Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

CircRNAs as a Novel Class of Potential Diagnostic Biomarkers in Bipolar Disorders

Author(s): Reza Asemi, Amrollah Ebrahimi*, Michael R. Hamblin, Hamed Mirzaei and Zatollah Asemi*

Volume 31, Issue 34, 2024

Published on: 31 July, 2023

Page: [5567 - 5575] Pages: 9

DOI: 10.2174/0929867331666230713143322

Price: $65

Abstract

Bipolar disorder (BD) is a severe mood disorder with uncertain causes and debilitating signs and symptoms. Gene expression is crucial to the pathophysiology of BD and could be influenced by genetic or epigenetic factors, by either direct modification of mRNA templates or by regulation of post-transcriptional translation. Recent evidence has shown that several critical processes in psychiatric diseases, such as neuronal activity or plasticity, synaptic transmission, and neuronal depolarization, have all been linked to circular RNAs (circRNAs). The circRNA profile of neuronal cells, which may be easily ascertained by a liquid biopsy, may shed light on the molecular pathophysiology of psychiatric disorders, including BD. This approach could aid in future development in diagnosis and treatment. In this review, we provide an in-depth understanding of the roles of circRNAs in the pathophysiology of BD and offer new insight into their potential as emerging diagnostic tools and therapeutic targets.

[1]
McIntyre, R.S.; Berk, M.; Brietzke, E.; Goldstein, B.I.; López-Jaramillo, C.; Kessing, L.V.; Malhi, G.S.; Nierenberg, A.A.; Rosenblat, J.D.; Majeed, A.; Vieta, E.; Vinberg, M.; Young, A.H.; Mansur, R.B. Bipolar disorders. Lancet, 2020, 396(10265), 1841-1856.
[http://dx.doi.org/10.1016/S0140-6736(20)31544-0] [PMID: 33278937]
[2]
Shao, L.; Vawter, M.P. Shared gene expression alterations in schizophrenia and bipolar disorder. Biol. Psychiatry, 2008, 64(2), 89-97.
[http://dx.doi.org/10.1016/j.biopsych.2007.11.010] [PMID: 18191109]
[3]
Craddock, N.; Sklar, P. Genetics of bipolar disorder. Lancet, 2013, 381(9878), 1654-1662.
[http://dx.doi.org/10.1016/S0140-6736(13)60855-7] [PMID: 23663951]
[4]
Psychiatric GWAS Consortium Bipolar Disorder Working Group.. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet., 2011, 43(10), 977-983.
[http://dx.doi.org/10.1038/ng.943] [PMID: 21926972]
[5]
Stahl, E.A.; Breen, G.; Forstner, A.J.; McQuillin, A.; Ripke, S.; Trubetskoy, V.; Mattheisen, M.; Wang, Y.; Coleman, J.R.I.; Gaspar, H.A.; de Leeuw, C.A.; Steinberg, S.; Pavlides, J.M.W.; Trzaskowski, M.; Byrne, E.M.; Pers, T.H.; Holmans, P.A.; Richards, A.L.; Abbott, L.; Agerbo, E.; Akil, H.; Albani, D.; Alliey-Rodriguez, N.; Als, T.D.; Anjorin, A.; Antilla, V.; Awasthi, S.; Badner, J.A.; Bækvad-Hansen, M.; Barchas, J.D.; Bass, N.; Bauer, M.; Belliveau, R.; Bergen, S.E.; Pedersen, C.B.; Bøen, E.; Boks, M.P.; Boocock, J.; Budde, M.; Bunney, W.; Burmeister, M.; Bybjerg-Grauholm, J.; Byerley, W.; Casas, M.; Cerrato, F.; Cervantes, P.; Chambert, K.; Charney, A.W.; Chen, D.; Churchhouse, C.; Clarke, T.K.; Coryell, W.; Craig, D.W.; Cruceanu, C.; Curtis, D.; Czerski, P.M.; Dale, A.M.; de Jong, S.; Degenhardt, F.; Del-Favero, J.; DePaulo, J.R.; Djurovic, S.; Dobbyn, A.L.; Dumont, A.; Elvsåshagen, T.; Escott-Price, V.; Fan, C.C.; Fischer, S.B.; Flickinger, M.; Foroud, T.M.; Forty, L.; Frank, J.; Fraser, C.; Freimer, N.B.; Frisén, L.; Gade, K.; Gage, D.; Garnham, J.; Giambartolomei, C.; Pedersen, M.G.; Goldstein, J.; Gordon, S.D.; Gordon-Smith, K.; Green, E.K.; Green, M.J.; Greenwood, T.A.; Grove, J.; Guan, W.; Guzman-Parra, J.; Hamshere, M.L.; Hautzinger, M.; Heilbronner, U.; Herms, S.; Hipolito, M.; Hoffmann, P.; Holland, D.; Huckins, L.; Jamain, S.; Johnson, J.S.; Juréus, A.; Kandaswamy, R.; Karlsson, R.; Kennedy, J.L.; Kittel-Schneider, S.; Knowles, J.A.; Kogevinas, M.; Koller, A.C.; Kupka, R.; Lavebratt, C.; Lawrence, J.; Lawson, W.B.; Leber, M.; Lee, P.H.; Levy, S.E.; Li, J.Z.; Liu, C.; Lucae, S.; Maaser, A.; MacIntyre, D.J.; Mahon, P.B.; Maier, W.; Martinsson, L.; McCarroll, S.; McGuffin, P.; McInnis, M.G.; McKay, J.D.; Medeiros, H.; Medland, S.E.; Meng, F.; Milani, L.; Montgomery, G.W.; Morris, D.W.; Mühleisen, T.W.; Mullins, N.; Nguyen, H.; Nievergelt, C.M.; Adolfsson, A.N.; Nwulia, E.A.; O’Donovan, C.; Loohuis, L.M.O.; Ori, A.P.S.; Oruc, L.; Ösby, U.; Perlis, R.H.; Perry, A.; Pfennig, A.; Potash, J.B.; Purcell, S.M.; Regeer, E.J.; Reif, A.; Reinbold, C.S.; Rice, J.P.; Rivas, F.; Rivera, M.; Roussos, P.; Ruderfer, D.M.; Ryu, E.; Sánchez-Mora, C.; Schatzberg, A.F.; Scheftner, W.A.; Schork, N.J.; Shannon Weickert, C.; Shehktman, T.; Shilling, P.D.; Sigurdsson, E.; Slaney, C.; Smeland, O.B.; Sobell, J.L.; Søholm Hansen, C.; Spijker, A.T.; St Clair, D.; Steffens, M.; Strauss, J.S.; Streit, F.; Strohmaier, J.; Szelinger, S.; Thompson, R.C.; Thorgeirsson, T.E.; Treutlein, J.; Vedder, H.; Wang, W.; Watson, S.J.; Weickert, T.W.; Witt, S.H.; Xi, S.; Xu, W.; Young, A.H.; Zandi, P.; Zhang, P.; Zöllner, S.; Adolfsson, R.; Agartz, I.; Alda, M.; Backlund, L.; Baune, B.T.; Bellivier, F.; Berrettini, W.H.; Biernacka, J.M.; Blackwood, D.H.R.; Boehnke, M.; Børglum, A.D.; Corvin, A.; Craddock, N.; Daly, M.J.; Dannlowski, U.; Esko, T.; Etain, B.; Frye, M.; Fullerton, J.M.; Gershon, E.S.; Gill, M.; Goes, F.; Grigoroiu-Serbanescu, M.; Hauser, J.; Hougaard, D.M.; Hultman, C.M.; Jones, I.; Jones, L.A.; Kahn, R.S.; Kirov, G.; Landén, M.; Leboyer, M.; Lewis, C.M.; Li, Q.S.; Lissowska, J.; Martin, N.G.; Mayoral, F.; McElroy, S.L.; McIntosh, A.M.; McMahon, F.J.; Melle, I.; Metspalu, A.; Mitchell, P.B.; Morken, G.; Mors, O.; Mortensen, P.B.; Müller-Myhsok, B.; Myers, R.M.; Neale, B.M.; Nimgaonkar, V.; Nordentoft, M.; Nöthen, M.M.; O’Donovan, M.C.; Oedegaard, K.J.; Owen, M.J.; Paciga, S.A.; Pato, C.; Pato, M.T.; Posthuma, D.; Ramos-Quiroga, J.A.; Ribasés, M.; Rietschel, M.; Rouleau, G.A.; Schalling, M.; Schofield, P.R.; Schulze, T.G.; Serretti, A.; Smoller, J.W.; Stefansson, H.; Stefansson, K.; Stordal, E.; Sullivan, P.F.; Turecki, G.; Vaaler, A.E.; Vieta, E.; Vincent, J.B.; Werge, T.; Nurnberger, J.I.; Wray, N.R.; Di Florio, A.; Edenberg, H.J.; Cichon, S.; Ophoff, R.A.; Scott, L.J.; Andreassen, O.A.; Kelsoe, J.; Sklar, P. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet., 2019, 51(5), 793-803.
[http://dx.doi.org/10.1038/s41588-019-0397-8] [PMID: 31043756]
[6]
Cruceanu, C.; Ambalavanan, A.; Spiegelman, D.; Gauthier, J.; Lafrenière, R.G.; Dion, P.A.; Alda, M.; Turecki, G.; Rouleau, G.A. Family-based exome-sequencing approach identifies rare susceptibility variants for lithium-responsive bipolar disorder. Genome, 2013, 56(10), 634-640.
[http://dx.doi.org/10.1139/gen-2013-0081] [PMID: 24237345]
[7]
Goes, F.S.; Pirooznia, M.; Parla, J.S.; Kramer, M.; Ghiban, E.; Mavruk, S.; Chen, Y.C.; Monson, E.T.; Willour, V.L.; Karchin, R.; Flickinger, M.; Locke, A.E.; Levy, S.E.; Scott, L.J.; Boehnke, M.; Stahl, E.; Moran, J.L.; Hultman, C.M.; Landén, M.; Purcell, S.M.; Sklar, P.; Zandi, P.P.; McCombie, W.R.; Potash, J.B. Exome sequencing of familial bipolar disorder. JAMA Psychiatry, 2016, 73(6), 590-597.
[http://dx.doi.org/10.1001/jamapsychiatry.2016.0251] [PMID: 27120077]
[8]
Middleton, F.A.; Pato, C.N.; Gentile, K.L.; McGann, L.; Brown, A.M.; Trauzzi, M. Gene expression analysis of peripheral blood leukocytes from discordant sib-pairs with schizophrenia and bipolar disorder reveals points of convergence between genetic and functional genomic approaches. Am. J. Med. Genet. B Neuropsychiatr. Genet., 2005, 136B(1), 12-25.
[http://dx.doi.org/10.1002/ajmg.b.30171] [PMID: 15892139]
[9]
Cardamone, G.; Paraboschi, E.M.; Soldà, G.; Liberatore, G.; Rimoldi, V.; Cibella, J.; Airi, F.; Tisato, V.; Cantoni, C.; Gallia, F.; Gemmati, D.; Piccio, L.; Duga, S.; Nobile-Orazio, E.; Asselta, R. The circular RNA landscape in multiple sclerosis: Disease-specific associated variants and exon methylation shape circular RNA expression profile. Mult. Scler. Relat. Disord., 2023, 69, 104426.
[http://dx.doi.org/10.1016/j.msard.2022.104426] [PMID: 36446168]
[10]
Mahmoudi, E.; Green, M.J.; Cairns, M.J. Dysregulation of circRNA expression in the peripheral blood of individuals with schizophrenia and bipolar disorder. J. Mol. Med., 2021, 99(7), 981-991.
[http://dx.doi.org/10.1007/s00109-021-02070-6] [PMID: 33782720]
[11]
Ren, Z.; Chu, C.; Pang, Y.; Cai, H.; Jia, L. A circular RNA blood panel that differentiates Alzheimer’s disease from other dementia types. Biomark. Res., 2022, 10(1), 63.
[http://dx.doi.org/10.1186/s40364-022-00405-0] [PMID: 35982472]
[12]
Dorostgou, Z.; Yadegar, N.; Dorostgou, Z.; Khorvash, F.; Vakili, O. Novel insights into the role of circular RNAS in Parkinson disease: An emerging renaissance in the management of neurodegenerative diseases. J. Neurosci. Res., 2022, 100(9), 1775-1790.
[http://dx.doi.org/10.1002/jnr.25094] [PMID: 35642104]
[13]
Mao, Q.; Tian, L.; Wei, J.; Zhou, X.; Cheng, H.; Zhu, X.; Li, X.; Gao, Z.; Zhang, X.; Liang, L. Transcriptome analysis of microRNAs, circRNAs, and mRNAs in the dorsal root ganglia of paclitaxel-induced mice with neuropathic pain. Front. Mol. Neurosci., 2022, 15, 990260.
[http://dx.doi.org/10.3389/fnmol.2022.990260] [PMID: 36117915]
[14]
Özerdem, A.; Ceylan, D.; Can, G. Neurobiology of risk for bipolar disorder. Curr. Treat. Options Psychiatry, 2016, 3(4), 315-329.
[http://dx.doi.org/10.1007/s40501-016-0093-6] [PMID: 27867834]
[15]
Ashwal-Fluss, R.; Meyer, M.; Pamudurti, N.R.; Ivanov, A.; Bartok, O.; Hanan, M.; Evantal, N.; Memczak, S.; Rajewsky, N.; Kadener, S. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell, 2014, 56(1), 55-66.
[http://dx.doi.org/10.1016/j.molcel.2014.08.019] [PMID: 25242144]
[16]
Li, Z.; Huang, C.; Bao, C.; Chen, L.; Lin, M.; Wang, X.; Zhong, G.; Yu, B.; Hu, W.; Dai, L.; Zhu, P.; Chang, Z.; Wu, Q.; Zhao, Y.; Jia, Y.; Xu, P.; Liu, H.; Shan, G. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol., 2015, 22(3), 256-264.
[http://dx.doi.org/10.1038/nsmb.2959] [PMID: 25664725]
[17]
Zhang, X.O.; Wang, H.B.; Zhang, Y.; Lu, X.; Chen, L.L.; Yang, L. Complementary sequence-mediated exon circularization. Cell, 2014, 159(1), 134-147.
[http://dx.doi.org/10.1016/j.cell.2014.09.001] [PMID: 25242744]
[18]
Starke, S.; Jost, I.; Rossbach, O.; Schneider, T.; Schreiner, S.; Hung, L.H.; Bindereif, A. Exon circularization requires canonical splice signals. Cell Rep., 2015, 10(1), 103-111.
[http://dx.doi.org/10.1016/j.celrep.2014.12.002] [PMID: 25543144]
[19]
Bachmayr-Heyda, A.; Reiner, A.T.; Auer, K.; Sukhbaatar, N.; Aust, S.; Bachleitner-Hofmann, T.; Mesteri, I.; Grunt, T.W.; Zeillinger, R.; Pils, D. Correlation of circular RNA abundance with proliferation – exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis and normal human tissues. Sci. Rep., 2015, 5(1), 8057.
[http://dx.doi.org/10.1038/srep08057] [PMID: 25624062]
[20]
Li, Y.; Zheng, Q.; Bao, C.; Li, S.; Guo, W.; Zhao, J.; Chen, D.; Gu, J.; He, X.; Huang, S. Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res., 2015, 25(8), 981-984.
[http://dx.doi.org/10.1038/cr.2015.82] [PMID: 26138677]
[21]
Lukiw, W.J. Circular RNA (circRNA) in Alzheimer’s disease (AD). Front. Genet., 2013, 4, 307.
[http://dx.doi.org/10.3389/fgene.2013.00307] [PMID: 24427167]
[22]
Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; Loewer, A.; Ziebold, U.; Landthaler, M.; Kocks, C.; le Noble, F.; Rajewsky, N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441), 333-338.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[23]
Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441), 384-388.
[http://dx.doi.org/10.1038/nature11993] [PMID: 23446346]
[24]
Guo, J.U.; Agarwal, V.; Guo, H.; Bartel, D.P. Expanded identification and characterization of mammalian circular RNAs. Genome Biol., 2014, 15(7), 409.
[http://dx.doi.org/10.1186/s13059-014-0409-z] [PMID: 25070500]
[25]
Han, D.; Li, J.; Wang, H.; Su, X.; Hou, J.; Gu, Y.; Qian, C.; Lin, Y.; Liu, X.; Huang, M.; Li, N.; Zhou, W.; Yu, Y.; Cao, X. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology, 2017, 66(4), 1151-1164.
[http://dx.doi.org/10.1002/hep.29270] [PMID: 28520103]
[26]
Du, W.W.; Yang, W.; Liu, E.; Yang, Z.; Dhaliwal, P.; Yang, B.B. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res., 2016, 44(6), 2846-2858.
[http://dx.doi.org/10.1093/nar/gkw027] [PMID: 26861625]
[27]
You, X.; Vlatkovic, I.; Babic, A.; Will, T.; Epstein, I.; Tushev, G.; Akbalik, G.; Wang, M.; Glock, C.; Quedenau, C.; Wang, X.; Hou, J.; Liu, H.; Sun, W.; Sambandan, S.; Chen, T.; Schuman, E.M.; Chen, W. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat. Neurosci., 2015, 18(4), 603-610.
[http://dx.doi.org/10.1038/nn.3975] [PMID: 25714049]
[28]
Conn, S.J.; Pillman, K.A.; Toubia, J.; Conn, V.M.; Salmanidis, M.; Phillips, C.A.; Roslan, S.; Schreiber, A.W.; Gregory, P.A.; Goodall, G.J. The RNA binding protein quaking regulates formation of circRNAs. Cell, 2015, 160(6), 1125-1134.
[http://dx.doi.org/10.1016/j.cell.2015.02.014] [PMID: 25768908]
[29]
Yang, Y.; Fan, X.; Mao, M.; Song, X.; Wu, P.; Zhang, Y.; Jin, Y.; Yang, Y.; Chen, L.L.; Wang, Y.; Wong, C.C.L.; Xiao, X.; Wang, Z. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res., 2017, 27(5), 626-641.
[http://dx.doi.org/10.1038/cr.2017.31] [PMID: 28281539]
[30]
Legnini, I.; Di Timoteo, G.; Rossi, F.; Morlando, M.; Briganti, F.; Sthandier, O.; Fatica, A.; Santini, T.; Andronache, A.; Wade, M.; Laneve, P.; Rajewsky, N.; Bozzoni, I. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell, 2017, 66(1), 22-37.e9.
[http://dx.doi.org/10.1016/j.molcel.2017.02.017] [PMID: 28344082]
[31]
Rybak-Wolf, A.; Stottmeister, C.; Glažar, P.; Jens, M.; Pino, N.; Giusti, S.; Hanan, M.; Behm, M.; Bartok, O.; Ashwal-Fluss, R.; Herzog, M.; Schreyer, L.; Papavasileiou, P.; Ivanov, A.; Öhman, M.; Refojo, D.; Kadener, S.; Rajewsky, N. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell, 2015, 58(5), 870-885.
[http://dx.doi.org/10.1016/j.molcel.2015.03.027] [PMID: 25921068]
[32]
Sekar, S.; Liang, W.S. Circular RNA expression and function in the brain. Noncoding RNA Res., 2019, 4(1), 23-29.
[http://dx.doi.org/10.1016/j.ncrna.2019.01.001] [PMID: 30891534]
[33]
Hanan, M.; Soreq, H.; Kadener, S. CircRNAs in the brain. RNA Biol., 2017, 14(8), 1028-1034.
[http://dx.doi.org/10.1080/15476286.2016.1255398] [PMID: 27892769]
[34]
Luykx, J.J.; Giuliani, F.; Giuliani, G.; Veldink, J. Coding and non-coding RNA abnormalities in bipolar disorder. Genes, 2019, 10(11), 946.
[http://dx.doi.org/10.3390/genes10110946] [PMID: 31752442]
[35]
Dines, M.; Lamprecht, R. The role of ephs and ephrins in memory formation. Int. J. Neuropsychopharmacol., 2016, 19(4), pyv106.
[http://dx.doi.org/10.1093/ijnp/pyv106] [PMID: 26371183]
[36]
Dines, M.; Lamprecht, R. EphrinA4 mimetic peptide targeted to EphA binding site impairs the formation of long-term fear memory in lateral amygdala. Transl. Psychiatry, 2014, 4(9), e450.
[http://dx.doi.org/10.1038/tp.2014.76] [PMID: 25268254]
[37]
Attwood, B.K.; Bourgognon, J.M.; Patel, S.; Mucha, M.; Schiavon, E.; Skrzypiec, A.E.; Young, K.W.; Shiosaka, S.; Korostynski, M.; Piechota, M.; Przewlocki, R.; Pawlak, R. Neuropsin cleaves EphB2 in the amygdala to control anxiety. Nature, 2011, 473(7347), 372-375.
[http://dx.doi.org/10.1038/nature09938] [PMID: 21508957]
[38]
Shi, Y.; Song, R.; Wang, Z.; Zhang, H.; Zhu, J.; Yue, Y.; Zhao, Y.; Zhang, Z. Potential clinical value of circular RNAs as peripheral biomarkers for the diagnosis and treatment of major depressive disorder. EBioMedicine, 2021, 66, 103337.
[http://dx.doi.org/10.1016/j.ebiom.2021.103337] [PMID: 33862583]
[39]
Zimmerman, A.J.; Hafez, A.K.; Amoah, S.K.; Rodriguez, B.A.; Dell’Orco, M.; Lozano, E.; Hartley, B.J.; Alural, B.; Lalonde, J.; Chander, P.; Webster, M.J.; Perlis, R.H.; Brennand, K.J.; Haggarty, S.J.; Weick, J.; Perrone-Bizzozero, N.; Brigman, J.L.; Mellios, N. A psychiatric disease-related circular RNA controls synaptic gene expression and cognition. Mol. Psychiatry, 2020, 25(11), 2712-2727.
[http://dx.doi.org/10.1038/s41380-020-0653-4] [PMID: 31988434]
[40]
Yang, L.; Han, B.; Zhang, Z.; Wang, S.; Bai, Y.; Zhang, Y.; Tang, Y.; Du, L.; Xu, L.; Wu, F.; Zuo, L.; Chen, X.; Lin, Y.; Liu, K.; Ye, Q.; Chen, B.; Li, B.; Tang, T.; Wang, Y.; Shen, L.; Wang, G.; Ju, M.; Yuan, M.; Jiang, W.; Zhang, J.H.; Hu, G.; Wang, J.; Yao, H. Extracellular vesicle–mediated delivery of circular RNA SCMH1 promotes functional recovery in rodent and nonhuman primate ischemic stroke models. Circulation, 2020, 142(6), 556-574.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.045765] [PMID: 32441115]
[41]
Pan, R.Y.; Liu, P.; Zhou, H.T.; Sun, W.X.; Song, J.; Shu, J.; Cui, G.J.; Yang, Z.J.; Jia, E.Z. Circular RNAs promote TRPM3 expression by inhibiting hsa-miR-130a-3p in coronary artery disease patients. Oncotarget, 2017, 8(36), 60280-60290.
[http://dx.doi.org/10.18632/oncotarget.19941] [PMID: 28947970]
[42]
Haque, S.; Harries, L. Circular RNAs (circRNAs) in Health and Disease. Genes, 2017, 8(12), 353.
[http://dx.doi.org/10.3390/genes8120353] [PMID: 29182528]
[43]
Gardiner, E.; Beveridge, N.J.; Wu, J.Q.; Carr, V.; Scott, R.J.; Tooney, P.A.; Cairns, M.J. Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells. Mol. Psychiatry, 2012, 17(8), 827-840.
[http://dx.doi.org/10.1038/mp.2011.78] [PMID: 21727898]
[44]
Lin, R.; Lopez, J.P.; Cruceanu, C.; Pierotti, C.; Fiori, L.M.; Squassina, A.; Chillotti, C.; Dieterich, C.; Mellios, N.; Turecki, G. Circular RNA circCCNT2 is upregulated in the anterior cingulate cortex of individuals with bipolar disorder. Transl. Psychiatry, 2021, 11(1), 629.
[http://dx.doi.org/10.1038/s41398-021-01746-4] [PMID: 34893581]
[45]
Cruceanu, C.; Tan, P.P.C.; Rogic, S.; Lopez, J.P.; Torres-Platas, S.G.; Gigek, C.O.; Alda, M.; Rouleau, G.A.; Pavlidis, P.; Turecki, G. Transcriptome sequencing of the anterior cingulate in bipolar disorder: Dysregulation of G protein-coupled receptors. Am. J. Psychiatry, 2015, 172(11), 1131-1140.
[http://dx.doi.org/10.1176/appi.ajp.2015.14101279] [PMID: 26238605]
[46]
Liu, Y.; Guo, J.; Shen, K.; Wang, R.; Chen, C.; Liao, Z.; Zhou, J. Paclitaxel suppresses hepatocellular carcinoma tumorigenesis through regulating Circ-BIRC6/miR-877-5p/YWHAZ axis. OncoTargets Ther., 2020, 13, 9377-9388.
[http://dx.doi.org/10.2147/OTT.S261700] [PMID: 33061425]
[47]
Yu, Y.; Bian, L.; Liu, R.; Wang, Y.; Xiao, X. Circular RNA hsa_circ_0061395 accelerates hepatocellular carcinoma progression via regulation of the miR-877-5p/PIK3R3 axis. Cancer Cell Int., 2021, 21(1), 10.
[http://dx.doi.org/10.1186/s12935-020-01695-w] [PMID: 33407443]
[48]
Fu, Y.; He, W.; Zhou, C.; Fu, X.; Wan, Q.; He, L.; Wei, B. Bioinformatics analysis of circRNA expression and construction of “circRNA-miRNA-mRNA” competing endogenous RNAs networks in bipolar disorder patients. Front. Genet., 2021, 12, 718976.
[http://dx.doi.org/10.3389/fgene.2021.718976] [PMID: 34422020]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy