1): 656-74.
[http://dx.doi.org/10.3892/mmr.2018.9071] [PMID: 29845210]
[175]
Allen KF, Gaier ED, Wiggs JL. Genetics of primary inherited disorders of the optic nerve: clinical applications. Cold Spring Harb Perspect Med 2015; 5(7): a017277.
[http://dx.doi.org/10.1101/cshperspect.a017277] [PMID: 26134840]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy