Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Non-oxidative Modified Low-density Lipoproteins: The Underappreciated Risk Factors for Atherosclerosis

Author(s): Yimeng Zhao, Qian Xu, Naiqi He, Mulin Jiang, Yingzhuo Chen, Zhong Ren, Zhihan Tang, Chunyan Wu and Lushan Liu*

Volume 31, Issue 34, 2024

Published on: 22 September, 2023

Page: [5598 - 5611] Pages: 14

DOI: 10.2174/0929867331666230807154019

Price: $65

Abstract

Atherosclerosis, the pathological basis of most cardiovascular diseases, is a main risk factor causing about 20 million deaths each year worldwide. Oxidized low-density lipoprotein is recognized as the most important and independent risk factor in initiating and promoting atherosclerosis. Numerous antioxidants are extensively used in clinical practice, but they have no significant effect on reducing the morbidity and mortality of cardiovascular diseases. This finding suggests that researchers should pay more attention to the important role of non-oxidative modified low-density lipoprotein in atherosclerosis with a focus on oxidized low-density lipoprotein. This review briefly summarizes several important non-oxidative modified low-density lipoproteins associated with atherosclerosis, introduces the pathways through which these non-oxidative modified low-density lipoproteins induce the development of atherosclerosis in vivo, and discusses the mechanism of atherogenesis induced by these non-oxidative modified low-density lipoproteins. New therapeutic strategies and potential drug targets are provided for the prevention and treatment of atherosclerotic cardiovascular diseases.

[1]
Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; Bonny, A.; Brauer, M.; Brodmann, M.; Cahill, T.J.; Carapetis, J.; Catapano, A.L.; Chugh, S.S.; Cooper, L.T.; Coresh, J.; Criqui, M.; DeCleene, N.; Eagle, K.A.; Emmons-Bell, S.; Feigin, V.L.; Fernández-Solà, J.; Fowkes, G.; Gakidou, E.; Grundy, S.M.; He, F.J.; Howard, G.; Hu, F.; Inker, L.; Karthikeyan, G.; Kassebaum, N.; Koroshetz, W.; Lavie, C.; Lloyd-Jones, D.; Lu, H.S.; Mirijello, A.; Temesgen, A.M.; Mokdad, A.; Moran, A.E.; Muntner, P.; Narula, J.; Neal, B.; Ntsekhe, M.; Moraes de Oliveira, G.; Otto, C.; Owolabi, M.; Pratt, M.; Rajagopalan, S.; Reitsma, M.; Ribeiro, A.L.P.; Rigotti, N.; Rodgers, A.; Sable, C.; Shakil, S.; Sliwa-Hahnle, K.; Stark, B.; Sundström, J.; Timpel, P.; Tleyjeh, I.M.; Valgimigli, M.; Vos, T.; Whelton, P.K.; Yacoub, M.; Zuhlke, L.; Murray, C.; Fuster, V.; Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.; Benjamin, E.J.; Benziger, C.P.; Bonny, A.; Brauer, M.; Brodmann, M.; Cahill, T.J.; Carapetis, J.R.; Catapano, A.L.; Chugh, S.; Cooper, L.T.; Coresh, J.; Criqui, M.H.; DeCleene, N.K.; Eagle, K.A.; Emmons-Bell, S.; Feigin, V.L.; Fernández-Sola, J.; Fowkes, F.G.R.; Gakidou, E.; Grundy, S.M.; He, F.J.; Howard, G.; Hu, F.; Inker, L.; Karthikeyan, G.; Kassebaum, N.J.; Koroshetz, W.J.; Lavie, C.; Lloyd-Jones, D.; Lu, H.S.; Mirijello, A.; Misganaw, A.T.; Mokdad, A.H.; Moran, A.E.; Muntner, P.; Narula, J.; Neal, B.; Ntsekhe, M.; Oliveira, G.M.M.; Otto, C.M.; Owolabi, M.O.; Pratt, M.; Rajagopalan, S.; Reitsma, M.B.; Ribeiro, A.L.P.; Rigotti, N.A.; Rodgers, A.; Sable, C.A.; Shakil, S.S.; Sliwa, K.; Stark, B.A.; Sundström, J.; Timpel, P.; Tleyjeh, I.I.; Valgimigli, M.; Vos, T.; Whelton, P.K.; Yacoub, M.; Zuhlke, L.J.; Abbasi-Kangevari, M.; Abdi, A.; Abedi, A.; Aboyans, V.; Abrha, W.A.; Abu-Gharbieh, E.; Abushouk, A.I.; Acharya, D.; Adair, T.; Adebayo, O.M.; Ademi, Z.; Advani, S.M.; Afshari, K.; Afshin, A.; Agarwal, G.; Agasthi, P.; Ahmad, S.; Ahmadi, S.; Ahmed, M.B.; Aji, B.; Akalu, Y.; Akande-Sholabi, W.; Aklilu, A.; Akunna, C.J.; Alahdab, F.; Al-Eyadhy, A.; Alhabib, K.F.; Alif, S.M.; Alipour, V.; Aljunid, S.M.; Alla, F.; Almasi-Hashiani, A.; Almustanyir, S.; Al-Raddadi, R.M.; Amegah, A.K.; Amini, S.; Aminorroaya, A.; Amu, H.; Amugsi, D.A.; Ancuceanu, R.; Anderlini, D.; Andrei, T.; Andrei, C.L.; Ansari-Moghaddam, A.; Anteneh, Z.A.; Antonazzo, I.C.; Antony, B.; Anwer, R.; Appiah, L.T.; Arabloo, J.; Ärnlöv, J.; Artanti, K.D.; Ataro, Z.; Ausloos, M.; Avila-Burgos, L.; Awan, A.T.; Awoke, M.A.; Ayele, H.T.; Ayza, M.A.; Azari, S.; B, D.B.; Baheiraei, N.; Baig, A.A.; Bakhtiari, A.; Banach, M.; Banik, P.C.; Baptista, E.A.; Barboza, M.A.; Barua, L.; Basu, S.; Bedi, N.; Béjot, Y.; Bennett, D.A.; Bensenor, I.M.; Berman, A.E.; Bezabih, Y.M.; Bhagavathula, A.S.; Bhaskar, S.; Bhattacharyya, K.; Bijani, A.; Bikbov, B.; Birhanu, M.M.; Boloor, A.; Brant, L.C.; Brenner, H.; Briko, N.I.; Butt, Z.A.; Caetano dos Santos, F.L.; Cahill, L.E.; Cahuana-Hurtado, L.; Cámera, L.A.; Campos-Nonato, I.R.; Cantu-Brito, C.; Car, J.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Catalá-López, F.; Cerin, E.; Charan, J.; Chattu, V.K.; Chen, S.; Chin, K.L.; Choi, J-Y.J.; Chu, D-T.; Chung, S-C.; Cirillo, M.; Coffey, S.; Conti, S.; Costa, V.M.; Cundiff, D.K.; Dadras, O.; Dagnew, B.; Dai, X.; Damasceno, A.A.M.; Dandona, L.; Dandona, R.; Davletov, K.; De la Cruz-Góngora, V.; De la Hoz, F.P.; De Neve, J-W.; Denova-Gutiérrez, E.; Derbew Molla, M.; Derseh, B.T.; Desai, R.; Deuschl, G.; Dharmaratne, S.D.; Dhimal, M.; Dhungana, R.R.; Dianatinasab, M.; Diaz, D.; Djalalinia, S.; Dokova, K.; Douiri, A.; Duncan, B.B.; Duraes, A.R.; Eagan, A.W.; Ebtehaj, S.; Eftekhari, A.; Eftekharzadeh, S.; Ekholuenetale, M.; El Nahas, N.; Elgendy, I.Y.; Elhadi, M.; El-Jaafary, S.I.; Esteghamati, S.; Etisso, A.E.; Eyawo, O.; Fadhil, I.; Faraon, E.J.A.; Faris, P.S.; Farwati, M.; Farzadfar, F.; Fernandes, E.; Fernandez Prendes, C.; Ferrara, P.; Filip, I.; Fischer, F.; Flood, D.; Fukumoto, T.; Gad, M.M.; Gaidhane, S.; Ganji, M.; Garg, J.; Gebre, A.K.; Gebregiorgis, B.G.; Gebregzabiher, K.Z.; Gebremeskel, G.G.; Getacher, L.; Obsa, A.G.; Ghajar, A.; Ghashghaee, A.; Ghith, N.; Giampaoli, S.; Gilani, S.A.; Gill, P.S.; Gillum, R.F.; Glushkova, E.V.; Gnedovskaya, E.V.; Golechha, M.; Gonfa, K.B.; Goudarzian, A.H.; Goulart, A.C.; Guadamuz, J.S.; Guha, A.; Guo, Y.; Gupta, R.; Hachinski, V.; Hafezi-Nejad, N.; Haile, T.G.; Hamadeh, R.R.; Hamidi, S.; Hankey, G.J.; Hargono, A.; Hartono, R.K.; Hashemian, M.; Hashi, A.; Hassan, S.; Hassen, H.Y.; Havmoeller, R.J.; Hay, S.I.; Hayat, K.; Heidari, G.; Herteliu, C.; Holla, R.; Hosseini, M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Househ, M.; Huang, J.; Humayun, A.; Iavicoli, I.; Ibeneme, C.U.; Ibitoye, S.E.; Ilesanmi, O.S.; Ilic, I.M.; Ilic, M.D.; Iqbal, U.; Irvani, S.S.N.; Islam, S.M.S.; Islam, R.M.; Iso, H.; Iwagami, M.; Jain, V.; Javaheri, T.; Jayapal, S.K.; Jayaram, S.; Jayawardena, R.; Jeemon, P.; Jha, R.P.; Jonas, J.B.; Jonnagaddala, J.; Joukar, F.; Jozwiak, J.J.; Jürisson, M.; Kabir, A.; Kahlon, T.; Kalani, R.; Kalhor, R.; Kamath, A.; Kamel, I.; Kandel, H.; Kandel, A.; Karch, A.; Kasa, A.S.; Katoto, P.D.M.C.; Kayode, G.A.; Khader, Y.S.; Khammarnia, M.; Khan, M.S.; Khan, M.N.; Khan, M.; Khan, E.A.; Khatab, K.; Kibria, G.M.A.; Kim, Y.J.; Kim, G.R.; Kimokoti, R.W.; Kisa, S.; Kisa, A.; Kivimäki, M.; Kolte, D.; Koolivand, A.; Korshunov, V.A.; Koulmane Laxminarayana, S.L.; Koyanagi, A.; Krishan, K.; Krishnamoorthy, V.; Kuate Defo, B.; Kucuk Bicer, B.; Kulkarni, V.; Kumar, G.A.; Kumar, N.; Kurmi, O.P.; Kusuma, D.; Kwan, G.F.; La Vecchia, C.; Lacey, B.; Lallukka, T.; Lan, Q.; Lasrado, S.; Lassi, Z.S.; Lauriola, P.; Lawrence, W.R.; Laxmaiah, A.; LeGrand, K.E.; Li, M-C.; Li, B.; Li, S.; Lim, S.S.; Lim, L-L.; Lin, H.; Lin, Z.; Lin, R-T.; Liu, X.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Lugo, A.; M, N.K.; Madotto, F.; Mahmoudi, M.; Majeed, A.; Malekzadeh, R.; Malik, A.A.; Mamun, A.A.; Manafi, N.; Mansournia, M.A.; Mantovani, L.G.; Martini, S.; Mathur, M.R.; Mazzaglia, G.; Mehata, S.; Mehndiratta, M.M.; Meier, T.; Menezes, R.G.; Meretoja, A.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Michalek, I.M.; Miller, T.R.; Mirrakhimov, E.M.; Mirzaei, H.; Moazen, B.; Moghadaszadeh, M.; Mohammad, Y.; Mohammad, D.K.; Mohammed, S.; Mohammed, M.A.; Mokhayeri, Y.; Molokhia, M.; Montasir, A.A.; Moradi, G.; Moradzadeh, R.; Moraga, P.; Morawska, L.; Moreno Velásquez, I.; Morze, J.; Mubarik, S.; Muruet, W.; Musa, K.I.; Nagarajan, A.J.; Nalini, M.; Nangia, V.; Naqvi, A.A.; Narasimha Swamy, S.; Nascimento, B.R.; Nayak, V.C.; Nazari, J.; Nazarzadeh, M.; Negoi, R.I.; Neupane Kandel, S.; Nguyen, H.L.T.; Nixon, M.R.; Norrving, B.; Noubiap, J.J.; Nouthe, B.E.; Nowak, C.; Odukoya, O.O.; Ogbo, F.A.; Olagunju, A.T.; Orru, H.; Ortiz, A.; Ostroff, S.M.; Padubidri, J.R.; Palladino, R.; Pana, A.; Panda-Jonas, S.; Parekh, U.; Park, E-C.; Parvizi, M.; Pashazadeh Kan, F.; Patel, U.K.; Pathak, M.; Paudel, R.; Pepito, V.C.F.; Perianayagam, A.; Perico, N.; Pham, H.Q.; Pilgrim, T.; Piradov, M.A.; Pishgar, F.; Podder, V.; Polibin, R.V.; Pourshams, A.; Pribadi, D.R.A.; Rabiee, N.; Rabiee, M.; Radfar, A.; Rafiei, A.; Rahim, F.; Rahimi-Movaghar, V.; Ur Rahman, M.H.; Rahman, M.A.; Rahmani, A.M.; Rakovac, I.; Ram, P.; Ramalingam, S.; Rana, J.; Ranasinghe, P.; Rao, S.J.; Rathi, P.; Rawal, L.; Rawasia, W.F.; Rawassizadeh, R.; Remuzzi, G.; Renzaho, A.M.N.; Rezapour, A.; Riahi, S.M.; Roberts-Thomson, R.L.; Roever, L.; Rohloff, P.; Romoli, M.; Roshandel, G.; Rwegerera, G.M.; Saadatagah, S.; Saber-Ayad, M.M.; Sabour, S.; Sacco, S.; Sadeghi, M.; Saeedi Moghaddam, S.; Safari, S.; Sahebkar, A.; Salehi, S.; Salimzadeh, H.; Samaei, M.; Samy, A.M.; Santos, I.S.; Santric-Milicevic, M.M.; Sarrafzadegan, N.; Sarveazad, A.; Sathish, T.; Sawhney, M.; Saylan, M.; Schmidt, M.I.; Schutte, A.E.; Senthilkumaran, S.; Sepanlou, S.G.; Sha, F.; Shahabi, S.; Shahid, I.; Shaikh, M.A.; Shamali, M.; Shamsizadeh, M.; Shawon, M.S.R.; Sheikh, A.; Shigematsu, M.; Shin, M-J.; Shin, J.I.; Shiri, R.; Shiue, I.; Shuval, K.; Siabani, S.; Siddiqi, T.J.; Silva, D.A.S.; Singh, J.A.; Mtech, A.S.; Skryabin, V.Y.; Skryabina, A.A.; Soheili, A.; Spurlock, E.E.; Stockfelt, L.; Stortecky, S.; Stranges, S.; Suliankatchi Abdulkader, R.; Tadbiri, H.; Tadesse, E.G.; Tadesse, D.B.; Tajdini, M.; Tariqujjaman, M.; Teklehaimanot, B.F.; Temsah, M-H.; Tesema, A.K.; Thakur, B.; Thankappan, K.R.; Thapar, R.; Thrift, A.G.; Timalsina, B.; Tonelli, M.; Touvier, M.; Tovani-Palone, M.R.; Tripathi, A.; Tripathy, J.P.; Truelsen, T.C.; Tsegay, G.M.; Tsegaye, G.W.; Tsilimparis, N.; Tusa, B.S.; Tyrovolas, S.; Umapathi, K.K.; Unim, B.; Unnikrishnan, B.; Usman, M.S.; Vaduganathan, M.; Valdez, P.R.; Vasankari, T.J.; Velazquez, D.Z.; Venketasubramanian, N.; Vu, G.T.; Vujcic, I.S.; Waheed, Y.; Wang, Y.; Wang, F.; Wei, J.; Weintraub, R.G.; Weldemariam, A.H.; Westerman, R.; Winkler, A.S.; Wiysonge, C.S.; Wolfe, C.D.A.; Wubishet, B.L.; Xu, G.; Yadollahpour, A.; Yamagishi, K.; Yan, L.L.; Yandrapalli, S.; Yano, Y.; Yatsuya, H.; Yeheyis, T.Y.; Yeshaw, Y.; Yilgwan, C.S.; Yonemoto, N.; Yu, C.; Yusefzadeh, H.; Zachariah, G.; Zaman, S.B.; Zaman, M.S.; Zamanian, M.; Zand, R.; Zandifar, A.; Zarghi, A.; Zastrozhin, M.S.; Zastrozhina, A.; Zhang, Z-J.; Zhang, Y.; Zhang, W.; Zhong, C.; Zou, Z.; Zuniga, Y.M.H.; Murray, C.J.L.; Fuster, V. Global burden of cardiovascular diseases and risk factors, 1990–2019. J. Am. Coll. Cardiol., 2020, 76(25), 2982-3021.
[http://dx.doi.org/10.1016/j.jacc.2020.11.010] [PMID: 33309175]
[2]
Soehnlein, O.; Libby, P. Targeting inflammation in atherosclerosis — from experimental insights to the clinic. Nat. Rev. Drug Discov., 2021, 20(8), 589-610.
[http://dx.doi.org/10.1038/s41573-021-00198-1] [PMID: 33976384]
[3]
Borén, J.; Chapman, M.J.; Krauss, R.M.; Packard, C.J.; Bentzon, J.F.; Binder, C.J.; Daemen, M.J.; Demer, L.L.; Hegele, R.A.; Nicholls, S.J.; Nordestgaard, B.G.; Watts, G.F.; Bruckert, E.; Fazio, S.; Ference, B.A.; Graham, I.; Horton, J.D.; Landmesser, U.; Laufs, U.; Masana, L.; Pasterkamp, G.; Raal, F.J.; Ray, K.K.; Schunkert, H.; Taskinen, M.R.; van de Sluis, B.; Wiklund, O.; Tokgozoglu, L.; Catapano, A.L.; Ginsberg, H.N. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J., 2020, 41(24), 2313-2330.
[http://dx.doi.org/10.1093/eurheartj/ehz962] [PMID: 32052833]
[4]
Gleissner, C.A.; Leitinger, N.; Ley, K.; Effects of native and modified low-density lipoproteins on monocyte recruitment in atherosclerosis. Hypertension (Dallas, Tex. 1979), 2007, 50(2), 276-283.
[5]
Ketelhuth, D.F.; Rios, F.J.; Wang, Y.; Liu, H.; Johansson, M.E.; Fredrikson, G.N.; Hedin, U.; Gidlund, M.; Nilsson, J.; Hansson, G.K.; Yan, Z.Q. Identification of a danger-associated peptide from apolipoprotein B100 (ApoBDS-1) that triggers innate proatherogenic responses. Circulation, 2011, 124(22), 2433-2443.
[6]
Esterbauer, H.; Gebicki, J.; Puhl, H.; Jürgens, G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic. Biol. Med., 1992, 13(4), 341-390.
[http://dx.doi.org/10.1016/0891-5849(92)90181-F] [PMID: 1398217]
[7]
Itabe, H.; Obama, T.; Kato, R. The dynamics of oxidized LDL during atherogenesis. J. Lipids, 2011, 2011, 1-9.
[http://dx.doi.org/10.1155/2011/418313] [PMID: 21660303]
[8]
Binder, C.J.; Papac-Milicevic, N.; Witztum, J.L. Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol., 2016, 16(8), 485-497.
[http://dx.doi.org/10.1038/nri.2016.63] [PMID: 27346802]
[9]
Yoshida, H.; Kisugi, R. Mechanisms of LDL oxidation. Clin. Chim. Acta, 2010, 411(23-24), 1875-1882.
[http://dx.doi.org/10.1016/j.cca.2010.08.038] [PMID: 20816951]
[10]
Oka, K.; Yasuhara, M.; Suzumura, K.; Tanaka, K.; Sawamura, T. Antioxidants suppress plasma levels of lectinlike oxidized low-density lipoprotein receptor-ligands and reduce atherosclerosis in watanabe heritable hyperlipidemic rabbits. J. Cardiovasc. Pharmacol., 2006, 48(4), 177-183.
[http://dx.doi.org/10.1097/01.fjc.0000245989.89771.1b] [PMID: 17086097]
[11]
Jenkins, D.J.A.; Kitts, D.; Giovannucci, E.L.; Sahye-Pudaruth, S.; Paquette, M.; Blanco Mejia, S.; Patel, D.; Kavanagh, M.; Tsirakis, T.; Kendall, C.W.C.; Pichika, S.C.; Sievenpiper, J.L. Selenium, antioxidants, cardiovascular disease, and all-cause mortality: a systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr., 2020, 112(6), 1642-1652.
[http://dx.doi.org/10.1093/ajcn/nqaa245] [PMID: 33053149]
[12]
Summerhill, V.I.; Grechko, A.V.; Yet, S.F.; Sobenin, I.A.; Orekhov, A.N. The atherogenic role of circulating modified lipids in atherosclerosis. Int. J. Mol. Sci., 2019, 20(14), 3561.
[http://dx.doi.org/10.3390/ijms20143561] [PMID: 31330845]
[13]
Obama, T.; Itabe, H. Neutrophils as a novel target of modified low-density lipoproteins and an accelerator of cardiovascular diseases. Int. J. Mol. Sci., 2020, 21(21), 8312.
[http://dx.doi.org/10.3390/ijms21218312] [PMID: 33167592]
[14]
Lorey, M.B.; Öörni, K.; Kovanen, P.T. Modified lipoproteins induce arterial wall inflammation during atherogenesis. Front. Cardiovasc. Med., 2022, 9, 841545.
[http://dx.doi.org/10.3389/fcvm.2022.841545] [PMID: 35310965]
[15]
Berliner, J.A.; Navab, M.; Fogelman, A.M.; Frank, J.S.; Demer, L.L.; Edwards, P.A.; Watson, A.D.; Lusis, A.J. Atherosclerosis: Basic mechanisms. Circulation, 1995, 91(9), 2488-2496.
[http://dx.doi.org/10.1161/01.CIR.91.9.2488] [PMID: 7729036]
[16]
Beckmann, J.S.; Ye, Y.Z.; Anderson, P.G.; Chen, J.; Accavitti, M.A.; Tarpey, M.M.; White, C.R. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol. Chem. Hoppe Seyler, 1994, 375(2), 81-88.
[http://dx.doi.org/10.1515/bchm3.1994.375.2.81] [PMID: 8192861]
[17]
Wang, F.; Yuan, Q.; Chen, F.; Pang, J.; Pan, C.; Xu, F.; Chen, Y. Fundamental mechanisms of the cell death caused by nitrosative stress. Front. Cell Dev. Biol., 2021, 9, 742483.
[http://dx.doi.org/10.3389/fcell.2021.742483] [PMID: 34616744]
[18]
Frati, G.; Schirone, L.; Chimenti, I.; Yee, D.; Biondi-Zoccai, G.; Volpe, M.; Sciarretta, S. An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovasc. Res., 2017, 113(4), 378-388.
[http://dx.doi.org/10.1093/cvr/cvx011] [PMID: 28395009]
[19]
Yu, L.; Li, Z.; Dong, X.; Xue, X.; Liu, Y.; Xu, S.; Zhang, J.; Han, J.; Yang, Y.; Wang, H. Polydatin protects diabetic heart against ischemia-reperfusion injury via Notch1/Hes1-mediated activation of Pten/Akt signaling. Oxid. Med. Cell. Longev., 2018, 2018, 1-18.
[http://dx.doi.org/10.1155/2018/2750695] [PMID: 29636838]
[20]
Zhang, C.; Yang, J.B.; Quan, W.; Feng, Y.D.; Feng, J.Y.; Cheng, L.S.; Li, X.Q.; Zhang, H.N.; Chen, W.S. Activation ofparaventricular melatonin receptor 2 mediates melatonin-conferred cardioprotection against myocardial ischemia/reperfusion injury. J. Cardiovasc. Pharmacol., 2020, 76(2), 197-206.
[http://dx.doi.org/10.1097/FJC.0000000000000851] [PMID: 32433359]
[21]
Pei, H.; Song, X.; Peng, C.; Tan, Y.; Li, Y.; Li, X.; Ma, S.; Wang, Q.; Huang, R.; Yang, D.; Li, D.; Gao, E.; Yang, Y. TNF-α inhibitor protects against myocardial ischemia/reperfusion injury via Notch1-mediated suppression of oxidative/nitrative stress. Free Radic. Biol. Med., 2015, 82, 114-121.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.02.002] [PMID: 25680284]
[22]
Thomson, L.; Tenopoulou, M.; Lightfoot, R.; Tsika, E.; Parastatidis, I.; Martinez, M.; Greco, T.M.; Doulias, P.T.; Wu, Y.; Tang, W.H.W.; Hazen, S.L.; Ischiropoulos, H. Immunoglobulins against tyrosine-nitrated epitopes in coronary artery disease. Circulation, 2012, 126(20), 2392-2401.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.103796] [PMID: 23081989]
[23]
Shishehbor, M.H.; Aviles, R.J.; Brennan, M.L.; Fu, X.; Goormastic, M.; Pearce, G.L.; Gokce, N.; Keaney, J.F., Jr; Penn, M.S.; Sprecher, D.L.; Vita, J.A.; Hazen, S.L. Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. JAMA, 2003, 289(13), 1675-1680.
[http://dx.doi.org/10.1001/jama.289.13.1675] [PMID: 12672736]
[24]
Parastatidis, I.; Thomson, L.; Burke, A.; Chernysh, I.; Nagaswami, C.; Visser, J.; Stamer, S.; Liebler, D.C.; Koliakos, G.; Heijnen, H.F.G.; FitzGerald, G.A.; Weisel, J.W.; Ischiropoulos, H. Fibrinogen beta-chain tyrosine nitration is a prothrombotic risk factor. J. Biol. Chem., 2008, 283(49), 33846-33853.
[http://dx.doi.org/10.1074/jbc.M805522200] [PMID: 18818200]
[25]
Martinez, M.; Cuker, A.; Mills, A.; Lightfoot, R.; Fan, Y.; Wilson Tang, W.H.; Hazen, S.L.; Ischiropoulos, H. Nitrated fibrinogen is a biomarker of oxidative stress in venous thromboembolism. Free Radic. Biol. Med., 2012, 53(2), 230-236.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.05.004] [PMID: 22580301]
[26]
Torres-Rasgado, E.; Fouret, G.; Carbonneau, M.A.; Leger, C.L. Peroxynitrite mild nitration of albumin and LDL–albumin complex naturally present in plasma and tyrosine nitration rate–albumin impairs LDL nitration. Free Radic. Res., 2007, 41(3), 367-375.
[http://dx.doi.org/10.1080/10715760601064706] [PMID: 17364966]
[27]
Leeuwenburgh, C.; Hardy, M.M.; Hazen, S.L.; Wagner, P.; Oh-ishi, S.; Steinbrecher, U.P.; Heinecke, J.W. Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J. Biol. Chem., 1997, 272(3), 1433-1436.
[http://dx.doi.org/10.1074/jbc.272.3.1433] [PMID: 8999808]
[28]
Griffiths, H.R.; Aldred, S.; Dale, C.; Nakano, E.; Kitas, G.D.; Grant, M.G.; Nugent, D.; Taiwo, F.A.; Li, L.; Powers, H.J. Homocysteine from endothelial cells promotes LDL nitration and scavenger receptor uptake. Free Radic. Biol. Med., 2006, 40(3), 488-500.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.08.039] [PMID: 16443164]
[29]
Bakillah, A.; Tedla, F.; Ayoub, I.; John, D.; Norin, A.J.; Hussain, M.M.; Brown, C. Plasma nitration of high-density and low-density lipoproteins in chronic kidney disease patients receiving kidney transplants. Mediators Inflamm., 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/352356] [PMID: 26648662]
[30]
Hsiai, T.; Hwang, J.; Barr, M.; Correa, A.; Hamilton, R.; Alavi, M.; Rouhanizadeh, M.; Cadenas, E.; Hazen, S. Hemodynamics influences vascular peroxynitrite formation: Implication for low-density lipoprotein apo-B-100 nitration. Free Radic. Biol. Med., 2007, 42(4), 519-529.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.11.017] [PMID: 17275684]
[31]
Ischiropoulos, H.; Al-Mehdi, A.B. Peroxynitrite-mediated oxidative protein modifications. FEBS Lett., 1995, 364(3), 279-282.
[http://dx.doi.org/10.1016/0014-5793(95)00307-U] [PMID: 7758583]
[32]
Velsor, L.; Ballinger, C.A.; Patel, J.; Postlethwait, E.M. Influence of epithelial lining fluid lipids on NO2-induced membrane oxidation and nitration. Free Radic. Biol. Med., 2003, 34(6), 720-733.
[http://dx.doi.org/10.1016/S0891-5849(02)01370-9] [PMID: 12633749]
[33]
Campolo, N.; Issoglio, F.M.; Estrin, D.A.; Bartesaghi, S.; Radi, R. 3-Nitrotyrosine and related derivatives in proteins: precursors, radical intermediates and impact in function. Essays Biochem., 2020, 64(1), 111-133.
[http://dx.doi.org/10.1042/EBC20190052] [PMID: 32016371]
[34]
Alvarez, B.; Radi, R. Peroxynitrite reactivity with amino acids and proteins. Amino Acids, 2003, 25(3-4), 295-311.
[http://dx.doi.org/10.1007/s00726-003-0018-8] [PMID: 14661092]
[35]
Herold, S. Nitrotyrosine, dityrosine, and nitrotryptophan formation from metmyoglobin, hydrogen peroxide, and nitrite. Free Radic. Biol. Med., 2004, 36(5), 565-579.
[http://dx.doi.org/10.1016/j.freeradbiomed.2003.10.014] [PMID: 14980701]
[36]
Khan, A.A.; Alsahli, M.A.; Rahmani, A.H.; Myeloperoxidase as an active disease biomarker: Recent biochemical and pathological perspectives. Med. Sci. (Basel, Switzerland), 2018, 6(2), 33.
[37]
Ferrer-Sueta, G.; Campolo, N.; Trujillo, M.; Bartesaghi, S.; Carballal, S.; Romero, N.; Alvarez, B.; Radi, R. Biochemistry of peroxynitrite and protein tyrosine nitration. Chem. Rev., 2018, 118(3), 1338-1408.
[http://dx.doi.org/10.1021/acs.chemrev.7b00568] [PMID: 29400454]
[38]
Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev., 2016, 2016, 1-44.
[http://dx.doi.org/10.1155/2016/1245049] [PMID: 27478531]
[39]
Feng, J.; Chen, X.; Shen, J. Reactive nitrogen species as therapeutic targets for autophagy: implication for ischemic stroke. Expert Opin. Ther. Targets, 2017, 21(3), 305-317.
[http://dx.doi.org/10.1080/14728222.2017.1281250] [PMID: 28081644]
[40]
Ma, L.L.; Ma, X.; Kong, F.J.; Guo, J.J.; Shi, H.T.; Zhu, J.B.; Zou, Y.Z.; Ge, J.B. Mammalian target of rapamycin inhibition attenuates myocardial ischaemia-reperfusion injury in hypertrophic heart. J. Cell. Mol. Med., 2018, 22(3), 1708-1719.
[http://dx.doi.org/10.1111/jcmm.13451] [PMID: 29314656]
[41]
Pi, S.; Mao, L.; Chen, J.; Shi, H.; Liu, Y.; Guo, X.; Li, Y.; Zhou, L.; He, H.; Yu, C.; Liu, J.; Dang, Y.; Xia, Y.; He, Q.; Jin, H.; Li, Y.; Hu, Y.; Miao, Y.; Yue, Z.; Hu, B. The P2RY12 receptor promotes VSMC-derived foam cell formation by inhibiting autophagy in advanced atherosclerosis. Autophagy, 2021, 17(4), 980-1000.
[http://dx.doi.org/10.1080/15548627.2020.1741202] [PMID: 32160082]
[42]
Shao, B.; Han, B.; Zeng, Y.; Su, D.; Liu, C. The roles of macrophage autophagy in atherosclerosis. Acta Pharmacol. Sin., 2016, 37(2), 150-156.
[http://dx.doi.org/10.1038/aps.2015.87] [PMID: 26750103]
[43]
Luo, Y.; Lu, S.; Gao, Y.; Yang, K.; Wu, D.; Xu, X.; Sun, G.; Sun, X. Araloside C attenuates atherosclerosis by modulating macrophage polarization via Sirt1-mediated autophagy. Aging (Albany NY), 2020, 12(2), 1704-1724.
[http://dx.doi.org/10.18632/aging.102708] [PMID: 31986489]
[44]
Meng, Q.; Li, Y.; Ji, T.; Chao, Y.; Li, J.; Fu, Y.; Wang, S.; Chen, Q.; Chen, W.; Huang, F.; Wang, Y.; Zhang, Q.; Wang, X.; Bian, H. Estrogen prevent atherosclerosis by attenuating endothelial cell pyroptosis via activation of estrogen receptor α-mediated autophagy. J. Adv. Res., 2021, 28, 149-164.
[http://dx.doi.org/10.1016/j.jare.2020.08.010] [PMID: 33364052]
[45]
Mastrogiovanni, M.; Trostchansky, A.; Rubbo, H. Fatty acid nitration in human low-density lipoprotein. Arch. Biochem. Biophys., 2020, 679, 108190.
[http://dx.doi.org/10.1016/j.abb.2019.108190] [PMID: 31738891]
[46]
Hamilton, R.T.; Asatryan, L.; Nilsen, J.T.; Isas, J.M.; Gallaher, T.K.; Sawamura, T.; Hsiai, T.K. LDL protein nitration: Implication for LDL protein unfolding. Arch. Biochem. Biophys., 2008, 479(1), 1-14.
[http://dx.doi.org/10.1016/j.abb.2008.07.026] [PMID: 18713619]
[47]
Kowalczyk, P.; Sulejczak, D.; Kleczkowska, P.; Bukowska-Ośko, I.; Kucia, M.; Popiel, M.; Wietrak, E.; Kramkowski, K.; Wrzosek, K.; Kaczyńska, K. Mitochondrial oxidative stress-A causative factor and therapeutic target in many diseases. Int. J. Mol. Sci., 2021, 22(24), 13384.
[http://dx.doi.org/10.3390/ijms222413384] [PMID: 34948180]
[48]
Jaisson, S.; Pietrement, C.; Gillery, P. Protein carbamylation: Chemistry, pathophysiological involvement, and biomarkers. Adv. Clin. Chem., 2018, 84, 1-38.
[http://dx.doi.org/10.1016/bs.acc.2017.12.001] [PMID: 29478512]
[49]
Wu, C.Y.; Yang, H.Y.; Luo, S.F.; Lai, J.H. From rheumatoid factor to anti-citrullinated protein antibodies and anti-carbamylated protein antibodies for diagnosis and prognosis prediction in patients with rheumatoid arthritis. Int. J. Mol. Sci., 2021, 22(2), 686.
[http://dx.doi.org/10.3390/ijms22020686] [PMID: 33445768]
[50]
Gillery, P.; Jaisson, S. Usefulness of non-enzymatic post-translational modification derived products (PTMDPs) as biomarkers of chronic diseases. J. Proteomics, 2013, 92, 228-238.
[http://dx.doi.org/10.1016/j.jprot.2013.02.015] [PMID: 23459210]
[51]
Kalim, S.; Berg, A.H.; Karumanchi, S.A.; Thadhani, R.; Allegretti, A.S.; Nigwekar, S.; Zhao, S.; Srivastava, A.; Raj, D.; Deo, R.; Frydrych, A.; Chen, J.; Sondheimer, J.; Shafi, T.; Weir, M.; Lash, J.P.; Appel, L.J.; Feldman, H.I.; Go, A.S.; He, J.; Nelson, R.G.; Rahman, M.; Rao, P.S.; Shah, V.O.; Townsend, R.R.; Unruh, M.L. Protein carbamylation and chronic kidney disease progression in the chronic renal insufficiency cohort study. Nephrol. Dial. Transplant., 2021, 37(1), 139-147.
[http://dx.doi.org/10.1093/ndt/gfaa347] [PMID: 33661286]
[52]
Berg, A.H.; Drechsler, C.; Wenger, J.; Buccafusca, R.; Hod, T.; Kalim, S.; Ramma, W.; Parikh, S.M.; Steen, H.; Friedman, D.J.; Danziger, J.; Wanner, C.; Thadhani, R.; Karumanchi, S.A. Carbamylation of serum albumin as a risk factor for mortality in patients with kidney failure. Sci. Transl. Med., 2013, 5(175), 175ra29.
[http://dx.doi.org/10.1126/scitranslmed.3005218] [PMID: 23467560]
[53]
Vallianou, N.G.; Mitesh, S.; Gkogkou, A.; Geladari, E. Chronic kidney disease and cardiovascular disease: is there any relationship? Curr. Cardiol. Rev., 2018, 15(1), 55-63.
[http://dx.doi.org/10.2174/1573403X14666180711124825] [PMID: 29992892]
[54]
Yanai, H.; Adachi, H.; Hakoshima, M.; Katsuyama, H. molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease. Int. J. Mol. Sci., 2021, 22(17), 9221.
[http://dx.doi.org/10.3390/ijms22179221] [PMID: 34502127]
[55]
Querfeld, U.; Mak, R.H.; Pries, A.R., Microvascular disease in chronic kidney disease: the base of the iceberg in cardiovascular comorbidity. Clini. Sci. (London, England : 1979), 2020, 134(12), 1333-1356.
[56]
Kalim, S.; Karumanchi, S.A.; Thadhani, R.I.; Berg, A.H. Protein carbamylation in kidney disease: pathogenesis and clinical implications. Am. J. Kidney Dis., 2014, 64(5), 793-803.
[http://dx.doi.org/10.1053/j.ajkd.2014.04.034] [PMID: 25037561]
[57]
Delanghe, S.; Delanghe, J.R.; Speeckaert, R.; Van Biesen, W.; Speeckaert, M.M. Mechanisms and consequences of carbamoylation. Nat. Rev. Nephrol., 2017, 13(9), 580-593.
[http://dx.doi.org/10.1038/nrneph.2017.103] [PMID: 28757635]
[58]
Apostolov, E.O.; Ray, D.; Savenka, A.V.; Shah, S.V.; Basnakian, A.G. Chronic uremia stimulates LDL carbamylation and atherosclerosis. J. Am. Soc. Nephrol., 2010, 21(11), 1852-1857.
[http://dx.doi.org/10.1681/ASN.2010040365] [PMID: 20947625]
[59]
Apostolov, E.O.; Basnakian, A.G.; Ok, E.; Shah, S.V. Carbamylated low-density lipoprotein: nontraditional risk factor for cardiovascular events in patients with chronic kidney disease. J. renal nutr., 2012, 22(1), 134-138.
[60]
Tan, K.C.B.; Cheung, C.L.; Lee, A.C.H.; Lam, J.K.Y.; Wong, Y.; Shiu, S.W.M. Carbamylated lipoproteins and progression of diabetic kidney disease. Clin. J. Am. Soc. Nephrol., 2020, 15(3), 359-366.
[http://dx.doi.org/10.2215/CJN.11710919] [PMID: 32075807]
[61]
Simsek, B.; Çakatay, U. Could ornithine supplementation be beneficial to prevent the formation of pro-atherogenic carbamylated low-density lipoprotein (c-LDL) particles? Med. Hypotheses, 2019, 126, 20-22.
[http://dx.doi.org/10.1016/j.mehy.2019.03.004] [PMID: 31010493]
[62]
Wang, Z.; Nicholls, S.J.; Rodriguez, E.R.; Kummu, O.; Hörkkö, S.; Barnard, J.; Reynolds, W.F.; Topol, E.J.; DiDonato, J.A.; Hazen, S.L. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat. Med., 2007, 13(10), 1176-1184.
[http://dx.doi.org/10.1038/nm1637] [PMID: 17828273]
[63]
Verbrugge, F.H.; Tang, W.H.W.; Hazen, S.L. Protein carbamylation and cardiovascular disease. Kidney Int., 2015, 88(3), 474-478.
[http://dx.doi.org/10.1038/ki.2015.166] [PMID: 26061545]
[64]
Jaisson, S.; Pietrement, C.; Gillery, P. Carbamylation-derived products: bioactive compounds and potential biomarkers in chronic renal failure and atherosclerosis. Clin. Chem., 2011, 57(11), 1499-1505.
[http://dx.doi.org/10.1373/clinchem.2011.163188] [PMID: 21768218]
[65]
Mehta, J.L.; Basnakian, A.G. Interaction of carbamylated LDL with LOX-1 in the induction of endothelial dysfunction and atherosclerosis. Eur. Heart J., 2014, 35(43), 2996-2997.
[http://dx.doi.org/10.1093/eurheartj/ehu122] [PMID: 24694664]
[66]
Speer, T.; Owala, F.O.; Holy, E.W.; Zewinger, S.; Frenzel, F.L.; Stähli, B.E.; Razavi, M.; Triem, S.; Cvija, H.; Rohrer, L.; Seiler, S.; Heine, G.H.; Jankowski, V.; Jankowski, J.; Camici, G.G.; Akhmedov, A.; Fliser, D.; Lüscher, T.F.; Tanner, F.C. Carbamylated low-density lipoprotein induces endothelial dysfunction. Eur. Heart J., 2014, 35(43), 3021-3032.
[http://dx.doi.org/10.1093/eurheartj/ehu111] [PMID: 24658767]
[67]
Apostolov, E.O.; Shah, S.V.; Ok, E.; Basnakian, A.G. Carbamylated low-density lipoprotein induces monocyte adhesion to endothelial cells through intercellular adhesion molecule-1 and vascular cell adhesion molecule-1. Arterioscler. Thromb. Vasc. Biol., 2007, 27(4), 826-832.
[http://dx.doi.org/10.1161/01.ATV.0000258795.75121.8a] [PMID: 17255534]
[68]
Apostolov, E.O.; Shah, S.V.; Ray, D.; Basnakian, A.G. Scavenger receptors of endothelial cells mediate the uptake and cellular proatherogenic effects of carbamylated LDL. Arterioscler. Thromb. Vasc. Biol., 2009, 29(10), 1622-1630.
[http://dx.doi.org/10.1161/ATVBAHA.109.189795] [PMID: 19696406]
[69]
Stankova, T.; Delcheva, G.; Maneva, A.; Vladeva, S. Serum levels of carbamylated ldl and soluble lectin-like oxidized low-density lipoprotein receptor-1 are associated with coronary artery disease in patients with metabolic syndrome. Medicina (Kaunas), 2019, 55(8), 493.
[http://dx.doi.org/10.3390/medicina55080493] [PMID: 31443320]
[70]
Ha, E.; Bang, J.H.; Son, J.N.; Cho, H.C.; Mun, K.C. Carbamylated albumin stimulates microRNA-146, which is increased in human renal cell carcinoma. Mol. Med. Rep., 2010, 3(2), 275-279.
[PMID: 21472233]
[71]
Fortpied, J.; Maliekal, P.; Vertommen, D.; Van Schaftingen, E. Magnesium-dependent phosphatase-1 is a protein-fructosamine-6-phosphatase potentially involved in glycation repair. J. Biol. Chem., 2006, 281(27), 18378-18385.
[http://dx.doi.org/10.1074/jbc.M513208200] [PMID: 16670083]
[72]
Uribarri, J.; Cai, W.; Peppa, M.; Goodman, S.; Ferrucci, L.; Striker, G.; Vlassara, H. Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. J. Gerontol. A Biol. Sci. Med. Sci., 2007, 62(4), 427-433.
[http://dx.doi.org/10.1093/gerona/62.4.427] [PMID: 17452738]
[73]
Del Turco, S.; Basta, G. An update on advanced glycation endproducts and atherosclerosis. Biofactors, 2012, 38(4), 266-274.
[http://dx.doi.org/10.1002/biof.1018] [PMID: 22488968]
[74]
Ahmad, S.; Khan, H.; Siddiqui, Z.; Khan, M.Y.; Rehman, S.; Shahab, U.; Godovikova, T.; Silnikov, V.; Moinuddin AGEs, RAGEs and s-RAGE; friend or foe for cancer. Semin. Cancer Biol., 2018, 49, 44-55.
[http://dx.doi.org/10.1016/j.semcancer.2017.07.001] [PMID: 28712719]
[75]
Siddiqui, K.; George, T.P.; Nawaz, S.S.; Yaslam, M.; Almogbel, E.; Al-Rubeaan, K. Significance of glycated LDL in different stages of diabetic nephropathy. Diabetes Metab. Syndr., 2019, 13(1), 548-552.
[http://dx.doi.org/10.1016/j.dsx.2018.11.023] [PMID: 30641763]
[76]
Mahdavifard, S.; Nakhjavani, M. Preventive effect of eucalyptol on the formation of aorta lesions in the diabetic-atherosclerotic rat. Int. J. Prev. Med., 2021, 12, 45.
[PMID: 34211676]
[77]
Al Saudi, R.M.; Kasabri, V.; Naffa, R.; Bulatova, N.; Bustanji, Y. Glycated LDL-C and glycated HDL-C in association with adiposity, blood and atherogenicity indices in metabolic syndrome patients with and without prediabetes. Ther. Adv. Endocrinol. Metab., 2018, 9(10), 311-323.
[http://dx.doi.org/10.1177/2042018818788198] [PMID: 30327717]
[78]
Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 2005, 54(6), 1615-1625.
[http://dx.doi.org/10.2337/diabetes.54.6.1615] [PMID: 15919781]
[79]
Yamagishi, S. Glycation. Jpn. J. Clin. Med., 2010, 68(5), 809-813.
[80]
Kanauchi, M.; Tsujimoto, N.; Hashimoto, T. Advanced glycation end products in nondiabetic patients with coronary artery disease. Diabetes Care, 2001, 24(9), 1620-1623.
[http://dx.doi.org/10.2337/diacare.24.9.1620] [PMID: 11522709]
[81]
Vistoli, G.; De Maddis, D.; Cipak, A.; Zarkovic, N.; Carini, M.; Aldini, G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic. Res., 2013, 47(sup1)(Suppl. 1), 3-27.
[http://dx.doi.org/10.3109/10715762.2013.815348] [PMID: 23767955]
[82]
Shen, C.; Li, Q.; Zhang, Y.C.; Ma, G.; Feng, Y.; Zhu, Q.; Dai, Q.; Chen, Z.; Yao, Y.; Chen, L.; Jiang, Y.; Liu, N. Advanced glycation endproducts increase EPC apoptosis and decrease nitric oxide release via MAPK pathways. Biomed pharmacother., 2010, 64(1), 35-43.
[83]
Cepas, V.; Collino, M.; Mayo, J.C.; Sainz, R.M.; Redox signaling and advanced glycation endproducts (AGEs) in diet-related diseases. Antioxidants (Basel, Switzerland), 2020, 9(2) ,142.
[84]
Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res., 2010, 107(9), 1058-1070.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[85]
Hunt, K.J.; Baker, N.; Cleary, P.; Backlund, J.Y.; Lyons, T.; Jenkins, A.; Virella, G.; Lopes-Virella, M.F. Oxidized LDL and AGE-LDL in circulating immune complexes strongly predict progression of carotid artery IMT in type 1 diabetes. Atherosclerosis, 2013, 231(2), 315-322.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.09.027] [PMID: 24267245]
[86]
Lopes-Virella, M.F.; Hunt, K.J.; Baker, N.L.; Lachin, J.; Nathan, D.M.; Virella, G. Levels of oxidized LDL and advanced glycation end products-modified LDL in circulating immune complexes are strongly associated with increased levels of carotid intima-media thickness and its progression in type 1 diabetes. Diabetes, 2011, 60(2), 582-589.
[http://dx.doi.org/10.2337/db10-0915] [PMID: 20980456]
[87]
Alique, M.; Luna, C.; Carracedo, J.; Ramírez, R. LDL biochemical modifications: a link between atherosclerosis and aging. Food Nutr. Res., 2015, 59(1), 29240.
[http://dx.doi.org/10.3402/fnr.v59.29240] [PMID: 26637360]
[88]
Younis, N.; Sharma, R.; Soran, H.; Charlton-Menys, V.; Elseweidy, M.; Durrington, P.N. Glycation as an atherogenic modification of LDL. Curr. Opin. Lipidol., 2008, 19(4), 378-384.
[http://dx.doi.org/10.1097/MOL.0b013e328306a057] [PMID: 18607185]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy