Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Asymmetric Dimethylarginine (ADMA) in Cardiovascular Disease, Cardiac Ischemia/reperfusion Injury, and Ischemic Non-obstructive Coronary Artery Disease: Biochemical and Pharmacological Implications

Author(s): Francesco Corradi, Benedetta Bucciarelli, Francesco Bianco and Tonino Bucciarelli*

Volume 21, Issue 11, 2024

Published on: 26 September, 2023

Page: [1965 - 1984] Pages: 20

DOI: 10.2174/1570180820666230613163447

Price: $65

Abstract

Several studies have shown that high plasma concentrations of asymmetric dimethylarginine (ADMA), a known endogenous competitive inhibitor of endothelial nitric oxide synthase (eNOS), correlate with the severity of coronary artery disease (CAD), with worsening of cardiac ischemia/reperfusion (I/R) injury and coronary atherosclerosis. It is believed that it may be an important risk factor for myocardial infarction. ADMA, when in high concentrations, can determine a significant decrease in the synthesis and bioavailability of NO (Nitric oxide) and therefore alter the mechanisms of regulation of coronary vasodilation and vasomotor function of epicardial coronary arteries. Higher serum ADMA concentration is associated with worsening of post-ischemic remodeling since coronary angiogenesis, vasculogenesis, and collateral coronary growth are seriously impaired. In addition, there are reasons to believe that elevated plasma ADMA levels are related to the development of diseases affecting coronary microcirculation, such as ischemic non-obstructive coronary artery disease (INOCA). With the aim of providing the pharmacologist engaged in the design and discovery of new ADMA-lowering drugs with a complete examination of the subject, in this review, we discuss the most important studies related to the correlations between serum ADMA levels and cardiovascular diseases mentioned above. In addition, we critically discuss the main aspects of enzymology, synthesis, and metabolism of ADMA as a prerequisite for understanding the molecular mechanisms through which high concentrations of ADMA could contribute to promoting cardiovascular diseases. ADMA represents a new target for pharmacological modulation of cardiovascular endothelial function and therefore, there is a possibility of using selective pharmacological ADMA lowering drugs in cardiovascular disease with endothelial dysfunction and high plasma ADMA levels.

[1]
Leone, A.; Moncada, S.; Vallance, P.; Calver, A.; Collier, J. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet, 1992, 339(8793), 572-575.
[http://dx.doi.org/10.1016/0140-6736(92)90865-Z] [PMID: 1347093]
[2]
Shu, X.; Keller, T.C.S., IV; Begandt, D.; Butcher, J.T.; Biwer, L.; Keller, A.S.; Columbus, L.; Isakson, B.E. Endothelial nitric oxide synthase in the microcirculation. Cell. Mol. Life Sci., 2015, 72(23), 4561-4575.
[http://dx.doi.org/10.1007/s00018-015-2021-0] [PMID: 26390975]
[3]
Tejero, J.; Shiva, S.; Gladwin, M.T. Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol. Rev., 2019, 99(1), 311-379.
[http://dx.doi.org/10.1152/physrev.00036.2017] [PMID: 30379623]
[4]
Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev., 2007, 87(1), 315-424.
[http://dx.doi.org/10.1152/physrev.00029.2006] [PMID: 17237348]
[5]
Garcia, V.; Sessa, W.C.; Endothelial, N.O.S. Endothelial NOS: Perspective and recent developments. Br. J. Pharmacol., 2019, 176(2), 189-196.
[http://dx.doi.org/10.1111/bph.14522] [PMID: 30341769]
[6]
Vanhoutte, P.M.; Shimokawa, H.; Feletou, M.; Tang, E.H.C. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol., 2017, 219(1), 22-96.
[http://dx.doi.org/10.1111/apha.12646] [PMID: 26706498]
[7]
Mangiacapra, F.; Viscusi, M.M.; Verolino, G.; Paolucci, L.; Nusca, A.; Melfi, R.; Ussia, G.P.; Grigioni, F. Invasive assessment of coronary microvascular function. J. Clin. Med., 2021, 11(1), 228.
[http://dx.doi.org/10.3390/jcm11010228] [PMID: 35011968]
[8]
Cziráki, A.; Lenkey, Z.; Sulyok, E.; Szokodi, I.; Koller, A. L-arginine-nitric oxide-asymmetric dimethylarginine pathway and the coronary circulation: Translation of basic science results to clinical practice. Front. Pharmacol., 2020, 11, 569914.
[http://dx.doi.org/10.3389/fphar.2020.569914] [PMID: 33117166]
[9]
Tsikas, D.; Bollenbach, A.; Hanff, E.; Kayacelebi, A.A. Asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and homoarginine (hArg): The ADMA, SDMA and hArg paradoxes. Cardiovasc. Diabetol., 2018, 17(1), 1.
[http://dx.doi.org/10.1186/s12933-017-0656-x] [PMID: 29301528]
[10]
Hu, H.; Qian, K.; Ho, M.C.; Zheng, Y.G. Small molecule inhibitors of protein arginine methyltransferases. Expert Opin. Investig. Drugs, 2016, 25(3), 335-358.
[http://dx.doi.org/10.1517/13543784.2016.1144747] [PMID: 26789238]
[11]
Murphy, R.; Tommasi, S.; Lewis, B.; Mangoni, A. Inhibitors of the hydrolytic enzyme dimethylarginine dimethylaminohydrolase (DDAH): Discovery, synthesis and development. Molecules, 2016, 21(5), 615.
[http://dx.doi.org/10.3390/molecules21050615] [PMID: 27187323]
[12]
Rodionov, R.N.; Jarzebska, N.; Weiss, N.; Lentz, S.R. AGXT2: A promiscuous aminotransferase. Trends Pharmacol. Sci., 2014, 35(11), 575-582.
[http://dx.doi.org/10.1016/j.tips.2014.09.005] [PMID: 25294000]
[13]
Tain, Y.L.; Hsu, C.N. Toxic dimethylarginines: Asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). Toxins, 2017, 9(3), 92.
[http://dx.doi.org/10.3390/toxins9030092] [PMID: 28272322]
[14]
Morales, Y.; Cáceres, T.; May, K.; Hevel, J.M. Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Arch. Biochem. Biophys., 2016, 590, 138-152.
[http://dx.doi.org/10.1016/j.abb.2015.11.030] [PMID: 26612103]
[15]
Tran, N.; Garcia, T.; Aniqa, M.; Ali, S.; Ally, A.; Nauli, S.M. Endothelial nitric oxide synthase (eNOS) and the cardiovascular system: In physiology and in disease states. Am. J. Biomed. Sci. Res., 2022, 15(2), 153-177.
[PMID: 35072089]
[16]
Tain, Y.L.; Hsu, C.N. Targeting on asymmetric dimethylarginine-related nitric oxide-reactive oxygen species imbalance to reprogram the development of hypertension. Int. J. Mol. Sci., 2016, 17(12), 2020.
[http://dx.doi.org/10.3390/ijms17122020] [PMID: 27918455]
[17]
Anderstam, B.; Katzarski, K.; Bergström, J. Serum levels of NG, NG-dimethyl-L-arginine, a potential endogenous nitric oxide inhibitor in dialysis patients. J. Am. Soc. Nephrol., 1997, 8(9), 1437-1442.
[http://dx.doi.org/10.1681/ASN.V891437] [PMID: 9294836]
[18]
Bełtowski, J.; Kedra, A. Asymmetric dimethylarginine (ADMA) as a target for pharmacotherapy. Pharmacol. Rep., 2006, 58(2), 159-178.
[PMID: 16702618]
[19]
Stuehr, D.J.; Haque, M.M. Nitric oxide synthase enzymology in the 20 years after the Nobel Prize. Br. J. Pharmacol., 2019, 176(2), 177-188.
[http://dx.doi.org/10.1111/bph.14533] [PMID: 30402946]
[20]
Gebhart, V.; Reiß, K.; Kollau, A.; Mayer, B.; Gorren, A.C.F. Site and mechanism of uncoupling of nitric-oxide synthase: Uncoupling by monomerization and other misconceptions. Nitric Oxide, 2019, 89, 14-21.
[http://dx.doi.org/10.1016/j.niox.2019.04.007] [PMID: 31022534]
[21]
Caldwell, R.W.; Rodriguez, P.C.; Toque, H.A.; Narayanan, S.P.; Caldwell, R.B. Arginase: A multifaceted enzyme important in health and disease. Physiol. Rev., 2018, 98(2), 641-665.
[http://dx.doi.org/10.1152/physrev.00037.2016] [PMID: 29412048]
[22]
Beckman, J.S.; Beckman, T.W.; Chen, J.; Marshall, P.A.; Freeman, B.A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci., 1990, 87(4), 1620-1624.
[http://dx.doi.org/10.1073/pnas.87.4.1620] [PMID: 2154753]
[23]
Katusic, Z.S.; d’Uscio, L.V.; Nath, K.A. Vascular protection by tetrahydrobiopterin: Progress and therapeutic prospects. Trends Pharmacol. Sci., 2009, 30(1), 48-54.
[http://dx.doi.org/10.1016/j.tips.2008.10.003] [PMID: 19042039]
[24]
Hausenloy, D.J.; Chilian, W.; Crea, F.; Davidson, S.M.; Ferdinandy, P.; Garcia-Dorado, D.; van Royen, N.; Schulz, R.; Heusch, G. The coronary circulation in acute myocardial ischaemia/reperfusion injury: A target for cardioprotection. Cardiovasc. Res., 2019, 115(7), 1143-1155.
[http://dx.doi.org/10.1093/cvr/cvy286] [PMID: 30428011]
[25]
Ungvari, Z.; Csiszar, A.; Bagi, Z.; Koller, A. Impaired nitric oxide-mediated flow-induced coronary dilation in hyperhomocysteinemia: Morphological and functional evidence for increased peroxynitrite formation. Am. J. Pathol., 2002, 161(1), 145-153.
[http://dx.doi.org/10.1016/S0002-9440(10)64166-1] [PMID: 12107099]
[26]
Ku, D.D. Coronary vascular reactivity after acute myocardial ischemia. Science, 1982, 218(4572), 576-578.
[http://dx.doi.org/10.1126/science.7123259] [PMID: 7123259]
[27]
Fuhrmann, J.; Clancy, K.W.; Thompson, P.R. Chemical biology of protein arginine modifications in epigenetic regulation. Chem. Rev., 2015, 115(11), 5413-5461.
[http://dx.doi.org/10.1021/acs.chemrev.5b00003] [PMID: 25970731]
[28]
Fulton, M.D.; Brown, T.; Zheng, Y.G. The biological axis of protein arginine methylation and asymmetric dimethylarginine. Int. J. Mol. Sci., 2019, 20(13), 3322.
[http://dx.doi.org/10.3390/ijms20133322] [PMID: 31284549]
[29]
Rees, D.D.; Palmer, R.M.J.; Schulz, R.; Hodson, H.F.; Moncada, S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br. J. Pharmacol., 1990, 101(3), 746-752.
[http://dx.doi.org/10.1111/j.1476-5381.1990.tb14151.x] [PMID: 1706208]
[30]
Couto e Silva, A.; Wu, C.Y.C.; Citadin, C.T.; Clemons, G.A.; Possoit, H.E.; Grames, M.S.; Lien, C.F.; Minagar, A.; Lee, R.H.C.; Frankel, A.; Lin, H.W. Protein arginine methyltransferases in cardiovascular and neuronal function. Mol. Neurobiol., 2020, 57(3), 1716-1732.
[http://dx.doi.org/10.1007/s12035-019-01850-z] [PMID: 31823198]
[31]
Yang, Y.; Bedford, M.T. Protein arginine methyltransferases and cancer. Nat. Rev. Cancer, 2013, 13(1), 37-50.
[http://dx.doi.org/10.1038/nrc3409] [PMID: 23235912]
[32]
Feng, Y.; Maity, R.; Whitelegge, J.P.; Hadjikyriacou, A.; Li, Z.; Zurita-Lopez, C.; Al-Hadid, Q.; Clark, A.T.; Bedford, M.T.; Masson, J.Y.; Clarke, S.G. Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions. J. Biol. Chem., 2013, 288(52), 37010-37025.
[http://dx.doi.org/10.1074/jbc.M113.525345] [PMID: 24247247]
[33]
Dhar, S.; Vemulapalli, V.; Patananan, A.N.; Huang, G.L.; Di Lorenzo, A.; Richard, S.; Comb, M.J.; Guo, A.; Clarke, S.G.; Bedford, M.T. Loss of the major Type I arginine methyltransferase PRMT1 causes substrate scavenging by other PRMTs. Sci. Rep., 2013, 3(1), 1311.
[http://dx.doi.org/10.1038/srep01311] [PMID: 23419748]
[34]
Hadjikyriacou, A.; Yang, Y.; Espejo, A.; Bedford, M.T.; Clarke, S.G. Unique features of human protein arginine methyltransferase 9 (PRMT9) and its substrate RNA splicing factor SF3B2. J. Biol. Chem., 2015, 290(27), 16723-16743.
[http://dx.doi.org/10.1074/jbc.M115.659433] [PMID: 25979344]
[35]
Teerlink, T. ADMA metabolism and clearance. Vasc. Med., 2005, 10(S1), S73-S81.
[http://dx.doi.org/10.1177/1358836X0501000111] [PMID: 16444872]
[36]
Ogawa, T.; Kimoto, M.; Sasaoka, K. Occurrence of a new enzyme catalyzing the direct conversion of NG,NG-dimethyl-L-arginine to L-citrulline in rats. Biochem. Biophys. Res. Commun., 1987, 148(2), 671-677.
[http://dx.doi.org/10.1016/0006-291X(87)90929-6] [PMID: 3689365]
[37]
Tran, C.T.L.; Leiper, J.M.; Vallance, P. The DDAH/ADMA/NOS pathway. Atheroscler. Suppl., 2003, 4(4), 33-40.
[http://dx.doi.org/10.1016/S1567-5688(03)00032-1] [PMID: 14664901]
[38]
Leiper, J.; Murray-Rust, J.; McDonald, N.; Vallance, P. S -nitrosylation of dimethylarginine dimethylaminohydrolase regulates enzyme activity: Further interactions between nitric oxide synthase and dimethylarginine dimethylaminohydrolase. Proc. Natl. Acad. Sci., 2002, 99(21), 13527-13532.
[http://dx.doi.org/10.1073/pnas.212269799] [PMID: 12370443]
[39]
Hong, L.; Fast, W. Inhibition of human dimethylarginine dimethylaminohydrolase-1 by S-nitroso-L-homocysteine and hydrogen peroxide. Analysis, quantification, and implications for hyperhomocysteinemia. J. Biol. Chem., 2007, 282(48), 34684-34692.
[http://dx.doi.org/10.1074/jbc.M707231200] [PMID: 17895252]
[40]
Schwedhelm, E.; Böger, R.H. The role of asymmetric and symmetric dimethylarginines in renal disease. Nat. Rev. Nephrol., 2011, 7(5), 275-285.
[http://dx.doi.org/10.1038/nrneph.2011.31] [PMID: 21445101]
[41]
Leiper, J.; Nandi, M.; Torondel, B.; Murray-Rust, J.; Malaki, M.; O’Hara, B.; Rossiter, S.; Anthony, S.; Madhani, M.; Selwood, D.; Smith, C.; Wojciak-Stothard, B.; Rudiger, A.; Stidwill, R.; McDonald, N.Q.; Vallance, P. Disruption of methylarginine metabolism impairs vascular homeostasis. Nat. Med., 2007, 13(2), 198-203.
[http://dx.doi.org/10.1038/nm1543] [PMID: 17273169]
[42]
Rodionov, R.N.; Jarzebska, N.; Burdin, D.; Todorov, V.; Martens-Lobenhoffer, J.; Hofmann, A.; Kolouschek, A.; Cordasic, N.; Jacobi, J.; Rubets, E.; Morawietz, H.; O’Sullivan, J.F.; Markov, A.G.; Bornstein, S.R.; Hilgers, K.; Maas, R.; Pfluecke, C.; Chen, Y.; Bode-Böger, S.M.; Hugo, C.P.M.; Hohenstein, B.; Weiss, N. Overexpression of alanine-glyoxylate aminotransferase 2 protects from asymmetric dimethylarginine-induced endothelial dysfunction and aortic remodeling. Sci. Rep., 2022, 12(1), 9381.
[http://dx.doi.org/10.1038/s41598-022-13169-2] [PMID: 35672381]
[43]
Dayoub, H.; Rodionov, R.N.; Lynch, C.; Cooke, J.P.; Arning, E.; Bottiglieri, T.; Lentz, S.R.; Faraci, F.M. Overexpression of dimethylarginine dimethylaminohydrolase inhibits asymmetric dimethylarginine-induced endothelial dysfunction in the cerebral circulation. Stroke, 2008, 39(1), 180-184.
[http://dx.doi.org/10.1161/STROKEAHA.107.490631] [PMID: 18063827]
[44]
Jacobi, J.; Maas, R.; Cardounel, A.J.; Arend, M.; Pope, A.J.; Cordasic, N.; Heusinger-Ribeiro, J.; Atzler, D.; Strobel, J.; Schwedhelm, E.; Böger, R.H.; Hilgers, K.F. Dimethylarginine dimethylaminohydrolase overexpression ameliorates atherosclerosis in apolipoprotein E-deficient mice by lowering asymmetric dimethylarginine. Am. J. Pathol., 2010, 176(5), 2559-2570.
[http://dx.doi.org/10.2353/ajpath.2010.090614] [PMID: 20348244]
[45]
Dayoub, H.; Achan, V.; Adimoolam, S.; Jacobi, J.; Stuehlinger, M.C.; Wang, B.; Tsao, P.S.; Kimoto, M.; Vallance, P.; Patterson, A.J.; Cooke, J.P. Dimethylarginine dimethylaminohydrolase regulates nitric oxide synthesis: genetic and physiological evidence. Circulation, 2003, 108(24), 3042-3047.
[http://dx.doi.org/10.1161/01.CIR.0000101924.04515.2E] [PMID: 14638548]
[46]
Jacobi, J.; Sydow, K.; von Degenfeld, G.; Zhang, Y.; Dayoub, H.; Wang, B.; Patterson, A.J.; Kimoto, M.; Blau, H.M.; Cooke, J.P. Overexpression of dimethylarginine dimethylaminohydrolase reduces tissue asymmetric dimethylarginine levels and enhances angiogenesis. Circulation, 2005, 111(11), 1431-1438.
[http://dx.doi.org/10.1161/01.CIR.0000158487.80483.09] [PMID: 15781754]
[47]
Stühlinger, M.; Conci, E.; Haubner, B.; Stocker, E.; Schwaighofer, J.; Cooke, J.; Tsao, P.; Pachinger, O.; Metzler, B. Asymmetric dimethyl l-Arginine (ADMA) is a critical regulator of myocardial reperfusion injury. Cardiovasc. Res., 2007, 75(2), 417-425.
[http://dx.doi.org/10.1016/j.cardiores.2007.04.030] [PMID: 17559823]
[48]
Tanaka, M.; Sydow, K.; Gunawan, F.; Jacobi, J.; Tsao, P.S.; Robbins, R.C.; Cooke, J.P. Dimethylarginine dimethylaminohydrolase overexpression suppresses graft coronary artery disease. Circulation, 2005, 112(11), 1549-1556.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.537670] [PMID: 16144995]
[49]
Ogawa, T.; Kimoto, M.; Watanabe, H.; Sasaoka, K. Metabolism of NG,NG- and NG,NG-dimethylarginine in rats. Arch. Biochem. Biophys., 1987, 252(2), 526-537.
[http://dx.doi.org/10.1016/0003-9861(87)90060-9] [PMID: 3101600]
[50]
Ogawa, T.; Kimoto, M.; Sasaoka, K. Dimethylarginine:Pyruvate aminotransferase in rats. Purification, properties, and identity with alanine:Glyoxylate aminotransferase 2. J. Biol. Chem., 1990, 265(34), 20938-20945.
[http://dx.doi.org/10.1016/S0021-9258(17)45307-5] [PMID: 2123486]
[51]
Rodionov, R.N.; Murry, D.J.; Vaulman, S.F.; Stevens, J.W.; Lentz, S.R. Human alanine-glyoxylate aminotransferase 2 lowers asymmetric dimethylarginine and protects from inhibition of nitric oxide production. J. Biol. Chem., 2010, 285(8), 5385-5391.
[http://dx.doi.org/10.1074/jbc.M109.091280] [PMID: 20018850]
[52]
Caplin, B.; Wang, Z.; Slaviero, A.; Tomlinson, J.; Dowsett, L.; Delahaye, M.; Salama, A.; Wheeler, D.C.; Leiper, J. Alanine-glyoxylate aminotransferase-2 metabolizes endogenous methylarginines, regulates NO, and controls blood pressure. Arterioscler. Thromb. Vasc. Biol., 2012, 32(12), 2892-2900.
[http://dx.doi.org/10.1161/ATVBAHA.112.254078] [PMID: 23023372]
[53]
Jarzebska, N.; Mangoni, A.A.; Martens-Lobenhoffer, J.; Bode-Böger, S.M.; Rodionov, R.N. The second life of methylarginines as cardiovascular targets. Int. J. Mol. Sci., 2019, 20(18), 4592.
[http://dx.doi.org/10.3390/ijms20184592] [PMID: 31533264]
[54]
Cardounel, A.J.; Cui, H.; Samouilov, A.; Johnson, W.; Kearns, P.; Tsai, A.L.; Berka, V.; Zweier, J.L. Evidence for the pathophysiological role of endogenous methylarginines in regulation of endothelial NO production and vascular function. J. Biol. Chem., 2007, 282(2), 879-887.
[http://dx.doi.org/10.1074/jbc.M603606200] [PMID: 17082183]
[55]
Vallance, P.; Leiper, J. Cardiovascular biology of the asymmetric dimethylarginine:dimethylarginine dimethylaminohydrolase pathway. Arterioscler. Thromb. Vasc. Biol., 2004, 24(6), 1023-1030.
[http://dx.doi.org/10.1161/01.ATV.0000128897.54893.26] [PMID: 15105281]
[56]
Németh, B.; Ajtay, Z.; Hejjel, L.; Ferenci, T.; Ábrám, Z.; Murányi, E.; Kiss, I. The issue of plasma asymmetric dimethylarginine reference range – A systematic review and meta-analysis. PLoS One, 2017, 12(5), e0177493.
[http://dx.doi.org/10.1371/journal.pone.0177493] [PMID: 28494019]
[57]
Teerlink, T.; Luo, Z.; Palm, F.; Wilcox, C.S. Cellular ADMA: Regulation and action. Pharmacol. Res., 2009, 60(6), 448-460.
[http://dx.doi.org/10.1016/j.phrs.2009.08.002] [PMID: 19682580]
[58]
Mammedova, J.T.; Sokolov, A.V.; Freidlin, I.S.; Starikova, E.A. The mechanisms of L-arginine metabolism disorder in endothelial cells. Biochemistry, 2021, 86(2), 146-155.
[http://dx.doi.org/10.1134/S0006297921020036] [PMID: 33832413]
[59]
Leiper, J.; Vallance, P. Biological significance of endogenous methylarginines that inhibit nitric oxide synthases. Cardiovasc. Res., 1999, 43(3), 542-548.
[http://dx.doi.org/10.1016/S0008-6363(99)00162-5] [PMID: 10690326]
[60]
Suda, O.; Tsutsui, M.; Morishita, T.; Tasaki, H.; Ueno, S.; Nakata, S.; Tsujimoto, T.; Toyohira, Y.; Hayashida, Y.; Sasaguri, Y.; Ueta, Y.; Nakashima, Y.; Yanagihara, N. Asymmetric dimethylarginine produces vascular lesions in endothelial nitric oxide synthase-deficient mice: Involvement of renin-angiotensin system and oxidative stress. Arterioscler. Thromb. Vasc. Biol., 2004, 24(9), 1682-1688.
[http://dx.doi.org/10.1161/01.ATV.0000136656.26019.6e] [PMID: 15217805]
[61]
El-Mahdy, M.A.; Ewees, M.G.; Eid, M.S.; Mahgoup, E.M.; Khaleel, S.A.; Zweier, J.L. Electronic cigarette exposure causes vascular endothelial dysfunction due to NADPH oxidase activation and eNOS uncoupling. Am. J. Physiol. Heart Circ. Physiol., 2022, 322(4), H549-H567.
[http://dx.doi.org/10.1152/ajpheart.00460.2021] [PMID: 35089811]
[62]
Pope, A.J.; Karuppiah, K.; Cardounel, A.J. Role of the PRMT–DDAH–ADMA axis in the regulation of endothelial nitric oxide production. Pharmacol. Res., 2009, 60(6), 461-465.
[http://dx.doi.org/10.1016/j.phrs.2009.07.016] [PMID: 19682581]
[63]
Tsikas, D.; Wu, G. Homoarginine, arginine, and relatives: Analysis, metabolism, transport, physiology, and pathology. Amino Acids, 2015, 47(9), 1697-1702.
[http://dx.doi.org/10.1007/s00726-015-2055-5] [PMID: 26210755]
[64]
Alpoim, P.N.; Sousa, L.P.N.; Mota, A.P.L.; Rios, D.R.A.; Dusse, L.M.S. Asymmetric Dimethylarginine (ADMA) in cardiovascular and renal disease. Clin. Chim. Acta, 2015, 440, 36-39.
[http://dx.doi.org/10.1016/j.cca.2014.11.002] [PMID: 25444745]
[65]
Król, M.; Kepinska, M. Human nitric oxide synthase—its functions, polymorphisms, and inhibitors in the context of inflammation, diabetes and cardiovascular diseases. Int. J. Mol. Sci., 2020, 22(1), 56.
[http://dx.doi.org/10.3390/ijms22010056] [PMID: 33374571]
[66]
Kawashima, S.; Yokoyama, M. Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2004, 24(6), 998-1005.
[http://dx.doi.org/10.1161/01.ATV.0000125114.88079.96] [PMID: 15001455]
[67]
Sibal, L.C.; Agarwal, S.D.; Home, P.H.; Boger, R. The role of asymmetric dimethylarginine (ADMA) in endothelial dysfunction and cardiovascular disease. Curr. Cardiol. Rev., 2010, 6(2), 82-90.
[http://dx.doi.org/10.2174/157340310791162659] [PMID: 21532773]
[68]
Maas, R.; Dentz, L.; Schwedhelm, E.; Thoms, W.; Kuss, O.; Hiltmeyer, N.; Haddad, M.; Klöss, T.; Standl, T.; Böger, R.H. Elevated plasma concentrations of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine predict adverse events in patients undergoing noncardiac surgery. Crit. Care Med., 2007, 35(8), 1876-1881.
[http://dx.doi.org/10.1097/01.CCM.0000277038.11630.71] [PMID: 17581491]
[69]
Vassiliadis, E.; Barascuk, N.; Didangelos, A.; Karsdal, M.A. Novel cardiac-specific biomarkers and the cardiovascular continuum. Biomark. Insights, 2012, 7, BMI.S9536.
[http://dx.doi.org/10.4137/BMI.S9536] [PMID: 22577298]
[70]
Owczarek, D.; Cibor, D.; Mach, T. Asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), arginine, and 8-iso-prostaglandin F2α (8-iso-PGF2α) level in patients with inflammatory bowel diseases. Inflamm. Bowel Dis., 2010, 16(1), 52-57.
[http://dx.doi.org/10.1002/ibd.20994] [PMID: 19575355]
[71]
Riccioni, G.; Scotti, L.; D’Orazio, N.; Gallina, S.; Speziale, G.; Speranza, L.; Bucciarelli, T. ADMA/SDMA in elderly subjects with asymptomatic carotid atherosclerosis: values and site-specific association. Int. J. Mol. Sci., 2014, 15(4), 6391-6398.
[http://dx.doi.org/10.3390/ijms15046391] [PMID: 24739810]
[72]
Riccioni, G.; Bucciarelli, V.; Scotti, L.; Aceto, A.; D Orazio, N.; Di Ilio, E.; Bucciarelli, T. Relationship between asymmetric dimethylarginine and asymptomatic carotid atherosclerosis. J. Biol. Regul. Homeost. Agents, 2010, 24(3), 351-358.
[PMID: 20846483]
[73]
Furuki, K.; Adachi, H.; Enomoto, M.; Otsuka, M.; Fukami, A.; Kumagae, S.; Matsuoka, H.; Nanjo, Y.; Kakuma, T.; Imaizumi, T. Plasma level of asymmetric dimethylarginine (ADMA) as a predictor of carotid intima-media thickness progression: six-year prospective study using carotid ultrasonography. Hypertens. Res., 2008, 31(6), 1185-1189.
[http://dx.doi.org/10.1291/hypres.31.1185] [PMID: 18716367]
[74]
Speranza, L.; Pesce, M.; Franceschelli, S.; Bucciarelli, T.; Gallina, S.; Riccioni, G.; Patruno, A.; Felaco, M. The biological evaluation of ADMA SDMA and eNOS in patients with ACHF. Front. Biosci., 2013, E5(2), 551-557.
[http://dx.doi.org/10.2741/E637] [PMID: 23277011]
[75]
Riccioni, G.; Speranza, L.; Scotti, L.; Bucciarelli, V.; Di Ilio, E.; D’Orazio, N.; Pesce, M.; Aceto, A.; Sorrenti, V.; Frigiola, A.; Bucciarelli, T. The effect of pharmacological treatment on ADMA in patients with heart failure. Front. Biosci., 2011, E3(4), 1310-1314.
[http://dx.doi.org/10.2741/e334] [PMID: 21622137]
[76]
Ikenaka, K.; Maeda, Y.; Hotta, Y.; Nagano, S.; Yamada, S.; Ito, D.; Torii, R.; Kakuda, K.; Tatebe, H.; Atsuta, N.; Aguirre, C.; Kimura, Y.; Baba, K.; Tokuda, T.; Katsuno, M.; Kimura, K.; Sobue, G.; Mochizuki, H. Serum asymmetric dimethylarginine level correlates with the progression and prognosis of amyotrophic lateral sclerosis. Eur. J. Neurol., 2022, 29(5), 1410-1416.
[http://dx.doi.org/10.1111/ene.15254] [PMID: 35128793]
[77]
Singh, I.; Kim, J.; Saxena, N.; Choi, S.; Islam, S.M.T.; Singh, A.K.; Khan, M.; Won, J. Vascular and immunopathological role of asymmetric dimethylarginine (ADMA) in experimental autoimmune encephalomyelitis. Immunology, 2021, 164(3), 602-616.
[http://dx.doi.org/10.1111/imm.13396] [PMID: 34310708]
[78]
Qin, Z.; Tang, L.; Huang, Q.; Chen, Y.; Zhong, W.; Tang, X. A systematic review of the correlation between serum asymmetric dimethylarginine, carotid atherosclerosis and ischaemic stroke. Eur. J. Clin. Invest., 2021, 51(8), e13558.
[http://dx.doi.org/10.1111/eci.13558] [PMID: 33756002]
[79]
Kozlova, A.A.; Ragavan, V.N.; Jarzebska, N.; Lukianova, I.V.; Bikmurzina, A.E.; Rubets, E.; Suzuki-Yamamoto, T.; Kimoto, M.; Mangoni, A.A.; Gainetdinov, R.R.; Weiss, N.; Bauer, M.; Markov, A.G.; Rodionov, R.N.; Bernhardt, N. Divergent dimethylarginine dimethylaminohydrolase isoenzyme expression in the central nervous system. Cell. Mol. Neurobiol., 2022, 42(7), 2273-2288.
[http://dx.doi.org/10.1007/s10571-021-01101-7] [PMID: 34014421]
[80]
Smith, C.L.; Anthony, S.; Hubank, M.; Leiper, J.M.; Vallance, P. Effects of ADMA upon gene expression: An insight into the pathophysiological significance of raised plasma ADMA. PLoS Med., 2005, 2(10), e264.
[http://dx.doi.org/10.1371/journal.pmed.0020264] [PMID: 16190779]
[81]
Zheng, N.; Wang, K.; He, J.; Qiu, Y.; Xie, G.; Su, M.; Jia, W.; Li, H. Effects of ADMA on gene expression and metabolism in serum-starved LoVo cells. Sci. Rep., 2016, 6(1), 25892.
[http://dx.doi.org/10.1038/srep25892] [PMID: 27180883]
[82]
Mittermayer, F.; Krzyzanowska, K.; Exner, M.; Mlekusch, W.; Amighi, J.; Sabeti, S.; Minar, E.; Müller, M.; Wolzt, M.; Schillinger, M. Asymmetric dimethylarginine predicts major adverse cardiovascular events in patients with advanced peripheral artery disease. Arterioscler. Thromb. Vasc. Biol., 2006, 26(11), 2536-2540.
[http://dx.doi.org/10.1161/01.ATV.0000242801.38419.48] [PMID: 16931791]
[83]
Hsu, C.P.; Hsu, P.F.; Chung, M.Y.; Lin, S.J.; Lu, T.M. Asymmetric dimethylarginine and long-term adverse cardiovascular events in patients with type 2 diabetes: relation with the glycemic control. Cardiovasc. Diabetol., 2014, 13(1), 156.
[http://dx.doi.org/10.1186/s12933-014-0156-1] [PMID: 25467091]
[84]
Chen, X.; Niroomand, F.; Liu, Z.; Zankl, A.; Katus, H.A.; Jahn, L.; Tiefenbacher, C.P. Expression of nitric oxide related enzymes in coronary heart disease. Basic Res. Cardiol., 2006, 101(4), 346-353.
[http://dx.doi.org/10.1007/s00395-006-0592-5] [PMID: 16705470]
[85]
Meinitzer, A.; Seelhorst, U.; Wellnitz, B.; Halwachs-Baumann, G.; Boehm, B.O.; Winkelmann, B.R.; März, W. Asymmetrical dimethylarginine independently predicts total and cardiovascular mortality in individuals with angiographic coronary artery disease (the Ludwigshafen Risk and Cardiovascular Health study). Clin. Chem., 2007, 53(2), 273-283.
[http://dx.doi.org/10.1373/clinchem.2006.076711] [PMID: 17185364]
[86]
Schnabel, R.; Blankenberg, S.; Lubos, E.; Lackner, K.J.; Rupprecht, H.J.; Espinola-Klein, C.; Jachmann, N.; Post, F.; Peetz, D.; Bickel, C.; Cambien, F.; Tiret, L.; Münzel, T. Asymmetric dimethylarginine and the risk of cardiovascular events and death in patients with coronary artery disease: Results from the AtheroGene Study. Circ. Res., 2005, 97(5), e53-e59.
[http://dx.doi.org/10.1161/01.RES.0000181286.44222.61] [PMID: 16100045]
[87]
Ye, J.; Dai, Y.; Mao, H.; Zheng, W.; Zhang, J. Prognostic value of asymmetric dimethylarginine in patients with coronary artery disease: A meta-analysis. Nitric Oxide, 2021, 109-110, 50-56.
[http://dx.doi.org/10.1016/j.niox.2021.03.002] [PMID: 33684543]
[88]
Dowsett, L.; Higgins, E.; Alanazi, S.; Alshuwayer, N.A.; Leiper, F.C.; Leiper, J. ADMA: A key player in the relationship between vascular dysfunction and inflammation in atherosclerosis. J. Clin. Med., 2020, 9(9), 3026.
[http://dx.doi.org/10.3390/jcm9093026] [PMID: 32962225]
[89]
Shivkar, R.R.; Abhang, S.A. Ratio of serum asymmetric dimethyl arginine (ADMA)/nitric oxide in coronary artery disease patients. J. Clin. Diagn. Res., 2014, 8(8), CC04-CC06.
[http://dx.doi.org/10.7860/JCDR/2014/7849.4665] [PMID: 25302189]
[90]
Xuan, C.; Tian, Q.W.; Li, H.; Zhang, B.B.; He, G.W.; Lun, L.M. Levels of asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, and risk of coronary artery disease: A meta-analysis based on 4713 participants. Eur. J. Prev. Cardiol., 2016, 23(5), 502-510.
[http://dx.doi.org/10.1177/2047487315586094] [PMID: 25956428]
[91]
Mangiacapra, F.; Conte, M.; Demartini, C.; Muller, O.; Delrue, L.; Dierickx, K.; Di Sciascio, G.; Trimarco, B.; De Bruyne, B.; Wijns, W.; Bartunek, J.; Barbato, E. Relationship of asymmetric dimethylarginine (ADMA) with extent and functional severity of coronary atherosclerosis. Int. J. Cardiol., 2016, 220, 629-633.
[http://dx.doi.org/10.1016/j.ijcard.2016.06.254] [PMID: 27391005]
[92]
Goudhaman, L.; Jagadeesan, A.R.; Sundaramoorthi, S.; Thotla, S.; Mohan, S.K. Association of serum asymmetric dimethylarginine with the severity of coronary artery disease: A pilot study. Rep. Biochem. Mol. Biol., 2021, 10(2), 302-306.
[http://dx.doi.org/10.52547/rbmb.10.2.302] [PMID: 34604419]
[93]
Valkonen, V.P.; Päivä, H.; Salonen, J.T.; Lakka, T.A.; Lehtimäki, T.; Laakso, J.; Laaksonen, R. Risk of acute coronary events and serum concentration of asymmetrical dimethylarginine. Lancet, 2001, 358(9299), 2127-2128.
[http://dx.doi.org/10.1016/S0140-6736(01)07184-7] [PMID: 11784629]
[94]
Borgeraas, H.; Hertel, J.K.; Svingen, G.F.T.; Pedersen, E.R.; Seifert, R.; Nygård, O.; Hjelmesæth, J. Association between body mass index, asymmetric dimethylarginine and risk of cardiovascular events and mortality in norwegian patients with suspected stable angina pectoris. PLoS One, 2016, 11(3), e0152029.
[http://dx.doi.org/10.1371/journal.pone.0152029] [PMID: 27003294]
[95]
Bae, S.W.; Stühlinger, M.C.; Yoo, H.S.; Yu, K.H.; Park, H.K.; Choi, B.Y.; Lee, Y.S.; Pachinger, O.; Choi, Y.H.; Lee, S.H.; Park, J.E. Plasma asymmetric dimethylarginine concentrations in newly diagnosed patients with acute myocardial infarction or unstable angina pectoris during two weeks of medical treatment. Am. J. Cardiol., 2005, 95(6), 729-733.
[http://dx.doi.org/10.1016/j.amjcard.2004.11.023] [PMID: 15757598]
[96]
De Gennaro Colonna, V.; Bonomo, S.; Ferrario, P.; Bianchi, M.; Berti, M.; Guazzi, M.; Manfredi, B.; Muller, E.E.; Berti, F.; Rossoni, G. Asymmetric dimethylarginine (ADMA) induces vascular endothelium impairment and aggravates post-ischemic ventricular dysfunction in rats. Eur. J. Pharmacol., 2007, 557(2-3), 178-185.
[http://dx.doi.org/10.1016/j.ejphar.2006.11.034] [PMID: 17258196]
[97]
Del Buono, M.G.; Montone, R.A.; Camilli, M.; Carbone, S.; Narula, J.; Lavie, C.J.; Niccoli, G.; Crea, F. Coronary microvascular dysfunction across the spectrum of cardiovascular diseases. J. Am. Coll. Cardiol., 2021, 78(13), 1352-1371.
[http://dx.doi.org/10.1016/j.jacc.2021.07.042] [PMID: 34556322]
[98]
Crea, F.; Bairey Merz, C.N.; Beltrame, J.F.; Kaski, J.C.; Ogawa, H.; Ong, P.; Sechtem, U.; Shimokawa, H.; Camici, P.G. The parallel tales of microvascular angina and heart failure with preserved ejection fraction: A paradigm shift. Eur. Heart J., 2017, 38(7), 473-477.
[PMID: 27907892]
[99]
Crea, F.; Montone, R.A.; Rinaldi, R. Pathophysiology of coronary microvascular dysfunction. Circ. J., 2021, 86(9), 1319-1328.
[PMID: 34759123]
[100]
Vermeltfoort, I.A.C.; Raijmakers, P.G.H.M.; Riphagen, I.I.; Odekerken, D.A.M.; Kuijper, A.F.M.; Zwijnenburg, A.; Teule, G.J.J. Definitions and incidence of cardiac syndrome X: Review and analysis of clinical data. Clin. Res. Cardiol., 2010, 99(8), 475-481.
[http://dx.doi.org/10.1007/s00392-010-0159-1] [PMID: 20407906]
[101]
Singh, M.; Singh, S.; Arora, R.; Khosla, S. Cardiac syndrome X: Current concepts. Int. J. Cardiol., 2010, 142(2), 113-119.
[http://dx.doi.org/10.1016/j.ijcard.2009.11.021] [PMID: 20138677]
[102]
Cannon, R.O., III Microvascular angina and the continuing dilemma of chest pain with normal coronary angiograms. J. Am. Coll. Cardiol., 2009, 54(10), 877-885.
[http://dx.doi.org/10.1016/j.jacc.2009.03.080] [PMID: 19712795]
[103]
Egashira, K.; Inou, T.; Hirooka, Y.; Yamada, A.; Urabe, Y.; Takeshita, A. Evidence of impaired endothelium-dependent coronary vasodilatation in patients with angina pectoris and normal coronary angiograms. N. Engl. J. Med., 1993, 328(23), 1659-1664.
[http://dx.doi.org/10.1056/NEJM199306103282302] [PMID: 8487824]
[104]
Chen, J.W.; Hsu, N.W.; Wu, T.C.; Lin, S.J.; Chang, M.S. Long-term angiotensin-converting enzyme inhibition reduces plasma asymmetric dimethylarginine and improves endothelial nitric oxide bioavailability and coronary microvascular function in patients with syndrome X. Am. J. Cardiol., 2002, 90(9), 974-982.
[http://dx.doi.org/10.1016/S0002-9149(02)02664-4] [PMID: 12398965]
[105]
Okyay, K.; Cengel, A.; Sahinarslan, A.; Tavil, Y.; Turkoglu, S.; Biberoglu, G.; Hasanoglu, A. Plasma asymmetric dimethylarginine and L-arginine levels in patients with cardiac syndrome X. Coron. Artery Dis., 2007, 18(7), 539-544.
[http://dx.doi.org/10.1097/MCA.0b013e3282f08ece] [PMID: 17925607]
[106]
Sen, N.; Poyraz, F.; Tavil, Y.; Yazici, H.U.; Turfan, M.; Hızal, F.; Topal, S.; Erdamar, H.; Cakir, E.; Yalçın, R.; Cengel, A. Carotid intima–media thickness in patients with cardiac syndrome X and its association with high circulating levels of asymmetric dimethylarginine. Atherosclerosis, 2009, 204(2), e82-e85.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.09.029] [PMID: 19010468]
[107]
Ricci, G.; Ciccone, M.M.; Giordano, P.; Cortese, F. Statins: Pharmacokinetics, pharmacodynamics and cost-effectiveness analysis. Curr. Vasc. Pharmacol., 2019, 17(3), 213-221.
[http://dx.doi.org/10.2174/1570161116666180706144824] [PMID: 29984667]
[108]
Lu, T.M.; Ding, Y.A.; Leu, H.B.; Yin, W.H.; Sheu, W.H.H.; Chu, K.M. Effect of rosuvastatin on plasma levels of asymmetric dimethylarginine in patients with hypercholesterolemia. Am. J. Cardiol., 2004, 94(2), 157-161.
[http://dx.doi.org/10.1016/j.amjcard.2004.03.052] [PMID: 15246890]
[109]
Zhou, R.; Ma, P.; Xiong, A.; Xu, Y.; Wang, Y.; Xu, Q. Protective effects of low-dose rosuvastatin on isoproterenol-induced chronic heart failure in rats by regulation of DDAH-ADMA-NO pathway. Cardiovasc. Ther., 2017, 35(2), e12241.
[http://dx.doi.org/10.1111/1755-5922.12241] [PMID: 27957828]
[110]
Chen, P.; Xia, K.; Zhao, Z.; Deng, X.; Yang, T. Atorvastatin modulates the DDAH1/ADMA system in high-fat diet-induced insulin-resistant rats with endothelial dysfunction. Vasc. Med., 2012, 17(6), 416-423.
[http://dx.doi.org/10.1177/1358863X12467492] [PMID: 23184902]
[111]
Nishiyama, Y.; Ueda, M.; Otsuka, T.; Katsura, K.; Abe, A.; Nagayama, H.; Katayama, Y. Statin treatment decreased serum asymmetric dimethylarginine (ADMA) levels in ischemic stroke patients. J. Atheroscler. Thromb., 2011, 18(2), 131-137.
[http://dx.doi.org/10.5551/jat.5553] [PMID: 21081834]
[112]
Tanaka, N.; Katayama, Y.; Katsumata, T.; Otori, T.; Nishiyama, Y. Effects of long-term administration of HMG-CoA reductase inhibitor, atorvastatin, on stroke events and local cerebral blood flow in stroke-prone spontaneously hypertensive rats. Brain Res., 2007, 1169, 125-132.
[http://dx.doi.org/10.1016/j.brainres.2007.07.012] [PMID: 17706949]
[113]
Brinkmann, S.; Wörner, E.; Buijs, N.; Richir, M.; Cynober, L.; van Leeuwen, P.; Couderc, R. The Arginine/ADMA ratio is related to the prevention of atherosclerotic plaques in hypercholesterolemic rabbits when giving a combined therapy with atorvastatine and arginine. Int. J. Mol. Sci., 2015, 16(12), 12230-12242.
[http://dx.doi.org/10.3390/ijms160612230] [PMID: 26035753]
[114]
Serban, C.; Sahebkar, A.; Ursoniu, S.; Mikhailidis, D.P.; Rizzo, M.; Lip, G.Y.H.; Kees Hovingh, G.; Kastelein, J.J.P.; Kalinowski, L.; Rysz, J.; Banach, M. A systematic review and meta-analysis of the effect of statins on plasma asymmetric dimethylarginine concentrations. Sci. Rep., 2015, 5(1), 9902.
[http://dx.doi.org/10.1038/srep09902] [PMID: 25970700]
[115]
Zinellu, A.; Mangoni, A.A. An updated systematic review and meta-analysis of the effect of statins on asymmetric dimethylarginine. Nitric Oxide, 2022, 120, 26-37.
[http://dx.doi.org/10.1016/j.niox.2022.01.001] [PMID: 35032642]
[116]
Tsai, C.M.; Kuo, H.C.; Hsu, C.N.; Huang, L.T.; Tain, Y.L. Metformin reduces asymmetric dimethylarginine and prevents hypertension in spontaneously hypertensive rats. Transl. Res., 2014, 164(6), 452-459.
[http://dx.doi.org/10.1016/j.trsl.2014.07.005] [PMID: 25168015]
[117]
Kruszelnicka, O.; Chyrchel, B.; Golay, A.; Surdacki, A. Differential associations of circulating asymmetric dimethylarginine and cell adhesion molecules with metformin use in patients with type 2 diabetes mellitus and stable coronary artery disease. Amino Acids, 2015, 47(9), 1951-1959.
[http://dx.doi.org/10.1007/s00726-015-1976-3] [PMID: 25859650]
[118]
Wójcicka, G.; Jamroz-Wiśniewska, A.; Czechowska, G.; Korolczuk, A.; Marciniak, S.; Bełtowski, J. The paraoxonase 1 (PON1), platelet-activating factor acetylohydrolase (PAF-AH) and dimethylarginine dimethylaminohydrolase (DDAH) activity in the metformin treated normal and diabetic rats. Eur. J. Pharmacol., 2016, 789, 187-194.
[http://dx.doi.org/10.1016/j.ejphar.2016.07.034] [PMID: 27450486]
[119]
Raj, V.; Natarajan, S.; C, M.; Chatterjee, S.; Ramasamy, M.; Ramanujam, G.M.; Arasu, M.V.; Al-Dhabi, N.A.; Choi, K.C.; Arockiaraj, J.; Karuppiah, K. Cholecalciferol and metformin protect against lipopolysaccharide-induced endothelial dysfunction and senescence by modulating sirtuin-1 and protein arginine methyltransferase-1. Eur. J. Pharmacol., 2021, 912, 174531.
[http://dx.doi.org/10.1016/j.ejphar.2021.174531] [PMID: 34710370]
[120]
Top, W.M.C.; Lehert, P.; Schalkwijk, C.G.; Stehouwer, C.D.A.; Kooy, A. Effect of metformin on arginine and dimethylarginines in patients with advanced type 2 diabetes: A post hoc analysis of a randomized trial. Diabetes Obes. Metab., 2022, 24(10), 1983-1988.
[http://dx.doi.org/10.1111/dom.14784] [PMID: 35789192]
[121]
Wang, Y.; Zhang, M.; Liu, Y.; Liu, Y.; Chen, M. The effect of nebivolol on asymmetric dimethylarginine system in spontaneously hypertension rats. Vascul. Pharmacol., 2011, 54(1-2), 36-43.
[http://dx.doi.org/10.1016/j.vph.2010.12.001] [PMID: 21167314]
[122]
Wang, Y.; Dong, X. Nebivolol ameliorates asymmetric dimethylarginine-induced vascular response in rat aorta via β3 adrenoceptor-mediated mechanism. Clin. Exp. Hypertens., 2016, 38(2), 252-259.
[http://dx.doi.org/10.3109/10641963.2015.1081233] [PMID: 26825432]
[123]
Bulau, P.; Zakrzewicz, D.; Kitowska, K.; Leiper, J.; Gunther, A.; Grimminger, F.; Eickelberg, O. Analysis of methylarginine metabolism in the cardiovascular system identifies the lung as a major source of ADMA. Am. J. Physiol. Lung Cell. Mol. Physiol., 2007, 292(1), L18-L24.
[http://dx.doi.org/10.1152/ajplung.00076.2006] [PMID: 16891395]
[124]
Tang, J.; Frankel, A.; Cook, R.J.; Kim, S.; Paik, W.K.; Williams, K.R.; Clarke, S.; Herschman, H.R. PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells. J. Biol. Chem., 2000, 275(11), 7723-7730.
[http://dx.doi.org/10.1074/jbc.275.11.7723] [PMID: 10713084]
[125]
Herrmann, F.; Lee, J.; Bedford, M.T.; Fackelmayer, F.O. Dynamics of human protein arginine methyltransferase 1(PRMT1) in vivo. J. Biol. Chem., 2005, 280(45), 38005-38010.
[http://dx.doi.org/10.1074/jbc.M502458200] [PMID: 16159886]
[126]
Murata, K.; Lu, W.; Hashimoto, M.; Ono, N.; Muratani, M.; Nishikata, K.; Kim, J.D.; Ebihara, S.; Ishida, J.; Fukamizu, A. PRMT1 deficiency in mouse juvenile heart induces dilated cardiomyopathy and reveals cryptic alternative splicing products. iScience, 2018, 8, 200-213.
[http://dx.doi.org/10.1016/j.isci.2018.09.023] [PMID: 30321814]
[127]
Wang, Y.; Ju, C.; Hu, J.; Huang, K.; Yang, L. PRMT4 overexpression aggravates cardiac remodeling following myocardial infarction by promoting cardiomyocyte apoptosis. Biochem. Biophys. Res. Commun., 2019, 520(3), 645-650.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.085] [PMID: 31627895]
[128]
Tan, B.; Liu, Q.; Yang, L.; Yang, Y.; Liu, D.; Liu, L.; Meng, F. Low expression of PRMT5 in peripheral blood may serve as a potential independent risk factor in assessments of the risk of stable CAD and AMI. BMC Cardiovasc. Disord., 2019, 19(1), 31.
[http://dx.doi.org/10.1186/s12872-019-1008-4] [PMID: 30704408]
[129]
Chen, M.; Yi, B.; Sun, J. Inhibition of cardiomyocyte hypertrophy by protein arginine methyltransferase 5. J. Biol. Chem., 2014, 289(35), 24325-24335.
[http://dx.doi.org/10.1074/jbc.M114.577494] [PMID: 25012667]
[130]
Pyun, J.H.; Kim, H.J.; Jeong, M.H.; Ahn, B.Y.; Vuong, T.A.; Lee, D.I.; Choi, S.; Koo, S.H.; Cho, H.; Kang, J.S. Cardiac specific PRMT1 ablation causes heart failure through CaMKII dysregulation. Nat. Commun., 2018, 9(1), 5107.
[http://dx.doi.org/10.1038/s41467-018-07606-y] [PMID: 30504773]
[131]
Dai, W.; Zhang, J.; Li, S.; He, F.; Liu, Q.; Gong, J.; Yang, Z.; Gong, Y.; Tang, F.; Wang, Z.; Xie, C. Protein arginine methylation: An emerging modification in cancer immunity and immunotherapy. Front. Immunol., 2022, 13, 865964.
[http://dx.doi.org/10.3389/fimmu.2022.865964] [PMID: 35493527]
[132]
Wang, M.Y.; Liow, P.; Guzman, M.I.T.; Qi, J. Exploring methods of targeting histone methyltransferases and their applications in cancer therapeutics. ACS Chem. Biol., 2022, 17(4), 744-755.
[http://dx.doi.org/10.1021/acschembio.2c00062] [PMID: 35363464]
[133]
Chen, Y.; Shao, X.; Zhao, X.; Ji, Y.; Liu, X.; Li, P.; Zhang, M.; Wang, Q. Targeting protein arginine methyltransferase 5 in cancers: Roles, inhibitors and mechanisms. Biomed. Pharmacother., 2021, 144, 112252.
[http://dx.doi.org/10.1016/j.biopha.2021.112252] [PMID: 34619493]
[134]
Xu, J.; Richard, S. Cellular pathways influenced by protein arginine methylation: Implications for cancer. Mol. Cell, 2021, 81(21), 4357-4368.
[http://dx.doi.org/10.1016/j.molcel.2021.09.011] [PMID: 34619091]
[135]
Guccione, E.; Schwarz, M.; Di Tullio, F.; Mzoughi, S. Cancer synthetic vulnerabilities to protein arginine methyltransferase inhibitors. Curr. Opin. Pharmacol., 2021, 59, 33-42.
[http://dx.doi.org/10.1016/j.coph.2021.04.004] [PMID: 34052526]
[136]
Hwang, J.W.; Cho, Y.; Bae, G.U.; Kim, S.N.; Kim, Y.K. Protein arginine methyltransferases: Promising targets for cancer therapy. Exp. Mol. Med., 2021, 53(5), 788-808.
[http://dx.doi.org/10.1038/s12276-021-00613-y] [PMID: 34006904]
[137]
Wu, M.; Lin, P.; Li, L.; Chen, D.; Yang, X.; Xu, L.; Zhou, B.; Wang, C.; Zhang, Y.; Luo, C.; Ye, C. Reduced asymmetric dimethylarginine accumulation through inhibition of the type I protein arginine methyltransferases promotes renal fibrosis in obstructed kidneys. FASEB J., 2019, 33(6), 6948-6956.
[http://dx.doi.org/10.1096/fj.201802585RR] [PMID: 30840839]
[138]
Eram, M.S.; Shen, Y.; Szewczyk, M.M.; Wu, H.; Senisterra, G.; Li, F.; Butler, K.V.; Kaniskan, H.Ü.; Speed, B.A.; dela Seña, C.; Dong, A.; Zeng, H.; Schapira, M.; Brown, P.J.; Arrowsmith, C.H.; Barsyte-Lovejoy, D.; Liu, J.; Vedadi, M.; Jin, J. A potent, selective, and cell-active inhibitor of human type I protein arginine methyltransferases. ACS Chem. Biol., 2016, 11(3), 772-781.
[http://dx.doi.org/10.1021/acschembio.5b00839] [PMID: 26598975]
[139]
Fulton, M.D.; Brown, T.; Zheng, Y.G. Mechanisms and inhibitors of histone arginine methylation. Chem. Rec., 2018, 18(12), 1792-1807.
[http://dx.doi.org/10.1002/tcr.201800082] [PMID: 30230223]
[140]
Feng, M.; He, Z.M.; Zhu, Y.X.; Liu, L.H.; Lu, C.W.; Xiong, Y. Improvement of endothelial dysfunction in atherosclerotic rabbit aortas by ex vivo gene transferring of dimethylarginine dimethylaminohydrolase-2. Int. J. Cardiol., 2010, 144(2), 180-186.
[http://dx.doi.org/10.1016/j.ijcard.2010.04.019] [PMID: 20462645]
[141]
Niu, P.P.; Cao, Y.; Gong, T.; Guo, J.H.; Zhang, B.K.; Jia, S.J. Hypermethylation of DDAH2 promoter contributes to the dysfunction of endothelial progenitor cells in coronary artery disease patients. J. Transl. Med., 2014, 12(1), 170.
[http://dx.doi.org/10.1186/1479-5876-12-170] [PMID: 24934151]
[142]
Menghini, R.; Casagrande, V.; Cardellini, M.; Ballanti, M.; Davato, F.; Cardolini, I.; Stoehr, R.; Fabrizi, M.; Morelli, M.; Anemona, L.; Bernges, I.; Schwedhelm, E.; Ippoliti, A.; Mauriello, A.; Böger, R.H.; Federici, M. FoxO1 regulates asymmetric dimethylarginine via downregulation of dimethylaminohydrolase 1 in human endothelial cells and subjects with atherosclerosis. Atherosclerosis, 2015, 242(1), 230-235.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.07.026] [PMID: 26226438]
[143]
Wu, Y.; Zhang, J.J.; Li, T.B.; Liu, W.Q.; Li, L.S.; Luo, X.J.; Jiang, J.L.; Ma, Q.L.; Yang, Z.C.; Peng, J. Phosphorylation of nonmuscle myosin light chain promotes endothelial injury in hyperlipidemic rats through a mechanism involving downregulation of dimethylarginine dimethylaminohydrolase 2. J. Cardiovasc. Pharmacol. Ther., 2016, 21(6), 536-548.
[http://dx.doi.org/10.1177/1074248416634465] [PMID: 26911182]
[144]
Lin, Y.; Feng, M.; Lu, C.W.; Lei, Y.P.; He, Z.M.; Xiong, Y. Preservation of vascular DDAH activity contributes to the protection of captopril against endothelial dysfunction in hyperlipidemic rabbits. Eur. J. Pharmacol., 2017, 798, 43-48.
[http://dx.doi.org/10.1016/j.ejphar.2017.01.041] [PMID: 28163022]
[145]
Chen, C.H.; Zhao, J.F.; Hsu, C.P.; Kou, Y.R.; Lu, T.M.; Lee, T.S. The detrimental effect of asymmetric dimethylarginine on cholesterol efflux of macrophage foam cells: Role of the NOX/ROS signaling. Free Radic. Biol. Med., 2019, 143, 354-365.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.08.016] [PMID: 31437479]
[146]
Lee, Y.; Singh, J.; Scott, S.R.; Ellis, B.; Zorlutuna, P.; Wang, M. A recombinant dimethylarginine dimethylaminohydrolase-1–based biotherapeutics to pharmacologically lower asymmetric dimethyl arginine, thus improving postischemic cardiac function and cardiomyocyte mitochondrial activity. Mol. Pharmacol., 2022, 101(4), 226-235.
[http://dx.doi.org/10.1124/molpharm.121.000394] [PMID: 35042831]
[147]
Hou, L.; Guo, J.; Xu, F.; Weng, X.; Yue, W.; Ge, J. Cardiomyocyte dimethylarginine dimethylaminohydrolase1 attenuates left-ventricular remodeling after acute myocardial infarction: involvement in oxidative stress and apoptosis. Basic Res. Cardiol., 2018, 113(4), 28.
[http://dx.doi.org/10.1007/s00395-018-0685-y] [PMID: 29892894]
[148]
Hu, T.; Chouinard, M.; Cox, A.L.; Sipes, P.; Marcelo, M.; Ficorilli, J.; Li, S.; Gao, H.; Ryan, T.P.; Michael, M.D.; Michael, L.F. Farnesoid X receptor agonist reduces serum asymmetric dimethylarginine levels through hepatic dimethylarginine dimethylaminohydrolase-1 gene regulation. J. Biol. Chem., 2006, 281(52), 39831-39838.
[http://dx.doi.org/10.1074/jbc.M606779200] [PMID: 17065154]
[149]
Li, J.; Wilson, A.; Gao, X.; Kuruba, R.; Liu, Y.; Poloyac, S.; Pitt, B.; Xie, W.; Li, S. Coordinated regulation of dimethylarginine dimethylaminohydrolase-1 and cationic amino acid transporter-1 by farnesoid X receptor in mouse liver and kidney and its implication in the control of blood levels of asymmetric dimethylarginine. J. Pharmacol. Exp. Ther., 2009, 331(1), 234-243.
[http://dx.doi.org/10.1124/jpet.109.153510] [PMID: 19605523]
[150]
Jiang, J.L.; Li, N.; Li, Y.J.; Deng, H.W. Probucol preserves endothelial function by reduction of the endogenous nitric oxide synthase inhibitor level. Br. J. Pharmacol., 2002, 135(5), 1175-1182.
[http://dx.doi.org/10.1038/sj.bjp.0704563] [PMID: 11877324]
[151]
Yang, T.L.; Chen, M.F.; Luo, B.L.; Xie, Q.Y.; Jiang, J.L.; Li, Y.J. Fenofibrate decreases asymmetric dimethylarginine level in cultured endothelial cells by inhibiting NF-κB activity. Naunyn Schmiedebergs Arch. Pharmacol., 2005, 371(5), 401-407.
[http://dx.doi.org/10.1007/s00210-005-1060-8] [PMID: 15915325]
[152]
Smirnova, I.V.; Kajstura, M.; Sawamura, T.; Goligorsky, M.S. Asymmetric dimethylarginine upregulates LOX-1 in activated macrophages: Role in foam cell formation. Am. J. Physiol. Heart Circ. Physiol., 2004, 287(2), H782-H790.
[http://dx.doi.org/10.1152/ajpheart.00822.2003] [PMID: 15016631]
[153]
Böger, R.H.; Sydow, K.; Borlak, J.; Thum, T.; Lenzen, H.; Schubert, B.; Tsikas, D.; Bode-Böger, S.M. LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells: Involvement of S-adenosylmethionine-dependent methyltransferases. Circ. Res., 2000, 87(2), 99-105.
[http://dx.doi.org/10.1161/01.RES.87.2.99] [PMID: 10903992]
[154]
Ito, A.; Tsao, P.S.; Adimoolam, S.; Kimoto, M.; Ogawa, T.; Cooke, J.P. Novel mechanism for endothelial dysfunction: dysregulation of dimethylarginine dimethylaminohydrolase. Circulation, 1999, 99(24), 3092-3095.
[http://dx.doi.org/10.1161/01.CIR.99.24.3092] [PMID: 10377069]
[155]
Böger, R.H.; Bode-Böger, S.M.; Tsao, P.S.; Lin, P.S.; Chan, J.R.; Cooke, J.P. An endogenous inhibitor of nitric oxide synthase regulates endothelial adhesiveness for monocytes. J. Am. Coll. Cardiol., 2000, 36(7), 2287-2295.
[http://dx.doi.org/10.1016/S0735-1097(00)01013-5] [PMID: 11127475]
[156]
Wei-Kang, G.; Dong-Liang, Z.; Xin-Xin, W.; Wei, K.; Zhang, Y.; Qi-Dong, Z.; Wen-Hu, L. Actin cytoskeleton modulates ADMA-induced NF-kappaB nuclear translocation and ICAM-1 expression in endothelial cells. Med. Sci. Monit., 2011, 17(9), BR242-BR247.
[PMID: 21873936]
[157]
Jiang, J.L.; Wang, S.; Li, N.S.; Zhang, X.H.; Deng, H.W.; Li, Y.J. The inhibitory effect of simvastatin on the ADMA-induced inflammatory reaction is mediated by MAPK pathways in endothelial cells. Biochem. Cell Biol., 2007, 85(1), 66-77.
[http://dx.doi.org/10.1139/o06-146] [PMID: 17464346]
[158]
Gareus, R.; Kotsaki, E.; Xanthoulea, S.; van der Made, I.; Gijbels, M.J.J.; Kardakaris, R.; Polykratis, A.; Kollias, G.; de Winther, M.P.J.; Pasparakis, M. Endothelial cell-specific NF-kappaB inhibition protects mice from atherosclerosis. Cell Metab., 2008, 8(5), 372-383.
[http://dx.doi.org/10.1016/j.cmet.2008.08.016] [PMID: 19046569]
[159]
Guo, W.; Zhang, D.; Wang, L.; Zhang, Y.; Liu, W. Disruption of asymmetric dimethylarginine-induced RelA/P65 association with actin in endothelial cells. Acta Biochim. Biophys. Sin., 2013, 45(3), 229-235.
[http://dx.doi.org/10.1093/abbs/gms120] [PMID: 23296075]
[160]
Zhu, Z.D.; Jia, J.Q.; Zhang, X.; Wang, Y.J.; Wang, D.H. Asymmetric dimethylarginine upregulates the expression of ACAT-1 in THP-1 macrophage-derived foam cells. Nan Fang Yi Ke Da Xue Xue Bao, 2010, 30(12), 2613-2618.
[PMID: 21177161]

© 2025 Bentham Science Publishers | Privacy Policy