Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Regulatory Non-coding RNAs Involved in Oxidative Stress and Neuroinflammation: An Intriguing Crosstalk in Parkinson’s Disease

Author(s): Naser Salari Khish, Pooran Ghiasizadeh, Abolhasan Rasti, Omid Moghimi, Arash Zeynali Zadeh, Alireza Bahiraee* and Reyhane Ebrahimi*

Volume 31, Issue 34, 2024

Published on: 05 October, 2023

Page: [5576 - 5597] Pages: 22

DOI: 10.2174/0929867331666230817102135

Price: $65

Abstract

Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by the accumulation of α-synuclein and the degeneration of dopaminergic neurons in the substantia nigra. Although the molecular bases for PD development are not fully recognized, extensive evidence has suggested that the development of PD is strongly associated with neuroinflammation. It is noteworthy that while neuroinflammation might not be a primary factor in all patients with PD, it seems to be a driving force for disease progression, and therefore, exploring the role of pathways involved in neuroinflammation is of great importance. Besides, the importance of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and competing endogenous RNAs (ceRNAs), has been widely studied with a focus on the pathogenesis of PD. However, there is no comprehensive review regarding the role of neuroinflammation- related ncRNAs as prospective biomarkers and therapeutic targets involved in the pathogenesis of PD, even though the number of studies connecting ncRNAs to neuroinflammatory pathways and oxidative stress has markedly increased in the last few years. Hence, the present narrative review intended to describe the crosstalk between regulatory ncRNAs and neuroinflammatory targets with respect to PD to find and propose novel combining biomarkers or therapeutic targets in clinical settings.

[1]
Surmeier, D.J.; Obeso, J.A.; Halliday, G.M. Selective neuronal vulnerability in Parkinson disease. Nat. Rev. Neurosci., 2017, 18(2), 101-113.
[http://dx.doi.org/10.1038/nrn.2016.178] [PMID: 28104909]
[2]
Jankovic, J.; Tan, E.K. Parkinson’s disease: Etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry, 2020, 91(8), 795-808.
[http://dx.doi.org/10.1136/jnnp-2019-322338] [PMID: 32576618]
[3]
Pajares, M.; I Rojo, A.; Manda, G.; Boscá, L.; Cuadrado, A. Inflammation in Parkinson’s disease: Mechanisms and therapeutic implications. Cells, 2020, 9(7), 1687.
[http://dx.doi.org/10.3390/cells9071687] [PMID: 32674367]
[4]
Blauwendraat, C.; Nalls, M.A.; Singleton, A.B. The genetic architecture of Parkinson’s disease. Lancet Neurol., 2020, 19(2), 170-178.
[http://dx.doi.org/10.1016/S1474-4422(19)30287-X] [PMID: 31521533]
[5]
Klein, C.; Westenberger, A. Genetics of Parkinson’s disease. Cold Spring Harb. Perspect. Med., 2012, 2(1), a008888.
[http://dx.doi.org/10.1101/cshperspect.a008888] [PMID: 22315721]
[6]
Wirdefeldt, K.; Adami, H.O.; Cole, P.; Trichopoulos, D.; Mandel, J. Epidemiology and etiology of Parkinson’s disease: A review of the evidence. Eur. J. Epidemiol., 2011, 26(S1), 1-58.
[http://dx.doi.org/10.1007/s10654-011-9581-6] [PMID: 21626386]
[7]
McGeer, P.L.; Itagaki, S.; Boyes, B.E.; McGeer, E.G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology, 1988, 38(8), 1285-1291.
[http://dx.doi.org/10.1212/WNL.38.8.1285] [PMID: 3399080]
[8]
Frank-Cannon, T.C.; Tran, T.; Ruhn, K.A.; Martinez, T.N.; Hong, J.; Marvin, M.; Hartley, M.; Treviño, I.; O’Brien, D.E.; Casey, B.; Goldberg, M.S.; Tansey, M.G. Parkin deficiency increases vulnerability to inflammation-related nigral degeneration. J. Neurosci., 2008, 28(43), 10825-10834.
[http://dx.doi.org/10.1523/JNEUROSCI.3001-08.2008] [PMID: 18945890]
[9]
Qin, L.; Wu, X.; Block, M.L.; Liu, Y.; Breese, G.R.; Hong, J.S.; Knapp, D.J.; Crews, F.T. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia, 2007, 55(5), 453-462.
[http://dx.doi.org/10.1002/glia.20467] [PMID: 17203472]
[10]
Ramsey, C.P.; Tansey, M.G. A survey from 2012 of evidence for the role of neuroinflammation in neurotoxin animal models of Parkinson’s disease and potential molecular targets. Exp. Neurol., 2014, 256, 126-132.
[http://dx.doi.org/10.1016/j.expneurol.2013.05.014] [PMID: 23726958]
[11]
Stolzenberg, E.; Berry, D.; Yang, D.; Lee, E.Y.; Kroemer, A.; Kaufman, S.; Wong, G.C.L.; Oppenheim, J.J.; Sen, S.; Fishbein, T.; Bax, A.; Harris, B.; Barbut, D.; Zasloff, M.A. A role for neuronal alpha-synuclein in gastrointestinal immunity. J. Innate Immun., 2017, 9(5), 456-463.
[http://dx.doi.org/10.1159/000477990] [PMID: 28651250]
[12]
Gao, H.M.; Kotzbauer, P.T.; Uryu, K.; Leight, S.; Trojanowski, J.Q.; Lee, V.M.Y. Neuroinflammation and oxidation/nitration of α-synuclein linked to dopaminergic neurodegeneration. J. Neurosci., 2008, 28(30), 7687-7698.
[http://dx.doi.org/10.1523/JNEUROSCI.0143-07.2008] [PMID: 18650345]
[13]
He, Q.; Yu, W.; Wu, J.; Chen, C.; Lou, Z.; Zhang, Q.; Zhao, J.; Wang, J.; Xiao, B. Intranasal LPS-mediated Parkinson’s model challenges the pathogenesis of nasal cavity and environmental toxins. PLoS. One., 2013, 8(11), e78418.
[http://dx.doi.org/10.1371/journal.pone.0078418] [PMID: 24250796]
[14]
Witoelar, A.; Jansen, I.E.; Wang, Y.; Desikan, R.S.; Gibbs, J.R.; Blauwendraat, C.; Thompson, W.K.; Hernandez, D.G.; Djurovic, S.; Schork, A.J.; Bettella, F.; Ellinghaus, D.; Franke, A.; Lie, B.A.; McEvoy, L.K.; Karlsen, T.H.; Lesage, S.; Morris, H.R.; Brice, A.; Wood, N.W.; Heutink, P.; Hardy, J.; Singleton, A.B.; Dale, A.M.; Gasser, T.; Andreassen, O.A.; Sharma, M. Genome-wide pleiotropy between Parkinson disease and autoimmune diseases. JAMA Neurol., 2017, 74(7), 780-792.
[http://dx.doi.org/10.1001/jamaneurol.2017.0469] [PMID: 28586827]
[15]
Stojkovska, I.; Wagner, B.M.; Morrison, B.E. Parkinson’s disease and enhanced inflammatory response. Exp. Biol. Med., 2015, 240(11), 1387-1395.
[http://dx.doi.org/10.1177/1535370215576313] [PMID: 25769314]
[16]
Chen, Z.; Trapp, B.D. Microglia and neuroprotection. J. Neurochem., 2016, 136(S1), 10-17.
[http://dx.doi.org/10.1111/jnc.13062] [PMID: 25693054]
[17]
Liu, T.W.; Chen, C.M.; Chang, K.H. Biomarker of neuroinflammation in Parkinson’s disease. Int. J. Mol. Sci., 2022, 23(8), 4148.
[http://dx.doi.org/10.3390/ijms23084148] [PMID: 35456966]
[18]
Watson, C.N.; Belli, A.; Di Pietro, V. Small non-coding RNAs: New class of biomarkers and potential therapeutic targets in neurodegenerative disease. Front. Genet., 2019, 10, 364.
[http://dx.doi.org/10.3389/fgene.2019.00364] [PMID: 31080456]
[19]
Ebrahimi, R.; Golestani, A. The emerging role of noncoding RNAs in neuroinflammation: Implications in pathogenesis and therapeutic approaches. J. Cell. Physiol., 2022, 237(2), 1206-1224.
[http://dx.doi.org/10.1002/jcp.30624] [PMID: 34724212]
[20]
Moayedi, K.; Orandi, S.; Ebrahimi, R.; Tanhapour, M.; Moradi, M.; Abbastabar, M.; Golestani, A. A novel approach to type 3 diabetes mechanism: The interplay between noncoding RNAs and insulin signaling pathway in Alzheimer’s disease. J. Cell. Physiol., 2022, 237(7), 2838-2861.
[http://dx.doi.org/10.1002/jcp.30779] [PMID: 35580144]
[21]
Bahiraee, A.; Ebrahimi, R. A noble pathological role for alpha-synuclein in triggering neurodegeneration of Parkinson’s disease. Mov. Disord., 2018, 33(3), 404.
[http://dx.doi.org/10.1002/mds.27306] [PMID: 29418023]
[22]
Stoker, T.B.; Greenland, J.C. Parkinson’s Disease: Pathogenesis and Clinical Aspects; Codon Publications: Brisbane (AU), 2018.
[23]
Kuo, M.C.; Liu, S.C.H.; Hsu, Y.F.; Wu, R.M. The role of noncoding RNAs in Parkinson’s disease: Biomarkers and associations with pathogenic pathways. J. Biomed. Sci., 2021, 28(1), 78.
[http://dx.doi.org/10.1186/s12929-021-00775-x] [PMID: 34794432]
[24]
Tehrani, S.S.; Ebrahimi, R.; Al-E-Ahmad, A.; Panahi, G.; Meshkani, R.; Younesi, S.; Saadat, P.; Parsian, H. Competing endogenous RNAs (CeRNAs): Novel network in neurological disorders. Curr. Med. Chem., 2021, 28(29), 5983-6010.
[http://dx.doi.org/10.2174/1875533XMTEy1NTAiz] [PMID: 33334276]
[25]
Drepper, C.; Sendtner, M. A new postal code for dendritic mRNA transport in neurons. EMBO Rep., 2011, 12(7), 614-616.
[http://dx.doi.org/10.1038/embor.2011.119] [PMID: 21681203]
[26]
Li, S.; Bi, G.; Han, S.; Huang, R. MicroRNAs play a role in Parkinson’s Disease by regulating microglia function: From pathogenetic involvement to therapeutic potential. Front. Mol. Neurosci., 2022, 14, 744942.
[http://dx.doi.org/10.3389/fnmol.2021.744942] [PMID: 35126050]
[27]
Konovalova, J.; Gerasymchuk, D.; Parkkinen, I.; Chmielarz, P.; Domanskyi, A. Interplay between MicroRNAs and oxidative stress in neurodegenerative diseases. Int. J. Mol. Sci., 2019, 20(23), 6055.
[http://dx.doi.org/10.3390/ijms20236055] [PMID: 31801298]
[28]
Aghabozorgi, A.S.; Ahangari, N.; Eftekhaari, T.E.; Torbati, P.N.; Bahiraee, A.; Ebrahimi, R.; Pasdar, A. Circulating exosomal miRNAs in cardiovascular disease pathogenesis: New emerging hopes. J. Cell. Physiol., 2019, 234(12), 21796-21809.
[http://dx.doi.org/10.1002/jcp.28942] [PMID: 31273798]
[29]
Abbastabar, M.; Sarfi, M.; Golestani, A.; Khalili, E. lncRNA involvement in hepatocellular carcinoma metastasis and prognosis. EXCLI J., 2018, 17, 900-913.
[PMID: 30564069]
[30]
Ebrahimi, R.; Toolabi, K.; Jannat Ali Pour, N.; Mohassel Azadi, S.; Bahiraee, A.; Zamani-Garmsiri, F.; Emamgholipour, S. Adipose tissue gene expression of long non-coding RNAs; MALAT1, TUG1 in obesity: is it associated with metabolic profile and lipid homeostasis-related genes expression? Diabetol. Metab. Syndr., 2020, 12(1), 36.
[http://dx.doi.org/10.1186/s13098-020-00544-0] [PMID: 32368256]
[31]
Salta, E.; De Strooper, B. Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurol., 2012, 11(2), 189-200.
[http://dx.doi.org/10.1016/S1474-4422(11)70286-1] [PMID: 22265214]
[32]
Lyu, Y.; Bai, L.; Qin, C. Long noncoding RNAs in neurodevelopment and Parkinson’s disease. Animal Model. Exp. Med., 2019, 2(4), 239-251.
[http://dx.doi.org/10.1002/ame2.12093] [PMID: 31942556]
[33]
Jiang, H.; Zhang, Y.; Yue, J.; Shi, Y.; Xiao, B.; Xiao, W.; Luo, Z. Non-coding RNAs: The neuroinflammatory regulators in neurodegenerative diseases. Front. Neurol., 2022, 13, 929290.
[http://dx.doi.org/10.3389/fneur.2022.929290] [PMID: 36034298]
[34]
Manna, I; Quattrone, A; De Benedittis, S; Iaccino, E; Quattrone, A. Roles of non-coding RNAs as novel diagnostic biomarkers in Parkinson's disease. J. Parkinsons Dis., 2021, 11(4), 1475-1489.
[http://dx.doi.org/10.3233/JPD-212726]
[35]
Nuzziello, N.; Liguori, M. The MicroRNA centrism in the orchestration of neuroinflammation in neurodegenerative diseases. Cells, 2019, 8(10), 1193.
[http://dx.doi.org/10.3390/cells8101193] [PMID: 31581723]
[36]
Dias, V.; Junn, E.; Mouradian, M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis., 2013, 3(4), 461-491.
[http://dx.doi.org/10.3233/JPD-130230] [PMID: 24252804]
[37]
Golestani, A.; Rastegar, R.; Shariftabrizi, A.; Khaghani, S.; Payabvash, S.M.; Salmasi, A.H.; Dehpour, A.R.; Pasalar, P. Paradoxical dose- and time-dependent regulation of superoxide dismutase and antioxidant capacity by vitamin E in rat. Clin. Chim. Acta, 2006, 365(1-2), 153-159.
[http://dx.doi.org/10.1016/j.cca.2005.08.008] [PMID: 16183047]
[38]
Zhang, S.; Wang, R.; Wang, G. Impact of dopamine oxidation on dopaminergic neurodegeneration. ACS Chem. Neurosci., 2019, 10(2), 945-953.
[http://dx.doi.org/10.1021/acschemneuro.8b00454] [PMID: 30592597]
[39]
Lohr, K.M.; Miller, G.W. VMAT2 and Parkinson’s disease: Harnessing the dopamine vesicle. Expert Rev. Neurother., 2014, 14(10), 1115-1117.
[http://dx.doi.org/10.1586/14737175.2014.960399] [PMID: 25220836]
[40]
Hwang, D.Y.; Hong, S.; Jeong, J.W.; Choi, S.; Kim, H.; Kim, J.; Kim, K.S. Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons. J. Neurochem., 2009, 111(5), 1202-1212.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06404.x] [PMID: 19780901]
[41]
Li, Y.; Li, C.; Chen, Z.; He, J.; Tao, Z.; Yin, Z.Q. A MicroRNA, mir133b, suppresses melanopsin expression mediated by failure dopaminergic amacrine cells in RCS rats. Cell. Signal., 2012, 24(3), 685-698.
[http://dx.doi.org/10.1016/j.cellsig.2011.10.017] [PMID: 22101014]
[42]
Caudle, W.M.; Richardson, J.R.; Wang, M.Z.; Taylor, T.N.; Guillot, T.S.; McCormack, A.L.; Colebrooke, R.E.; Di Monte, D.A.; Emson, P.C.; Miller, G.W. Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J. Neurosci., 2007, 27(30), 8138-8148.
[http://dx.doi.org/10.1523/JNEUROSCI.0319-07.2007] [PMID: 17652604]
[43]
Kim, J.; Inoue, K.; Ishii, J.; Vanti, W.B.; Voronov, S.V.; Murchison, E.; Hannon, G.; Abeliovich, A. A MicroRNA feedback circuit in midbrain dopamine neurons. Science, 2007, 317(5842), 1220-1224.
[http://dx.doi.org/10.1126/science.1140481] [PMID: 17761882]
[44]
Jia, X.; Wang, F.; Han, Y.; Geng, X.; Li, M.; Shi, Y.; Lu, L.; Chen, Y. miR-137 and miR-491 negatively regulate dopamine transporter expression and function in neural cells. Neurosci. Bull., 2016, 32(6), 512-522.
[http://dx.doi.org/10.1007/s12264-016-0061-6] [PMID: 27628529]
[45]
Choi, J.; Sullards, M.C.; Olzmann, J.A.; Rees, H.D.; Weintraub, S.T.; Bostwick, D.E.; Gearing, M.; Levey, A.I.; Chin, L.S.; Li, L. Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J. Biol. Chem., 2006, 281(16), 10816-10824.
[http://dx.doi.org/10.1074/jbc.M509079200] [PMID: 16517609]
[46]
Hayashi, T.; Ishimori, C.; Takahashi-Niki, K.; Taira, T.; Kim, Y.; Maita, H.; Maita, C.; Ariga, H.; Iguchi-Ariga, S.M.M. DJ-1 binds to mitochondrial complex I and maintains its activity. Biochem. Biophys. Res. Commun., 2009, 390(3), 667-672.
[http://dx.doi.org/10.1016/j.bbrc.2009.10.025] [PMID: 19822128]
[47]
Ariga, H.; Takahashi-Niki, K.; Kato, I.; Maita, H.; Niki, T.; Iguchi-Ariga, S.M. Neuroprotective function of DJ-1 in Parkinson’s disease. Oxid. Med. Cell Longev., 2013, 2013, 683920.
[48]
Xiong, R.; Wang, Z.; Zhao, Z.; Li, H.; Chen, W.; Zhang, B.; Wang, L.; Wu, L.; Li, W.; Ding, J.; Chen, S. MicroRNA-494 reduces DJ-1 expression and exacerbates neurodegeneration. Neurobiol. Aging, 2014, 35(3), 705-714.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.09.027] [PMID: 24269020]
[49]
Oh, S.E.; Park, H.J.; He, L.; Skibiel, C.; Junn, E.; Mouradian, M.M. The Parkinson’s disease gene product DJ-1 modulates miR-221 to promote neuronal survival against oxidative stress. Redox Biol., 2018, 19, 62-73.
[http://dx.doi.org/10.1016/j.redox.2018.07.021] [PMID: 30107296]
[50]
Chen, Y.; Gao, C.; Sun, Q.; Pan, H.; Huang, P.; Ding, J.; Chen, S. MicroRNA-4639 is a regulator of DJ-1 expression and a potential early diagnostic marker for Parkinson’s disease. Front. Aging Neurosci., 2017, 9, 232.
[http://dx.doi.org/10.3389/fnagi.2017.00232] [PMID: 28785216]
[51]
Miñones-Moyano, E.; Porta, S.; Escaramís, G.; Rabionet, R.; Iraola, S.; Kagerbauer, B.; Espinosa-Parrilla, Y.; Ferrer, I.; Estivill, X.; Martí, E. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum. Mol. Genet., 2011, 20(15), 3067-3078.
[http://dx.doi.org/10.1093/hmg/ddr210] [PMID: 21558425]
[52]
Barodia, S.K.; Creed, R.B.; Goldberg, M.S. Parkin and PINK1 functions in oxidative stress and neurodegeneration. Brain Res. Bull., 2017, 133, 51-59.
[http://dx.doi.org/10.1016/j.brainresbull.2016.12.004] [PMID: 28017782]
[53]
Wang, H.L.; Chou, A.H.; Wu, A.S.; Chen, S.Y.; Weng, Y.H.; Kao, Y.C.; Yeh, T.H.; Chu, P.J.; Lu, C.S. PARK6 PINK1 mutants are defective in maintaining mitochondrial membrane potential and inhibiting ROS formation of substantia nigra dopaminergic neurons. Biochim. Biophys. Acta Mol. Basis Dis., 2011, 1812(6), 674-684.
[http://dx.doi.org/10.1016/j.bbadis.2011.03.007] [PMID: 21421046]
[54]
Wood-Kaczmar, A.; Gandhi, S.; Yao, Z.; Abramov, A.S.Y.; Miljan, E.A.; Keen, G.; Stanyer, L.; Hargreaves, I.; Klupsch, K.; Deas, E.; Downward, J.; Mansfield, L.; Jat, P.; Taylor, J.; Heales, S.; Duchen, M.R.; Latchman, D.; Tabrizi, S.J.; Wood, N.W. PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS. One., 2008, 3(6), e2455.
[http://dx.doi.org/10.1371/journal.pone.0002455] [PMID: 18560593]
[55]
Kim, J.; Fiesel, F.C.; Belmonte, K.C.; Hudec, R.; Wang, W.X.; Kim, C.; Nelson, P.T.; Springer, W.; Kim, J. miR-27a and miR-27b regulate autophagic clearance of damaged mitochondria by targeting PTEN-induced putative kinase 1 (PINK1). Mol. Neurodegener., 2016, 11(1), 55.
[http://dx.doi.org/10.1186/s13024-016-0121-4] [PMID: 27456084]
[56]
Hajiani, M.; Golestani, A.; Shariftabrizi, A.; Rastegar, R.; Payabvash, S.; Hassanzadeh Salmasi, A.; Reza Dehpour, A.; Pasalar, P. Dose-dependent modulation of systemic lipid peroxidation and activity of anti-oxidant enzymes by vitamin E in the rat. Redox Rep., 2008, 13(2), 60-66.
[http://dx.doi.org/10.1179/135100008X259114] [PMID: 18339248]
[57]
Kabaria, S.; Choi, D.C.; Chaudhuri, A.D.; Jain, M.R.; Li, H.; Junn, E. MicroRNA-7 activates Nrf2 pathway by targeting Keap1 expression. Free Radic. Biol. Med., 2015, 89, 548-556.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.09.010] [PMID: 26453926]
[58]
Narasimhan, M.; Patel, D.; Vedpathak, D.; Rathinam, M.; Henderson, G.; Mahimainathan, L. Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronal, SH-SY5Y cells. PLoS. One., 2012, 7(12), e51111.
[http://dx.doi.org/10.1371/journal.pone.0051111] [PMID: 23236440]
[59]
Cressatti, M.; Song, W.; Turk, A.Z.; Garabed, L.R.; Benchaya, J.A.; Galindez, C.; Liberman, A.; Schipper, H.M. Glial HMOX1 expression promotes central and peripheral α-synuclein dysregulation and pathogenicity in parkinsonian mice. Glia., 2019, 67(9), 1730-1744.
[PMID: 31180611]
[60]
Wang, J.; Le, T.; Wei, R.; Jiao, Y. Knockdown of JMJD1C, a target gene of hsa-miR-590-3p, inhibits mitochondrial dysfunction and oxidative stress in MPP+-treated MES23.5 and SH-SY5Y cells. Cell. Mol. Biol., 2016, 62(3), 39-45.
[PMID: 27064872]
[61]
Farrer, M.J. Genetics of Parkinson disease: Paradigm shifts and future prospects. Nat. Rev. Genet., 2006, 7(4), 306-318.
[http://dx.doi.org/10.1038/nrg1831] [PMID: 16543934]
[62]
Thome, A.D.; Harms, A.S.; Volpicelli-Daley, L.A.; Standaert, D.G. microRNA-155 regulates alpha-synuclein-induced inflammatory responses in models of Parkinson disease. J. Neurosci., 2016, 36(8), 2383-2390.
[http://dx.doi.org/10.1523/JNEUROSCI.3900-15.2016] [PMID: 26911687]
[63]
Recasens, A.; Perier, C.; Sue, C.M. Role of microRNAs in the regulation of α-synuclein expression: A systematic review. Front. Mol. Neurosci., 2016, 9, 128.
[http://dx.doi.org/10.3389/fnmol.2016.00128] [PMID: 27917109]
[64]
Su, Q.; Chen, N.; Tang, J.; Wang, J.; Chou, W.C.; Zheng, F.; Shao, W.; Yu, G.; Cai, P.; Guo, Z.; He, M.; Li, H.; Wu, S. Paraquat-induced oxidative stress regulates N6-methyladenosine (m6A) modification of long noncoding RNAs in Neuro-2a cells. Ecotoxicol. Environ. Saf., 2022, 237, 113503.
[http://dx.doi.org/10.1016/j.ecoenv.2022.113503] [PMID: 35453019]
[65]
Simchovitz, A.; Hanan, M.; Yayon, N.; Lee, S.; Bennett, E.R.; Greenberg, D.S.; Kadener, S.; Soreq, H. A lncRNA survey finds increases in neuroprotective LINC-PINT in Parkinson’s disease Substantia nigra. Aging. Cell., 2020, 19(3), e13115.
[http://dx.doi.org/10.1111/acel.13115] [PMID: 32080970]
[66]
Simchovitz, A.; Hanan, M.; Niederhoffer, N.; Madrer, N.; Yayon, N.; Bennett, E.R.; Greenberg, D.S.; Kadener, S.; Soreq, H. NEAT1 is overexpressed in Parkinson’s disease substantia nigra and confers drug-inducible neuroprotection from oxidative stress. FASEB J., 2019, 33(10), 11223-11234.
[http://dx.doi.org/10.1096/fj.201900830R] [PMID: 31311324]
[67]
Zhou, S.; Zhang, D.; Guo, J.; Chen, Z.; Chen, Y.; Zhang, J. Deficiency of NEAT1 prevented MPP+-induced inflammatory response, oxidative stress and apoptosis in dopaminergic SK-N-SH neuroblastoma cells via miR-1277-5p/ARHGAP26 axis. Brain Res., 2021, 1750, 147156.
[http://dx.doi.org/10.1016/j.brainres.2020.147156] [PMID: 33069733]
[68]
Meng, C.; Gao, J.; Ma, Q.; Sun, Q.; Qiao, T. LINC00943 knockdown attenuates MPP+-induced neuronal damage via miR-15b-5p/RAB3IP axis in SK-N-SH cells. Neurol. Res., 2021, 43(3), 181-190.
[http://dx.doi.org/10.1080/01616412.2020.1834290] [PMID: 33208053]
[69]
Lang, Y.; Zhang, H.; Yu, H.; Li, Y.; Liu, X.; Li, M. Long non-coding RNA myocardial infarction-associated transcript promotes 1-Methyl-4-phenylpyridinium ion-induced neuronal inflammation and oxidative stress in Parkinson’s disease through regulating microRNA-221-3p/transforming growth factor/nuclear factor E2-related factor 2 axis. Bioengineered, 2022, 13(1), 930-940.
[http://dx.doi.org/10.1080/21655979.2021.2015527] [PMID: 34967706]
[70]
Zhou, S.; Zhang, D.; Guo, J.; Chen, Z.; Chen, Y.; Zhang, J. Long non-coding RNA NORAD functions as a MICRORNA-204-5P sponge to repress the progression of Parkinson’s disease in vitro by increasing the solute carrier family 5 member 3 expression. IUBMB. Life., 2020, 72(9), 2045-2055.
[http://dx.doi.org/10.1002/iub.2344] [PMID: 32687247]
[71]
Ding, X.M.; Zhao, L.J.; Qiao, H.Y.; Wu, S.L.; Wang, X.H. Long non-coding RNA-p21 regulates MPP+-induced neuronal injury by targeting miR-625 and derepressing TRPM2 in SH-SY5Y cells. Chem. Biol. Interact., 2019, 307, 73-81.
[http://dx.doi.org/10.1016/j.cbi.2019.04.017] [PMID: 31004593]
[72]
Li, Y.; Fang, J.; Zhou, Z.; Zhou, Q.; Sun, S.; Jin, Z.; Xi, Z.; Wei, J. Downregulation of lncRNA BACE1-AS improves dopamine-dependent oxidative stress in rats with Parkinson’s disease by upregulating microRNA-34b-5p and downregulating BACE1. Cell Cycle, 2020, 19(10), 1158-1171.
[http://dx.doi.org/10.1080/15384101.2020.1749447] [PMID: 32308102]
[73]
Yan, L.; Li, L.; Lei, J. Long noncoding RNA small nucleolar RNA host gene 12/microRNA-138-5p/nuclear factor I/B regulates neuronal apoptosis, inflammatory response, and oxidative stress in Parkinson’s disease. Bioengineered., 2021, 12(2), 12867-12879.
[http://dx.doi.org/10.1080/21655979.2021.2005928] [PMID: 34783303]
[74]
Guo, Y.; Liu, Y.; Wang, H.; Liu, P. Long noncoding RNA SRY-box transcription factor 2 overlapping transcript participates in Parkinson’s disease by regulating the microRNA-942-5p/nuclear apoptosis-inducing factor 1 axis. Bioengineered., 2021, 12(1), 8570-8582.
[http://dx.doi.org/10.1080/21655979.2021.1987126] [PMID: 34607512]
[75]
Jin, M.; Yang, F.; Yang, I.; Yin, Y.; Luo, J.J.; Wang, H.; Yang, X.F. Uric acid, hyperuricemia and vascular diseases. Front. Biosci., 2012, 17(1), 656-669.
[http://dx.doi.org/10.2741/3950] [PMID: 22201767]
[76]
Xu, C.; Bailly-Maitre, B.; Reed, J.C. Endoplasmic reticulum stress: Cell life and death decisions. J. Clin. Invest., 2005, 115(10), 2656-2664.
[http://dx.doi.org/10.1172/JCI26373] [PMID: 16200199]
[77]
Zhang, S.X.; Sanders, E.; Fliesler, S.J.; Wang, J.J. Endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration. Exp. Eye Res., 2014, 125, 30-40.
[http://dx.doi.org/10.1016/j.exer.2014.04.015] [PMID: 24792589]
[78]
Zhang, K.; Kaufman, R.J. From endoplasmic-reticulum stress to the inflammatory response. Nature, 2008, 454(7203), 455-462.
[http://dx.doi.org/10.1038/nature07203] [PMID: 18650916]
[79]
Xiang, C.; Wang, Y.; Zhang, H.; Han, F. The role of endoplasmic reticulum stress in neurodegenerative disease. Apoptosis, 2017, 22(1), 1-26.
[http://dx.doi.org/10.1007/s10495-016-1296-4] [PMID: 27815720]
[80]
Jiang, M.; Yun, Q.; Shi, F.; Niu, G.; Gao, Y.; Xie, S.; Yu, S. Downregulation of miR-384-5p attenuates rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through inhibiting endoplasmic reticulum stress. Am. J. Physiol. Cell Physiol., 2016, 310(9), C755-C763.
[http://dx.doi.org/10.1152/ajpcell.00226.2015] [PMID: 26864693]
[81]
Ge, B.; Li, S.; Li, F. Astragaloside-IV regulates endoplasmic reticulum stress-mediated neuronal apoptosis in a murine model of Parkinson’s disease via the lincRNA-p21/CHOP pathway. Exp. Mol. Pathol., 2020, 115, 104478.
[http://dx.doi.org/10.1016/j.yexmp.2020.104478] [PMID: 32511947]
[82]
Erta, M.; Quintana, A.; Hidalgo, J. Interleukin-6, a major cytokine in the central nervous system. Int. J. Biol. Sci., 2012, 8(9), 1254-1266.
[http://dx.doi.org/10.7150/ijbs.4679] [PMID: 23136554]
[83]
Bahiraee, A.; Ebrahimi, R.; Halabian, R.; Aghabozorgi, A.S.; Amani, J. The role of inflammation and its related microRNAs in breast cancer: A narrative review. J. Cell. Physiol., 2019, 234(11), 19480-19493.
[http://dx.doi.org/10.1002/jcp.28742] [PMID: 31025369]
[84]
Mameli, G.; Arru, G.; Caggiu, E.; Niegowska, M.; Leoni, S.; Madeddu, G.; Babudieri, S.; Sechi, G.P.; Sechi, L.A. Natalizumab therapy modulates miR-155, miR-26a and proinflammatory cytokine expression in MS patients. PLoS One, 2016, 11(6), e0157153.
[http://dx.doi.org/10.1371/journal.pone.0157153] [PMID: 27310932]
[85]
Li, B.; Wang, X.; Choi, I.Y.; Wang, Y.C.; Liu, S.; Pham, A.T.; Moon, H.; Smith, D.J.; Rao, D.S.; Boldin, M.P.; Yang, L. miR-146a modulates autoreactive Th17 cell differentiation and regulates organ-specific autoimmunity. J. Clin. Invest., 2017, 127(10), 3702-3716.
[http://dx.doi.org/10.1172/JCI94012] [PMID: 28872459]
[86]
Wu, D.; Cerutti, C.; Lopez-Ramirez, M.A.; Pryce, G.; King-Robson, J.; Simpson, J.E.; van der Pol, S.M.A.; Hirst, M.C.; de Vries, H.E.; Sharrack, B.; Baker, D.; Male, D.K.; Michael, G.J.; Romero, I.A. Brain endothelial miR-146a negatively modulates T-cell adhesion through repressing multiple targets to inhibit NF-κB activation. J. Cereb. Blood Flow Metab., 2015, 35(3), 412-423.
[http://dx.doi.org/10.1038/jcbfm.2014.207] [PMID: 25515214]
[87]
Lian, H.; Wang, B.; Lu, Q.; Chen, B.; Yang, H. LINC00943 knockdown exerts neuroprotective effects in Parkinson’s disease through regulates CXCL12 expression by sponging miR-7-5p. Genes Genomics, 2021, 43(7), 797-805.
[http://dx.doi.org/10.1007/s13258-021-01084-1] [PMID: 33886117]
[88]
Deng, M.; Du, G.; Zhao, J.; Du, X. miR-146a negatively regulates the induction of proinflammatory cytokines in response to Japanese encephalitis virus infection in microglial cells. Arch. Virol., 2017, 162(6), 1495-1505.
[http://dx.doi.org/10.1007/s00705-017-3226-3] [PMID: 28190197]
[89]
Hofmann, K.W.; Schuh, A.F.S.; Saute, J.; Townsend, R.; Fricke, D.; Leke, R.; Souza, D.O.; Portela, L.V.; Chaves, M.L.F.; Rieder, C.R.M. Interleukin-6 serum levels in patients with Parkinson’s disease. Neurochem. Res., 2009, 34(8), 1401-1404.
[http://dx.doi.org/10.1007/s11064-009-9921-z] [PMID: 19214748]
[90]
Sébire, G.; Emilie, D.; Wallon, C.; Héry, C.; Devergne, O.; Delfraissy, J.F.; Galanaud, P.; Tardieu, M. In vitro production of IL-6, IL-1 beta, and tumor necrosis factor-alpha by human embryonic microglial and neural cells. J. Immunol., 1993, 150(4), 1517-1523.
[http://dx.doi.org/10.4049/jimmunol.150.4.1517] [PMID: 8432992]
[91]
Song, Y.; Liu, Y.; Chen, X. MiR-212 attenuates MPP+-induced neuronal damage by targeting KLF4 in SH-SY5Y cells. Yonsei Med. J., 2018, 59(3), 416-424.
[http://dx.doi.org/10.3349/ymj.2018.59.3.416] [PMID: 29611404]
[92]
He, Q; Wang, Q; Yuan, C; Wang, Y. Downregulation of miR-7116-5p in microglia by MPP(+) sensitizes TNF-α production to induce dopaminergic neuron damage. Glia., 2017, 65(8), 1251-1263.
[93]
Ren, Y.; Li, H.; Xie, W.; Wei, N.; Liu, M. MicroRNA-195 triggers neuroinflammation in Parkinson’s disease in a Rho-associated kinase 1-dependent manner. Mol. Med. Rep., 2019, 19(6), 5153-5161.
[http://dx.doi.org/10.3892/mmr.2019.10176] [PMID: 31059087]
[94]
Cheng, J; Duan, Y; Zhang, F; Shi, J; Li, H; Wang, F The role of lncRNA TUG1 in the parkinson disease and its effect on microglial inflammatory response. Neuromolecular Med., 2021, 23(2), 327-334.
[http://dx.doi.org/10.1007/s12017-020-08626-y]
[95]
Ma, X.; Wang, Y.; Yin, H.; Hua, L.; Zhang, X.; Xiao, J.; Yuan, Q.; Wang, S.; Liu, Y.; Zhang, S.; Wang, Y. Down-regulated long non-coding RNA RMST ameliorates dopaminergic neuron damage in Parkinson’s disease rats via regulation of TLR/NF-κB signaling pathway. Brain Res. Bull., 2021, 174, 22-30.
[http://dx.doi.org/10.1016/j.brainresbull.2021.04.026] [PMID: 33933526]
[96]
Xu, W.; Zhang, L.; Geng, Y.; Liu, Y.; Zhang, N. Long noncoding RNA GAS5 promotes microglial inflammatory response in Parkinson’s disease by regulating NLRP3 pathway through sponging miR-223-3p. Int. Immunopharmacol., 2020, 85, 106614.
[http://dx.doi.org/10.1016/j.intimp.2020.106614] [PMID: 32470877]
[97]
Wang, H.; Wang, X.; Zhang, Y.; Zhao, J. LncRNA SNHG1 promotes neuronal injury in Parkinson’s disease cell model by miR-181a-5p/CXCL12 axis. J. Mol. Histol., 2021, 52(2), 153-163.
[http://dx.doi.org/10.1007/s10735-020-09931-3] [PMID: 33389428]
[98]
Han, Y.; Kang, C.; Kang, M.; Quan, W.; Gao, H.; Zhong, Z. RETRACTED: Long non-coding RNA Mirt2 prevents TNF-α-triggered inflammation via the repression of microRNA-101. Int. Immunopharmacol., 2019, 76, 105878.
[http://dx.doi.org/10.1016/j.intimp.2019.105878] [PMID: 31513985]
[99]
Zhao, Y; Xie, Y; Yao, WY; Wang, YY; Song, N Long non-coding RNA Mirt2 prevents TNF-α-triggered inflammation via the repression of microRNA-101. Int. Immunopharmacol., 2022, 76, 105878.
[100]
Wu, Q.; Ye, X.; Xiong, Y.; Zhu, H.; Miao, J.; Zhang, W.; Wan, J. The protective role of microRNA-200c in Alzheimer’s disease pathologies is induced by beta amyloid-triggered endoplasmic reticulum stress. Front. Mol. Neurosci., 2016, 9, 140.
[http://dx.doi.org/10.3389/fnmol.2016.00140] [PMID: 28008308]
[101]
Li, H.; Yu, L.; Li, M.; Chen, X.; Tian, Q.; Jiang, Y.; Li, N. MicroRNA-150 serves as a diagnostic biomarker and is involved in the inflammatory pathogenesis of Parkinson’s disease. Mol. Genet. Genomic Med., 2020, 8(4), e1189.
[http://dx.doi.org/10.1002/mgg3.1189] [PMID: 32077254]
[102]
Emamgholipour, S.; Ebrahimi, R.; Bahiraee, A.; Niazpour, F.; Meshkani, R. Acetylation and insulin resistance: A focus on metabolic and mitogenic cascades of insulin signaling. Crit. Rev. Clin. Lab. Sci., 2020, 57(3), 196-214.
[http://dx.doi.org/10.1080/10408363.2019.1699498] [PMID: 31894999]
[103]
Ebrahimi, R.; Bahiraee, A.; Niazpour, F.; Emamgholipour, S.; Meshkani, R. The role of microRNAs in the regulation of insulin signaling pathway with respect to metabolic and mitogenic cascades: A review. J. Cell. Biochem., 2019, 120(12), 19290-19309.
[http://dx.doi.org/10.1002/jcb.29299] [PMID: 31364207]
[104]
Sánchez-Alegría, K.; Flores-León, M.; Avila-Muñoz, E.; Rodríguez-Corona, N.; Arias, C. PI3K signaling in neurons: A central node for the control of multiple functions. Int. J. Mol. Sci., 2018, 19(12), 3725.
[http://dx.doi.org/10.3390/ijms19123725] [PMID: 30477115]
[105]
Long, H.Z.; Cheng, Y.; Zhou, Z.W.; Luo, H.Y.; Wen, D.D.; Gao, L.C. PI3K/AKT signal pathway: A target of natural products in the prevention and treatment of Alzheimer’s disease and Parkinson’s disease. Front. Pharmacol., 2021, 12, 648636.
[http://dx.doi.org/10.3389/fphar.2021.648636] [PMID: 33935751]
[106]
Zhou, T.; Lin, D.; Chen, Y.; Peng, S.; Jing, X.; Lei, M.; Tao, E.; Liang, Y. α-synuclein accumulation in SH-SY5Y cell impairs autophagy in microglia by exosomes overloading miR-19a-3p. Epigenomics, 2019, 11(15), 1661-1677.
[http://dx.doi.org/10.2217/epi-2019-0222] [PMID: 31646884]
[107]
O’Connell, R.M.; Chaudhuri, A.A.; Rao, D.S.; Baltimore, D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc. Natl. Acad. Sci., 2009, 106(17), 7113-7118.
[http://dx.doi.org/10.1073/pnas.0902636106] [PMID: 19359473]
[108]
Caggiu, E.; Paulus, K.; Mameli, G.; Arru, G.; Sechi, G.P.; Sechi, L.A. Differential expression of miRNA 155 and miRNA 146a in Parkinson’s disease patients. eNeurologicalSci, 2018, 13, 1-4.
[http://dx.doi.org/10.1016/j.ensci.2018.09.002] [PMID: 30255159]
[109]
Cai, L.; Tu, L.; Li, T.; Yang, X.; Ren, Y.; Gu, R.; Zhang, Q.; Yao, H.; Qu, X.; Wang, Q.; Tian, J. Downregulation of lncRNA UCA1 ameliorates the damage of dopaminergic neurons, reduces oxidative stress and inflammation in Parkinson’s disease through the inhibition of the PI3K/Akt signaling pathway. Int. Immunopharmacol., 2019, 75, 105734.
[http://dx.doi.org/10.1016/j.intimp.2019.105734] [PMID: 31301558]
[110]
Ma, J.; Sun, W.; Chen, S.; Wang, Z.; Zheng, J.; Shi, X.; Li, M.; Li, D.; Gu, Q. The long noncoding RNA GAS5 potentiates neuronal injury in Parkinson’s disease by binding to microRNA-150 to regulate Fosl1 expression. Exp. Neurol., 2022, 347, 113904.
[http://dx.doi.org/10.1016/j.expneurol.2021.113904] [PMID: 34755654]
[111]
Zhai, K.; Liu, B.; Gao, L. Long-noncoding RNA TUG1 promotes Parkinson’s disease via modulating MiR-152-3p/PTEN pathway. Hum. Gene Ther., 2020, 31(23-24), 1274-1287.
[http://dx.doi.org/10.1089/hum.2020.106] [PMID: 32808542]
[112]
Zhao, J.; Geng, L.; Chen, Y.; Wu, C. SNHG1 promotes MPP+-induced cytotoxicity by regulating PTEN/AKT/mTOR signaling pathway in SH-SY5Y cells via sponging miR-153-3p. Biol. Res., 2020, 53(1), 1.
[http://dx.doi.org/10.1186/s40659-019-0267-y] [PMID: 31907031]
[113]
Fan, J; Wu, D; Guo, Y; Yang, Z. OS1-IT1 silencing alleviates MPP(+)-induced neuronal cell injury through regulating the miR-124-3p/PTEN/AKT/mTOR pathway. J. Clin. Neurosci., 2022, 99, 137-146.
[114]
Shih, R.H.; Wang, C.Y.; Yang, C.M. NF-kappaB signaling pathways in neurological inflammation: A mini review. Front. Mol. Neurosci., 2015, 8, 77.
[http://dx.doi.org/10.3389/fnmol.2015.00077] [PMID: 26733801]
[115]
Yu, L.; Li, L.; Medeiros, L.J.; Young, K.H. NF-κB signaling pathway and its potential as a target for therapy in lymphoid neoplasms. Blood Rev., 2017, 31(2), 77-92.
[http://dx.doi.org/10.1016/j.blre.2016.10.001] [PMID: 27773462]
[116]
Bellucci, A.; Bubacco, L.; Longhena, F.; Parrella, E.; Faustini, G.; Porrini, V.; Bono, F.; Missale, C.; Pizzi, M. Nuclear Factor-κB dysregulation and α-synuclein pathology: Critical interplay in the pathogenesis of Parkinson’s disease. Front. Aging Neurosci., 2020, 12, 68.
[http://dx.doi.org/10.3389/fnagi.2020.00068] [PMID: 32265684]
[117]
Huang, D.B.; Vu, D.; Ghosh, G. NF-kappaB RelB forms an intertwined homodimer. Structure., 2005, 13(9), 1365-1373.
[http://dx.doi.org/10.1016/j.str.2005.06.018] [PMID: 16154093]
[118]
Ghosh, A.; Roy, A.; Liu, X.; Kordower, J.H.; Mufson, E.J.; Hartley, D.M.; Ghosh, S.; Mosley, R.L.; Gendelman, H.E.; Pahan, K. Selective inhibition of NF-κB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc. Natl. Acad. Sci., 2007, 104(47), 18754-18759.
[http://dx.doi.org/10.1073/pnas.0704908104] [PMID: 18000063]
[119]
Chaudhuri, AD; Kabaria, S; Choi, DC; Mouradian, MM; Junn, E MicroRNA-7 promotes glycolysis to protect against 1-methyl-4-phenylpyridinium-induced cell death. J. Biol. Chem., 2015, 290(19), 12425-12434.
[120]
Choi, DC; Chae, YJ; Kabaria, S; Chaudhuri, AD; Jain, MR; Li, H MicroRNA-7 protects against 1-methyl-4-phenylpyridinium-induced cell death by targeting RelA. J Neurosci., 2014, 34(38), 12725-12737.
[121]
Li, X.; Su, Y.; Li, N.; Zhang, F.R.; Zhang, N. Berberine attenuates MPP+-induced neuronal injury by regulating LINC00943/miR-142-5p/KPNA4/NF-κB pathway in SK-N-SH Cells. Neurochem. Res., 2021, 46(12), 3286-3300.
[http://dx.doi.org/10.1007/s11064-021-03431-w] [PMID: 34427876]
[122]
Cao, H.; Han, X.; Jia, Y.; Zhang, B. Inhibition of long non-coding RNA HOXA11-AS against neuroinflammation in Parkinson’s disease model via targeting miR-124-3p mediated FSTL1/NF-κB axis. Aging., 2021, 13(8), 11455-11469.
[http://dx.doi.org/10.18632/aging.202837] [PMID: 33839699]
[123]
Zhang, H.; Wang, Z.; Hu, K.; Liu, H. Downregulation of long noncoding RNA SNHG7 protects against inflammation and apoptosis in Parkinson’s disease model by targeting the miR-425-5p/TRAF5/NF-κB axis. J. Biochem. Mol. Toxicol., 2021, 35(10), e22867.
[http://dx.doi.org/10.1002/jbt.22867] [PMID: 34369042]
[124]
Ghafouri-Fard, S.; Gholipour, M.; Abak, A.; Mazdeh, M.; Taheri, M.; Sayad, A. Expression analysis of NF-κB-related lncRNAs in Parkinson’s disease. Front. Immunol., 2021, 12, 755246.
[http://dx.doi.org/10.3389/fimmu.2021.755246] [PMID: 34721431]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy