Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

The Roles of Autophagy-related miRNAs in Gynecologic Tumors: A Review of Current Knowledge for Possible Targeted Therapy

Author(s): Mahya Mobinikhaledi, Arezoo Faridzadeh, Tahereh Farkhondeh, Mohammad Hossein Pourhanifeh* and Saeed Samarghandian*

Volume 24, Issue 10, 2024

Published on: 10 October, 2023

Page: [1269 - 1281] Pages: 13

DOI: 10.2174/0115665240263059231002093454

Price: $65

Abstract

Gynecological cancers are the leading cause of malignancy-related death and disability in the world. These cancers are diagnosed at end stages, and unfortunately, the standard therapeutic strategies available for the treatment of affected women [including chemotherapy, radiotherapy and surgery] are not safe and effective enough. Moreover, the unwanted side-effects lowering the patients' life quality is another problem for these therapies. Therefore, researchers should search for better alternative/complementary treatments. The involvement of autophagy in the pathogenesis of various cancers has been demonstrated. Recently, a novel crosstalk between microRNAs, small non-coding RNAs with important regulatory functions, and autophagy machinery has been highlighted. In this review, we indicate the importance of this interaction for targeted therapy in the treatment of cancers including gynecological cancers, with a focus on underlying mechanisms.

[1]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Salani R, Khanna N, Frimer M, Bristow RE, Chen L. An update on post-treatment surveillance and diagnosis of recurrence in women with gynecologic malignancies: Society of Gynecologic Oncology (SGO) recommendations. Gynecol Oncol 2017; 146(1): 3-10.
[http://dx.doi.org/10.1016/j.ygyno.2017.03.022] [PMID: 28372871]
[3]
Diaz-Padilla I, Monk BJ, Mackay HJ, Oaknin A. Treatment of metastatic cervical cancer: Future directions involving targeted agents. Crit Rev Oncol Hematol 2013; 85(3): 303-14.
[http://dx.doi.org/10.1016/j.critrevonc.2012.07.006] [PMID: 22883215]
[4]
Moxley KM, McMeekin DS. Endometrial carcinoma: a review of chemotherapy, drug resistance, and the search for new agents. Oncologist 2010; 15(10): 1026-33.
[http://dx.doi.org/10.1634/theoncologist.2010-0087] [PMID: 20930101]
[5]
Cortez AJ, Tudrej P, Kujawa KA, Lisowska KM. Advances in ovarian cancer therapy. Cancer Chemother Pharmacol 2018; 81(1): 17-38.
[http://dx.doi.org/10.1007/s00280-017-3501-8] [PMID: 29249039]
[6]
Amaravadi RK, Kimmelman AC, Debnath J. Targeting autophagy in cancer: Recent advances and future directions. Cancer Discov 2019; 9(9): 1167-81.
[http://dx.doi.org/10.1158/2159-8290.CD-19-0292] [PMID: 31434711]
[7]
Chen X, Mao R, Su W, et al. Circular RNA circHIPK3 modulates autophagy viaMIR124-3p -STAT3-PRKAA/AMPKα signaling in STK11 mutant lung cancer. Autophagy 2020; 16(4): 659-71.
[http://dx.doi.org/10.1080/15548627.2019.1634945] [PMID: 31232177]
[8]
Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129(7): 1401-14.
[http://dx.doi.org/10.1016/j.cell.2007.04.040] [PMID: 17604727]
[9]
Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis. RNA 2019; 25(1): 1-16.
[http://dx.doi.org/10.1261/rna.068692.118] [PMID: 30333195]
[10]
Ebert MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes. Cell 2012; 149(3): 515-24.
[http://dx.doi.org/10.1016/j.cell.2012.04.005] [PMID: 22541426]
[11]
Bartel DP. Metazoan microRNAs. Cell 2018; 173(1): 20-51.
[http://dx.doi.org/10.1016/j.cell.2018.03.006] [PMID: 29570994]
[12]
Kabekkodu SP, Shukla V, Varghese VK, D’ Souza J, Chakrabarty S, Satyamoorthy K. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc 2018; 93(4): 1955-86.
[http://dx.doi.org/10.1111/brv.12428] [PMID: 29797774]
[13]
Shan C, Chen X, Cai H, et al. The emerging roles of autophagy-related MicroRNAs in cancer. Int J Biol Sci 2021; 17(1): 134-50.
[http://dx.doi.org/10.7150/ijbs.50773] [PMID: 33390839]
[14]
Pourhanifeh MH, Vosough M, Mahjoubin-Tehran M, et al. Autophagy-related microRNAs: Possible regulatory roles and therapeutic potential in and gastrointestinal cancers. Pharmacol Res 2020; 161: 105133.
[http://dx.doi.org/10.1016/j.phrs.2020.105133] [PMID: 32822869]
[15]
Pourhanifeh MH, Mahjoubin-Tehran M, Karimzadeh MR, et al. Autophagy in cancers including brain tumors: role of MicroRNAs. Cell Commun Signal 2020; 18(1): 88.
[http://dx.doi.org/10.1186/s12964-020-00587-w] [PMID: 32517694]
[16]
Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 2019; 20(1): 21-37.
[http://dx.doi.org/10.1038/s41580-018-0045-7] [PMID: 30108335]
[17]
Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23(20): 4051-60.
[http://dx.doi.org/10.1038/sj.emboj.7600385] [PMID: 15372072]
[18]
Kobayashi H, Tomari Y. RISC assembly: Coordination between small RNAs and Argonaute proteins. Biochim Biophys Acta Gene Regul Mech 2016; 1859(1): 71-81.
[http://dx.doi.org/10.1016/j.bbagrm.2015.08.007] [PMID: 26303205]
[19]
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15(8): 509-24.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[20]
Kwon SC, Nguyen TA, Choi YG, et al. Structure of Human DROSHA. Cell 2016; 164(1-2): 81-90.
[http://dx.doi.org/10.1016/j.cell.2015.12.019] [PMID: 26748718]
[21]
Hutvágner G, McLachlan J, Pasquinelli AE, Bálint É, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001; 293(5531): 834-8.
[http://dx.doi.org/10.1126/science.1062961] [PMID: 11452083]
[22]
Fukunaga R, Han BW, Hung JH, Xu J, Weng Z, Zamore PD. Dicer partner proteins tune the length of mature mirnas in flies and mammals. Cell 2012; 151(4): 912.
[http://dx.doi.org/10.1016/j.cell.2012.10.029] [PMID: 30360291]
[23]
Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409(6818): 363-6.
[http://dx.doi.org/10.1038/35053110] [PMID: 11201747]
[24]
Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005; 436(7051): 740-4.
[http://dx.doi.org/10.1038/nature03868] [PMID: 15973356]
[25]
Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003; 17(24): 3011-6.
[http://dx.doi.org/10.1101/gad.1158803] [PMID: 14681208]
[26]
Wu K, He J, Pu W, Peng Y. The Role of Exportin-5 in MicroRNA Biogenesis and Cancer. Genomics Proteomics Bioinformatics 2018; 16(2): 120-6.
[http://dx.doi.org/10.1016/j.gpb.2017.09.004] [PMID: 29723684]
[27]
Yi R, Doehle BP, Qin Y, Macara IG, Cullen BR. Overexpression of exportin 5 enhances rna interference mediated by short hairpin RNAs and microRNAs. RNA 2005; 11(2): 220-6.
[http://dx.doi.org/10.1261/rna.7233305] [PMID: 15613540]
[28]
Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) Autophagy. 2016; 12: pp. (1)1-222.
[http://dx.doi.org/10.1080/15548627.2015.1100356]
[29]
Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: An overview of nuclear functions. Int J Mol Sci 2016; 17(10): 1712.
[http://dx.doi.org/10.3390/ijms17101712] [PMID: 27754357]
[30]
Akgül B, Erdoğan İ. Intracytoplasmic Re-localization of miRISC Complexes. Front Genet 2018; 9: 403.
[http://dx.doi.org/10.3389/fgene.2018.00403] [PMID: 30298086]
[31]
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136(2): 215-33.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[32]
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 2018; 9: 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[33]
Plotnikova O, Baranova A, Skoblov M. Comprehensive analysis of human microRNA–mRNA interactome. Front Genet 2019; 10: 933.
[http://dx.doi.org/10.3389/fgene.2019.00933] [PMID: 31649721]
[34]
Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19(1): 92-105.
[http://dx.doi.org/10.1101/gr.082701.108] [PMID: 18955434]
[35]
Ashrafizadeh M, Ahmadi Z, Kotla NG, et al. Nanoparticles targeting STATs in cancer therapy. Cells 2019; 8(10): 1158.
[http://dx.doi.org/10.1146/annurev-pathol-012513-104715] [PMID: 24079833]
[36]
Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way. Cell 2009; 136(4): 586-91.
[http://dx.doi.org/10.1016/j.cell.2009.02.005] [PMID: 19239879]
[37]
Chen PS, Lin SC, Tsai SJ. Complexity in regulating microRNA biogenesis in cancer. Exp Biol Med (Maywood) 2020; 245(5): 395-401.
[http://dx.doi.org/10.1177/1535370220907314] [PMID: 32075432]
[38]
Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435(7043): 834-8.
[http://dx.doi.org/10.1038/nature03702] [PMID: 15944708]
[39]
Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 2015; 15(6): 321-33.
[http://dx.doi.org/10.1038/nrc3932] [PMID: 25998712]
[40]
Ali Syeda Z, Langden SSS, Munkhzul C, Lee M, Song SJ. Regulatory mechanism of MicroRNA expression in cancer. Int J Mol Sci 2020; 21(5): 1723.
[http://dx.doi.org/10.3390/ijms21051723] [PMID: 32138313]
[41]
Shaterzadeh-Yazdi H, Noorbakhsh MF, Hayati F, Samarghandian S, Farkhondeh T. Immunomodulatory and anti-inflammatory effects of thymoquinone. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders 2018; 18(1): 52-60.
[http://dx.doi.org/10.1016/j.canlet.2019.02.051] [PMID: 30878527]
[42]
Huang X, Ding L, Bennewith KL, et al. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 2009; 35(6): 856-67.
[http://dx.doi.org/10.1016/j.molcel.2009.09.006] [PMID: 19782034]
[43]
Chen P, Guo X, Zhang L, et al. MiR-200c is a cMyc-activated miRNA that promotes nasopharyngeal carcinoma by downregulating PTEN. Oncotarget 2017; 8(3): 5206-18.
[http://dx.doi.org/10.18632/oncotarget.14123] [PMID: 28029649]
[44]
Liu C, Liu R, Zhang D, et al. MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nat Commun 2017; 8(1): 14270.
[http://dx.doi.org/10.1038/ncomms14270] [PMID: 28112170]
[45]
Chen C, Lu Y, Siu HM, et al. Identification of novel vacuolin-1 analogues as autophagy inhibitors by virtual drug screening and chemical synthesis. Molecules 2017; 22(6): 891.
[http://dx.doi.org/10.3390/molecules22060891] [PMID: 28555021]
[46]
Maiese K, Chong ZZ, Shang YC, Wang S. Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Ther Targets 2012; 16(12): 1203-14.
[http://dx.doi.org/10.1517/14728222.2012.719499] [PMID: 22924465]
[47]
Maiese K. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer. Curr Neurovasc Res 2017; 14(3): 299-304.
[PMID: 28721811]
[48]
Deng S, Shanmugam MK, Kumar AP, Yap CT, Sethi G, Bishayee A. Targeting autophagy using natural compounds for cancer prevention and therapy. Cancer 2019; 125(8): 1228-46.
[http://dx.doi.org/10.1002/cncr.31978] [PMID: 30748003]
[49]
Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 2018; 19(6): 349-64.
[http://dx.doi.org/10.1038/s41580-018-0003-4] [PMID: 29618831]
[50]
Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011; 147(4): 728-41.
[http://dx.doi.org/10.1016/j.cell.2011.10.026] [PMID: 22078875]
[51]
Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov 2017; 16(7): 487-511.
[http://dx.doi.org/10.1038/nrd.2017.22] [PMID: 28529316]
[52]
Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008; 132(1): 27-42.
[http://dx.doi.org/10.1016/j.cell.2007.12.018] [PMID: 18191218]
[53]
Mizushima N. Physiological functions of autophagy. Curr Top Microbiol Immunol 2009; 335: 71-84.
[http://dx.doi.org/10.1007/978-3-642-00302-8_3] [PMID: 19802560]
[54]
Kuma A, Mizushima N. Physiological role of autophagy as an intracellular recycling system: With an emphasis on nutrient metabolism. Semin Cell Dev Biol 2010; 21(7): 683-90.
[http://dx.doi.org/10.1016/j.semcdb.2010.03.002] [PMID: 20223289]
[55]
Singh SS, Vats S, Chia AYQ, et al. Dual role of autophagy in hallmarks of cancer. Oncogene 2018; 37(9): 1142-58.
[http://dx.doi.org/10.1038/s41388-017-0046-6] [PMID: 29255248]
[56]
Barnard RA, Regan DP, Hansen RJ, Maycotte P, Thorburn A, Gustafson DL. Autophagy inhibition delays early but not late-stage metastatic disease. J Pharmacol Exp Ther 2016; 358(2): 282-93.
[http://dx.doi.org/10.1124/jpet.116.233908] [PMID: 27231155]
[57]
Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402(6762): 672-6.
[http://dx.doi.org/10.1038/45257] [PMID: 10604474]
[58]
Jogalekar MP, Veerabathini A, Gangadaran P. Recent developments in autophagy-targeted therapies in cancer. Exp Biol Med (Maywood) 2021; 246(2): 207-12.
[http://dx.doi.org/10.1177/1535370220966545] [PMID: 33167689]
[59]
Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112(12): 1809-20.
[http://dx.doi.org/10.1172/JCI20039] [PMID: 14638851]
[60]
Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 2003; 100(25): 15077-82.
[http://dx.doi.org/10.1073/pnas.2436255100] [PMID: 14657337]
[61]
Kang MR, Kim MS, Oh JE, et al. Frameshift mutations of autophagy-related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite instability. J Pathol 2009; 217(5): 702-6.
[http://dx.doi.org/10.1002/path.2509] [PMID: 19197948]
[62]
Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer 2020; 19(1): 12.
[http://dx.doi.org/10.1186/s12943-020-1138-4] [PMID: 31969156]
[63]
Touil Y, Igoudjil W, Corvaisier M, et al. Colon cancer cells escape 5FU chemotherapy-induced cell death by entering stemness and quiescence associated with the c-Yes/YAP axis. Clin Cancer Res 2014; 20(4): 837-46.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1854] [PMID: 24323901]
[64]
Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, et al. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 2015; 35 Suppl(0): S78-S103.
[http://dx.doi.org/10.1016/j.semcancer.2015.03.001]
[65]
Hu Z, Cai M, Zhang Y, Tao L, Guo R. miR-29c-3p inhibits autophagy and cisplatin resistance in ovarian cancer by regulating FOXP1/ATG14 pathway. Cell Cycle 2020; 19(2): 193-206.
[http://dx.doi.org/10.1080/15384101.2019.1704537] [PMID: 31885310]
[66]
Akkoc Y, Gozuacik D. MicroRNAs as major regulators of the autophagy pathway. Biochim Biophys Acta Mol Cell Res 2020; 1867(5): 118662.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118662] [PMID: 32001304]
[67]
Chen ZH, Wang WT, Huang W, et al. The lncRNA HOTAIRM1 regulates the degradation of PML-RARA oncoprotein and myeloid cell differentiation by enhancing the autophagy pathway. Cell Death Differ 2017; 24(2): 212-24.
[http://dx.doi.org/10.1038/cdd.2016.111] [PMID: 27740626]
[68]
Zhang Y, Yang WQ, Zhu H, et al. Regulation of autophagy by miR-30d impacts sensitivity of anaplastic thyroid carcinoma to cisplatin. Biochem Pharmacol 2014; 87(4): 562-70.
[http://dx.doi.org/10.1016/j.bcp.2013.12.004] [PMID: 24345332]
[69]
Zhai H, Fesler A, Ba Y, Wu S, Ju J. Inhibition of colorectal cancer stem cell survival and invasive potential by hsa-miR-140-5p mediated suppression of Smad2 and autophagy. Oncotarget 2015; 6(23): 19735-46.
[http://dx.doi.org/10.18632/oncotarget.3771] [PMID: 25980495]
[70]
Lin Y, Nie Y, Zhao J, et al. Genetic polymorphism at miR-181a binding site contributes to gastric cancer susceptibility. Carcinogenesis 2012; 33(12): 2377-83.
[http://dx.doi.org/10.1093/carcin/bgs292] [PMID: 22971574]
[71]
Lin Y, Zhao J, Wang H, Cao J, Nie Y. miR-181a modulates proliferation, migration and autophagy in AGS gastric cancer cells and downregulates MTMR3. Mol Med Rep 2017; 15(5): 2451-6.
[http://dx.doi.org/10.3892/mmr.2017.6289] [PMID: 28447759]
[72]
Yu G, Jia Z, Dou Z. miR-24-3p regulates bladder cancer cell proliferation, migration, invasion and autophagy by targeting DEDD. Oncol Rep 2017; 37(2): 1123-31.
[http://dx.doi.org/10.3892/or.2016.5326] [PMID: 28000900]
[73]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[74]
Siegler E, Shiner M, Segev Y, Mackuli L, Lahat N, Lavie O. Prevalence and genotype distribution of hpv types in women at risk for cervical neoplasia in Israel. Isr Med Assoc J 2017; 19(10): 635-9.
[PMID: 29103242]
[75]
de Freitas AC, Gurgel APAD, Chagas BS, Coimbra EC, do Amaral CMM. Susceptibility to cervical cancer: An overview. Gynecol Oncol 2012; 126(2): 304-11.
[http://dx.doi.org/10.1016/j.ygyno.2012.03.047] [PMID: 22484226]
[76]
Wentzensen N, Schiffman M. Accelerating cervical cancer control and prevention. Lancet Public Health 2018; 3(1): e6-7.
[http://dx.doi.org/10.1016/S2468-2667(17)30242-6] [PMID: 29307389]
[77]
Cegla P, Burchardt E, Roszak A, Czepczynski R, Kubiak A, Cholewinski W. Influence of biological parameters assessed in [18F]FDG PET/CT on overall survival in cervical cancer patients. Clin Nucl Med 2019; 44(11): 860-3.
[http://dx.doi.org/10.1097/RLU.0000000000002733] [PMID: 31348081]
[78]
Small W Jr, Bacon MA, Bajaj A, et al. Cervical cancer: A global health crisis. Cancer 2017; 123(13): 2404-12.
[http://dx.doi.org/10.1002/cncr.30667] [PMID: 28464289]
[79]
Wu H, Chen J, Li D, Liu X, Li L, Wang K. MicroRNA-30e functions as a tumor suppressor in cervical carcinoma cells through targeting GALNT7. Transl Oncol 2017; 10(6): 876-85.
[http://dx.doi.org/10.1016/j.tranon.2017.08.006] [PMID: 28926745]
[80]
Fu XT, Shi YH, Zhou J, et al. MicroRNA-30a suppresses autophagy-mediated anoikis resistance and metastasis in hepatocellular carcinoma. Cancer Lett 2018; 412: 108-17.
[http://dx.doi.org/10.1016/j.canlet.2017.10.012] [PMID: 29061507]
[81]
Yang F, Guo L, Cao Y, Li S, Li J, Liu M. MicroRNA-7-5p promotes cisplatin resistance of cervical cancer cells and modulation of cellular energy homeostasis by regulating the expression of the PARP-1 and BCL2 genes. Med Sci Monit 2018; 24: 6506-16.
[http://dx.doi.org/10.12659/MSM.910969] [PMID: 30219819]
[82]
Chen M, Ai G, Zhou J, Mao W, Li H, Guo J. circMTO1 promotes tumorigenesis and chemoresistance of cervical cancer via regulating miR-6893. Biomed Pharmacother 2019; 117: 109064.
[http://dx.doi.org/10.1016/j.semcancer.2015.03.001]
[83]
Guo J, Chen M, Ai G, Mao W, Li H, Zhou J. Hsa_circ_0023404 enhances cervical cancer metastasis and chemoresistance through VEGFA and autophagy signaling by sponging miR-5047. Biomed Pharmacother 2019; 115: 108957.
[http://dx.doi.org/10.1016/j.biopha.2019.108957] [PMID: 31082770]
[84]
Chen X, Liu J, Hao X, Yan L, Gao F. The miR-424/miR-503 microRNA cluster prevents the malignant phenotype in cervical cancer cells by negatively regulating CCND1. Mol Ther Nucleic Acids 2020.
[http://dx.doi.org/10.1016/j.omtn.2020.10.029]
[85]
Gupta S, Panda PK, Hashimoto RF, et al. Dynamical modeling of miR-34a, miR-449a, and miR-16 reveals numerous DDR signaling pathways regulating senescence, autophagy, and apoptosis in HeLa cells. Sci Rep 2022; 12(1): 4911.
[http://dx.doi.org/10.1038/s41598-022-08900-y] [PMID: 35318393]
[86]
Zhu X, Long L, Xiao H, He X. Cancer-derived exosomal miR-651 as a diagnostic marker restrains cisplatin resistance and directly targets ATG3 for cervical cancer. Dis Markers 2021; 2021: 1-16.
[http://dx.doi.org/10.1155/2021/1544784] [PMID: 34567283]
[87]
Liu S, Wang H, Mu J, et al. MiRNA-211 triggers an autophagy-dependent apoptosis in cervical cancer cells: regulation of Bcl-2. Naunyn Schmiedebergs Arch Pharmacol 2020; 393(3): 359-70.
[http://dx.doi.org/10.1007/s00210-019-01720-4] [PMID: 31637455]
[88]
Cordani M, Oppici E, Dando I, et al. Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition. Mol Oncol 2016; 10(7): 1008-29.
[http://dx.doi.org/10.1016/j.molonc.2016.04.001] [PMID: 27118659]
[89]
Pan B, Feng B, Chen Y, et al. MiR-200b regulates autophagy associated with chemoresistance in human lung adenocarcinoma. Oncotarget 2015; 6(32): 32805-20.
[http://dx.doi.org/10.18632/oncotarget.5352] [PMID: 26416454]
[90]
Fang W, Shu S, Yongmei L, Endong Z, Lirong Y, Bei S. miR-224-3p inhibits autophagy in cervical cancer cells by targeting FIP200. Sci Rep 2016; 6(1): 33229.
[http://dx.doi.org/10.1038/srep33229] [PMID: 27615604]
[91]
Chu D, Liu T, Yao Y, Luan N. LINC00997/MicroRNA 574-3p/CUL2 promotes cervical cancer development via mitogen-activated protein kinase signaling. Mol Cell Biol 2021; 41(8): e00059-21.
[http://dx.doi.org/10.1128/MCB.00059-21] [PMID: 34031216]
[92]
Esfandyari YB, Doustvandi MA, Amini M, et al. MicroRNA-143 sensitizes cervical cancer cells to cisplatin: A promising anticancer combination therapy. Reprod Sci 2021; 28(7): 2036-49.
[http://dx.doi.org/10.1007/s43032-021-00479-5] [PMID: 33569751]
[93]
Zhang L, Wei Z, Wang Y, Xu F, Cheng Z. Long noncoding RNA ROR1-AS1 enhances STC2-mediated cell growth and autophagy in cervical cancer through miR-670-3p. J Recept Signal Transduct Res 2021; 41(6): 582-92.
[http://dx.doi.org/10.1080/10799893.2020.1836495] [PMID: 33081599]
[94]
Cui X, Wang X, Zhou X, Jia J, Chen H, Zhao W. miR-106a regulates cell proliferation and autophagy by targeting LKB1 in HPV-16–associated cervical cancer. Mol Cancer Res 2020; 18(8): 1129-41.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-1114] [PMID: 32345599]
[95]
Tang Q, Chen Z, Zhao L, Xu H. Circular RNA hsa_circ_0000515 acts as a miR-326 sponge to promote cervical cancer progression through up-regulation of ELK1. Aging (Albany NY) 2019; 11(22): 9982-99.
[http://dx.doi.org/10.18632/aging.102356] [PMID: 31772143]
[96]
Li N, Guo X, Liu L, Wang L, Cheng R. Molecular mechanism of miR-204 regulates proliferation, apoptosis and autophagy of cervical cancer cells by targeting ATF2. Artif Cells Nanomed Biotechnol 2019; 47(1): 2529-35.
[http://dx.doi.org/10.1080/21691401.2019.1628038] [PMID: 31204513]
[97]
Zhang Y, Yang Y, Liu R, Meng Y, Tian G, Cao Q. Downregulation of microRNA 425 5p suppresses cervical cancer tumorigenesis by targeting AIFM1. Exp Ther Med 2019; 17(5): 4032-8.
[http://dx.doi.org/10.3892/etm.2019.7408] [PMID: 30988784]
[98]
Zhou Q, Dong J, Luo R, Zhou X, Wang J, Chen F. MicroRNA-20a regulates cell proliferation, apoptosis and autophagy by targeting thrombospondin 2 in cervical cancer. Eur J Pharmacol 2019; 844: 102-9.
[http://dx.doi.org/10.1016/j.ejphar.2018.11.043] [PMID: 30513279]
[99]
Yang Z, Sun Q, Guo J, et al. GRSF1 -mediated MIR-G-1 promotes malignant behavior and nuclear autophagy by directly upregulating TMED5 and LMNB1 in cervical cancer cells. Autophagy 2019; 15(4): 668-85.
[http://dx.doi.org/10.1080/15548627.2018.1539590] [PMID: 30394198]
[100]
Lu R, Yang Z, Xu G, Yu S. miR-338 modulates proliferation and autophagy by PI3K/AKT/mTOR signaling pathway in cervical cancer. Biomed Pharmacother 2018; 105: 633-44.
[http://dx.doi.org/10.1016/j.biopha.2018.06.024]
[101]
Wang F, Shan S, Huo Y, et al. MiR-155-5p inhibits PDK1 and promotes autophagy via the mTOR pathway in cervical cancer. Int J Biochem Cell Biol 2018; 99: 91-9.
[http://dx.doi.org/10.1016/j.biocel.2018.04.005] [PMID: 29627439]
[102]
Tan D, Zhou C, Han S, Hou X, Kang S, Zhang Y. MicroRNA-378 enhances migration and invasion in cervical cancer by directly targeting autophagy-related protein 12. Mol Med Rep 2018; 17(5): 6319-26.
[http://dx.doi.org/10.3892/mmr.2018.8645] [PMID: 29488616]
[103]
Song L, Liu S, Zhang L, et al. MiR-21 modulates radiosensitivity of cervical cancer through inhibiting autophagy via the PTEN/Akt/HIF-1α feedback loop and the Akt-mTOR signaling pathway. Tumour Biol 2016; 37(9): 12161-8.
[http://dx.doi.org/10.1007/s13277-016-5073-3] [PMID: 27220494]
[104]
Mirzaei S, Zarrabi A, Asnaf SE, et al. The role of microRNA-338-3p in cancer: growth, invasion, chemoresistance, and mediators. Life Sci 2021; 268: 119005.
[http://dx.doi.org/10.1186/s12885-016-2231-3] [PMID: 26975392]
[105]
Cheng Y, Chen G, Hu M, Huang J, Li B, Zhou L, et al. Has-miR-30a regulates autophagic activity in cervical cancer upon hydroxycamptothecin exposure. Biomed Pharmacother 2015; 75: 67-74.
[http://dx.doi.org/10.1016/j.biopha.2015.08.034]
[106]
Huang N, Wu J, Qiu W, et al. MiR-15a and miR-16 induce autophagy and enhance chemosensitivity of Camptothecin. Cancer Biol Ther 2015; 16(6): 941-8.
[http://dx.doi.org/10.1080/15384047.2015.1040963] [PMID: 25945419]
[107]
Wan G, Xie W, Liu Z, et al. Hypoxia-induced MIR155 is a potent autophagy inducer by targeting multiple players in the MTOR pathway. Autophagy 2014; 10(1): 70-9.
[http://dx.doi.org/10.4161/auto.26534] [PMID: 24262949]
[108]
Vogell A, Evans ML. Cancer Screening in Women. Obstet Gynecol Clin North Am 2019; 46(3): 485-99.
[http://dx.doi.org/10.1016/j.ogc.2019.04.007] [PMID: 31378290]
[109]
Lengyel E. Ovarian cancer development and metastasis. Am J Pathol 2010; 177(3): 1053-64.
[http://dx.doi.org/10.2353/ajpath.2010.100105] [PMID: 20651229]
[110]
Brett MR, Brett MR, Jennifer BP, Thomas AS, Jennifer BP, Thomas AS. Epidemiology of ovarian cancer: a review. Cancer Biol Med 2017; 14(1): 9-32.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0084] [PMID: 28443200]
[111]
Davies M, Davey MG, Miller N. The potential of micrornas as clinical biomarkers to aid ovarian cancer diagnosis and treatment. Genes (Basel) 2022; 13(11): 2054.
[http://dx.doi.org/10.3390/genes13112054] [PMID: 36360295]
[112]
Zhan L, Zhang Y, Wang W, et al. Autophagy as an emerging therapy target for ovarian carcinoma. Oncotarget 2016; 7(50): 83476-87.
[http://dx.doi.org/10.18632/oncotarget.13080] [PMID: 27825125]
[113]
Duan G, Song Z, Qi M, et al. Increased autophagy levels mediate cisplatin resistance in cisplatin-resistant cells while also rendering them vulnerable to autophagy induction. BioMed Res Int 2018; 2018: 1-10.
[http://dx.doi.org/10.1155/2018/1736738] [PMID: 30539004]
[114]
Hou G, Bai Y, Jia A, et al. Inhibition of autophagy improves resistance and enhances sensitivity of gastric cancer cells to cisplatin. Can J Physiol Pharmacol 2020; 98(7): 449-58.
[http://dx.doi.org/10.1139/cjpp-2019-0477] [PMID: 32058824]
[115]
Wang L, Liu Y, Li H, et al. miR-4478 sensitizes ovarian cancer cells to irradiation by inhibiting Fus and attenuating autophagy. Mol Ther Nucleic Acids 2021; 23: 1110-9.
[http://dx.doi.org/10.1016/j.omtn.2020.11.024] [PMID: 33664992]
[116]
Zhu H, Gan X, Jiang X, Diao S, Wu H, Hu J. ALKBH5 inhibited autophagy of epithelial ovarian cancer through miR-7 and BCL-2. J Exp Clin Cancer Res 2019; 38(1): 163.
[http://dx.doi.org/10.1186/s13046-019-1159-2] [PMID: 30987661]
[117]
Jia Y, Lin R, Jin H, et al. RETRACTED: MicroRNA-34 suppresses proliferation of human ovarian cancer cells by triggering autophagy and apoptosis and inhibits cell invasion by targeting Notch 1. Biochimie 2019; 160: 193-9.
[http://dx.doi.org/10.1016/j.biochi.2019.03.011] [PMID: 30905732]
[118]
Xia X, Li Z, Li Y, Ye F, Zhou X. LncRNA XIST promotes carboplatin resistance of ovarian cancer through activating autophagy via targeting miR-506-3p/FOXP1 axis. J Gynecol Oncol 2022; 33(6): e81.
[http://dx.doi.org/10.3802/jgo.2022.33.e81] [PMID: 36335987]
[119]
Li H, Lei Y, Li S, Li F, Lei J. MicroRNA-20a-5p inhibits the autophagy and cisplatin resistance in ovarian cancer via regulating DNMT3B-mediated DNA methylation of RBP1. Reprod Toxicol 2022; 109: 93-100.
[http://dx.doi.org/10.1016/j.reprotox.2021.12.011] [PMID: 34990753]
[120]
Cai Y, An B, Yao D, Zhou H, Zhu J. MicroRNA miR-30a inhibits cisplatin resistance in ovarian cancer cells through autophagy. Bioengineered 2021; 12(2): 10713-22.
[http://dx.doi.org/10.1080/21655979.2021.2001989] [PMID: 34747309]
[121]
Wang X, Li X, Lin F, Sun H, Lin Y, Wang Z, et al. The lnc-CTSLP8 upregulates CTSL1 as a competitive endogenous RNA and promotes ovarian cancer metastasis. Journal of experimental & clinical cancer research. CR (East Lansing Mich) 2021; 40(1): 151.
[122]
Wang J, Da C, Su Y, Song R, Bai Z. MKNK2 enhances chemoresistance of ovarian cancer by suppressing autophagy via miR-125b. Biochem Biophys Res Commun 2021; 556: 31-8.
[http://dx.doi.org/10.1016/j.bbrc.2021.02.084] [PMID: 33836345]
[123]
Zhang Z, Zhu H, Hu J. CircRAB11FIP1 promoted autophagy flux of ovarian cancer through DSC1 and miR-129. Cell Death Dis 2021; 12(2): 219.
[http://dx.doi.org/10.1038/s41419-021-03486-1] [PMID: 33637694]
[124]
Yong M, Hu J, Zhu H, Jiang X, Gan X, Hu L. Circ-EEF2 facilitated autophagy via interaction with mir-6881-3p and ANXA2 in EOC. Am J Cancer Res 2020; 10(11): 3737-51.
[PMID: 33294264]
[125]
Cui Z, Liu L, Kwame Amevor F, et al. High expression of miR-204 in chicken atrophic ovaries promotes granulosa cell apoptosis and inhibits autophagy. Front Cell Dev Biol 2020; 8: 580072.
[http://dx.doi.org/10.3389/fcell.2020.580072] [PMID: 33251211]
[126]
Yu Z, Wang Y, Wang B, Zhai J. Metformin affects paclitaxel sensitivity of ovarian cancer cells through autophagy mediated by long noncoding RNASNHG7/miR-3127-5p axis. Cancer Biother Radiopharm 2020.
[PMID: 32522016]
[127]
Gu L, Li Q, Liu H, Lu X, Zhu M. Long noncoding RNA TUG1 promotes autophagy-associated paclitaxel resistance by sponging mir-29b-3p in ovarian cancer cells. OncoTargets Ther 2020; 13: 2007-19.
[http://dx.doi.org/10.2147/OTT.S240434] [PMID: 32189969]
[128]
Yu JL, Gao X. MicroRNA 1301 inhibits cisplatin resistance in human ovarian cancer cells by regulating EMT and autophagy. Eur Rev Med Pharmacol Sci 2020; 24(4): 1688-96.
[PMID: 32141535]
[129]
Gan X, Zhu H, Jiang X, et al. CircMUC16 promotes autophagy of epithelial ovarian cancer via interaction with ATG13 and miR-199a. Mol Cancer 2020; 19(1): 45.
[http://dx.doi.org/10.1186/s12943-020-01163-z] [PMID: 32111227]
[130]
Vescarelli E, Gerini G, Megiorni F, Anastasiadou E, Pontecorvi P, Solito L, et al. MiR-200c sensitizes Olaparib-resistant ovarian cancer cells by targeting Neuropilin 1. J Exp Clin Cancer Res 2020; 39(1): 3.
[131]
Tang J, Zhu J, Ye Y, et al. Inhibition LC3B can increase chemosensitivity of ovarian cancer cells. Cancer Cell Int 2019; 19(1): 199.
[http://dx.doi.org/10.1186/s12935-019-0921-z] [PMID: 31384174]
[132]
Shao Y, Liu X, Meng J, Zhang X, Ma Z, Yang G. MicroRNA-1251-5p promotes carcinogenesis and autophagy via targeting the tumor suppressor TBCC in ovarian cancer cells. Mol Ther 2019; 27(9): 1653-64.
[http://dx.doi.org/10.1016/j.ymthe.2019.06.005] [PMID: 31278033]
[133]
Liao CC, Ho MY, Liang SM, Liang CM. Autophagic degradation of SQSTM1 inhibits ovarian cancer motility by decreasing DICER1 and AGO2 to induce MIRLET7A-3P. Autophagy 2018; 14(12): 2065-82.
[http://dx.doi.org/10.1080/15548627.2018.1501135] [PMID: 30081720]
[134]
Li Y, Gu Y, Tang N, Liu Y, Zhao Z. miR-22-notch signaling pathway is involved in the regulation of the apoptosis and autophagy in human ovarian cancer cells. Biol Pharm Bull 2018; 41(8): 1237-42.
[http://dx.doi.org/10.1248/bpb.b18-00084] [PMID: 30068873]
[135]
Hu J, Zhang L, Mei Z, Jiang Y, Yi Y, Liu L, et al. Interaction of E3 ubiquitin ligase MARCH7 with long noncoding RNA MALAT1 and autophagy-related protein ATG7 promotes autophagy and invasion in ovarian cancer. Cell Physiol Biochem 2018; 47(2): 654-66.
[http://dx.doi.org/10.1159/000490020]
[136]
Shahzad MMK, Felder M, Ludwig K, et al. Trans10,cis12 conjugated linoleic acid inhibits proliferation and migration of ovarian cancer cells by inducing ER stress, autophagy, and modulation of Src. PLoS One 2018; 13(1): e0189524.
[http://dx.doi.org/10.1371/journal.pone.0189524] [PMID: 29324748]
[137]
Cheng Y, Ban R, Liu W, et al. MiRNA-409-3p enhances cisplatin-sensitivity of ovarian cancer cells by blocking the autophagy mediated by Fip200. Oncol Res 2018.
[http://dx.doi.org/10.3727/096504017X15138991620238] [PMID: 29295727]
[138]
Wang Y, Zhang X, Tang W, et al. miR-130a upregulates mTOR pathway by targeting TSC1 and is transactivated by NF-κB in high-grade serous ovarian carcinoma. Cell Death Differ 2017; 24(12): 2089-100.
[http://dx.doi.org/10.1038/cdd.2017.129] [PMID: 28800130]
[139]
Zou J, Liu L, Wang Q, et al. Downregulation of miR-429 contributes to the development of drug resistance in epithelial ovarian cancer by targeting ZEB1. Am J Transl Res 2017; 9(3): 1357-68.
[PMID: 28386361]
[140]
Samarghandian S, Borji A, Hidar Tabasi S. Effects of Cichorium intybus linn on blood glucose, lipid constituents and selected oxidative stress parameters in streptozotocin-induced diabetic rats. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders) 2013; 13(3): 231-6.
[http://dx.doi.org/10.1002/mc.22582] [PMID: 27787915]
[141]
He J, Yu JJ, Xu Q, et al. Downregulation of ATG14 by EGR1-MIR152 sensitizes ovarian cancer cells to cisplatin-induced apoptosis by inhibiting cyto-protective autophagy. Autophagy 2015; 11(2): 373-84.
[http://dx.doi.org/10.1080/15548627.2015.1009781] [PMID: 25650716]
[142]
Dai F, Zhang Y, Chen Y. Involvement of miR-29b signaling in the sensitivity to chemotherapy in patients with ovarian carcinoma. Hum Pathol 2014; 45(6): 1285-93.
[http://dx.doi.org/10.1016/j.humpath.2014.02.008] [PMID: 24767251]
[143]
Song W, Zeng Z, Zhang Y, et al. CircRNF144B/miR-342-3p/FBXL11 axis reduced autophagy and promoted the progression of ovarian cancer by increasing the ubiquitination of Beclin-1. Cell Death Dis 2022; 13(10): 857.
[http://dx.doi.org/10.1038/s41419-022-05286-7] [PMID: 36209140]
[144]
Zhou Y, Wang C, Ding J, Chen Y, Sun Y, Cheng Z. miR-133a targets YES1 to reduce cisplatin resistance in ovarian cancer by regulating cell autophagy. Cancer Cell Int 2022; 22(1): 15.
[http://dx.doi.org/10.1186/s12935-021-02412-x] [PMID: 35012539]
[145]
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[146]
Sorosky JI. Endometrial cancer. Obstet Gynecol 2012; 120(2, Part 1): 383-97.
[http://dx.doi.org/10.1097/AOG.0b013e3182605bf1] [PMID: 22825101]
[147]
Eritja N, Chen BJ, Rodríguez-Barrueco R, et al. Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer. Autophagy 2017; 13(3): 608-24.
[http://dx.doi.org/10.1080/15548627.2016.1271512] [PMID: 28055301]
[148]
Moore K, Brewer MA. Endometrial cancer: Is this a new disease? Am Soc Clin Oncol Educ Book 2017; 37(37): 435-42.
[http://dx.doi.org/10.1200/EDBK_175666] [PMID: 28561715]
[149]
Setiawan VW, Yang HP, Pike MC, et al. Type I and II endometrial cancers: have they different risk factors? J Clin Oncol 2013; 31(20): 2607-18.
[http://dx.doi.org/10.1200/JCO.2012.48.2596] [PMID: 23733771]
[150]
Favier A, Rocher G, Larsen AK, et al. MicroRNA as epigenetic modifiers in endometrial cancer: A systematic review. Cancers (Basel) 2021; 13(5): 1137.
[http://dx.doi.org/10.3390/cancers13051137] [PMID: 33800944]
[151]
Nuñez-Olvera SI, Gallardo-Rincón D, Puente-Rivera J, et al. Autophagy machinery as a promising therapeutic target in endometrial cancer. Front Oncol 2019; 9: 1326.
[http://dx.doi.org/10.3389/fonc.2019.01326] [PMID: 31850214]
[152]
Cai J, Zhang Y, Huang S, et al. MiR-100-5p, miR-199a-3p and miR-199b-5p induce autophagic death of endometrial carcinoma cell through targeting mTOR. Int J Clin Exp Pathol 2017; 10(9): 9262-72.
[PMID: 31966798]
[153]
Wang C, Liu B. miR-101-3p induces autophagy in endometrial carcinoma cells by targeting EZH2. Arch Gynecol Obstet 2018; 297(6): 1539-48.
[http://dx.doi.org/10.1007/s00404-018-4768-7] [PMID: 29691644]
[154]
Ran X, Yang J, Liu C, Zhou P, Xiao L, Zhang K. MiR-218 inhibits HMGB1-mediated autophagy in endometrial carcinoma cells during chemotherapy. Int J Clin Exp Pathol 2015; 8(6): 6617-26.
[PMID: 26261543]
[155]
Zhuo Z, Yu H. miR-205 inhibits cell growth by targeting AKT-mTOR signaling in progesterone-resistant endometrial cancer Ishikawa cells. Oncotarget 2017; 8(17): 28042-51.
[http://dx.doi.org/10.18632/oncotarget.15886] [PMID: 28427207]
[156]
Tong X, Wang X, Wang C, Li L. Elevated levels of serum MiR-152 and miR-24 in uterine sarcoma: potential for inducing autophagy via SIRT1 and deacetylated LC3. Br J Biomed Sci 2018; 75(1): 7-12.
[http://dx.doi.org/10.1080/09674845.2017.1340225] [PMID: 28929922]
[157]
Park Y, Lee K, Kim SW, Lee MW, Kim B, Lee SG. Effects of Induced Exosomes from Endometrial Cancer Cells on Tumor Activity in the Presence of Aurea helianthus Extract. Molecules 2021; 26(8): 2207.
[http://dx.doi.org/10.3390/molecules26082207] [PMID: 33921245]
[158]
Zhang F, Zhang YY, Ma RH, et al. Multi-omics reveals the anticancer mechanism of asparagus saponin-asparanin A on endometrial cancer Ishikawa cells. Food Funct 2021; 12(2): 614-32.
[http://dx.doi.org/10.1039/D0FO02265A] [PMID: 33338094]
[159]
Yang X, Wu X. miRNA expression profile of vulvar squamous cell carcinoma and identification of the oncogenic role of miR-590-5p. Oncol Rep 2016; 35(1): 398-408.
[http://dx.doi.org/10.3892/or.2015.4344] [PMID: 26498065]
[160]
de Melo Maia B, Lavorato-Rocha AM, Rodrigues LS, et al. microRNA portraits in human vulvar carcinoma. Cancer Prev Res (Phila) 2013; 6(11): 1231-41.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0121] [PMID: 24048714]
[161]
Kanekura K, Nishi H, Isaka K, Kuroda M. MicroRNA and gynecologic cancers. J Obstet Gynaecol Res 2016; 42(6): 612-7.
[http://dx.doi.org/10.1111/jog.12995] [PMID: 27098274]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy