Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Medicinal Plants and Bioactive Compounds with Potential Anti-inflammatory and Antidiabetic Activities: A Review

Author(s): Saliha Bouknana, Amal El Rherabi, Rhizlan Abdnim, Ali Berraaouan and Mohamed Bnouham*

Volume 21, Issue 11, 2024

Published on: 26 June, 2023

Page: [1985 - 2007] Pages: 23

DOI: 10.2174/1570180820666230509115220

Price: $65

Abstract

Background: Inflammation is a complex process. Persistent and uncontrolled inflammation may act as an etiologic factor for many chronic disorders like diabetes.

Objective: This review aims to classify the anti-inflammatory and antidiabetic medicinal plants, their traditional uses, and their active compounds that have been tested for their anti-inflammatory and antidiabetic effects.

Methods: We checked scientific publications in various electronic databases from 1981 to 2021. All the molecular structures were provided in ADC/ChemSketch.

Results: We reviewed 58 species, belonging to 39 families. These species have long been used in traditional medicine to cure a variety of ailments, including, dysentery, typhoid fever, anemia, digestive and cardiac disorders, as well as diabetes and inflammation. Asteraceae represents the dominant family. The most potent anti-inflammatory and antidiabetic active compounds were reviewed including myricetin, quercetin, hesperetin, rutin, luteolin, chlorogenic acid, vanillic acid, gallic acid, ferulic acid, benzoic acid, cinnamic acid, gentisic acid, camphor, 1,8-cineol, p-cymene, limonene, linalool, thymoquinone, carvacrol, aromadendrine, α-pinene, lycopene, phytol, imperatorin, chalepin, hexadecanoic acid, linoleic acid, tellimagrandin I, and trigalloyl glucose.

Conclusion: This review indicates that medicinal plants have many therapeutic dynamics against inflammation and diabetes that could be exploited for the discovery of therapeutic preparation or agent for treating the two illnesses at the same time.

[1]
Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract., 2011, 94(3), 311-321.
[http://dx.doi.org/10.1016/j.diabres.2011.10.029] [PMID: 22079683]
[2]
Kopelman, P.G. Obesity as a medical problem. Nature, 2000, 404(6778), 635-643.
[http://dx.doi.org/10.1038/35007508] [PMID: 10766250]
[3]
Wexler, D.J.; Hu, F.B.; Manson, J.E.; Rifai, N.; Meigs, J.B. Mediating effects of inflammatory biomarkers on insulin resistance associated with obesity. Obes. Res., 2005, 13(10), 1772-1783.
[http://dx.doi.org/10.1038/oby.2005.216] [PMID: 16286525]
[4]
King, G.L. The role of inflammatory cytokines in diabetes and its complications. J. Periodontol., 2008, 79(S8), 1527-1534.
[http://dx.doi.org/10.1902/jop.2008.080246] [PMID: 18673007]
[5]
Marques-Vidal, P.; Schmid, R.; Bochud, M.; Bastardot, F.; von Känel, R.; Paccaud, F.; Glaus, J.; Preisig, M.; Waeber, G.; Vollenweider, P. Adipocytokines, hepatic and inflammatory biomarkers and incidence of type 2 diabetes. the CoLaus study. PLoS One, 2012, 7(12), e51768.
[http://dx.doi.org/10.1371/journal.pone.0051768] [PMID: 23251619]
[6]
Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Invest., 2006, 116(7), 1793-1801.
[http://dx.doi.org/10.1172/JCI29069] [PMID: 16823477]
[7]
Patel, D.K.; Kumar, R.; Laloo, D.; Hemalatha, S. Natural medicines from plant source used for therapy of diabetes mellitus: An overview of its pharmacological aspects. Asian Pac. J. Trop. Dis., 2012, 2(3), 239-250.
[http://dx.doi.org/10.1016/S2222-1808(12)60054-1]
[8]
Lekeux, P.; VandeWeerdt, M.L. Use of anti inflammatory drugs in the treatment of bovine respiratory disease complex. AGRIS, 1997.
[9]
Jahnavi, K.; Pavani Reddy, P.; Vasudha, B.; Narender, B. Non-steroidal anti-inflammatory drugs: An overview. J. Drug Deliv. Ther., 2019, 9(1-s), 442-448.
[http://dx.doi.org/10.22270/jddt.v9i1-s.2287]
[10]
Xu, X.; Shan, B.; Liao, C.H.; Xie, J.H.; Wen, P.W.; Shi, J.Y. Anti-diabetic properties of Momordica charantia L. polysaccharide in alloxan-induced diabetic mice. Int. J. Biol. Macromol., 2015, 81, 538-543.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.049] [PMID: 26318666]
[11]
Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules, 2016, 21(5), 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[12]
Taib, M.; Rezzak, Y.; Bouyazza, L.; Lyoussi, B. Medicinal uses, phytochemistry, and pharmacological activities of Quercus Species, Evidence-Based Complement. Altern. Med., 2020, 2020
[13]
Pan, S.-Y.; Litscher, G.; Gao, S.-H.; Zhou, S.-F.; Yu, Z.-L.; Chen, H.-Q.; Zhang, S.-F.; Tang, M.-K.; Sun, J.-N.; Ko, K.-M. Historical perspective of traditional indigenous medical practices: the current renaissance and conservation of herbal resources. Evidence-Based Complement. Altern. Med., 2014, 2014
[14]
Jan, S.A.; Shinwari, Z.K.; Zeb, A.; Khalil, A.T.; Shah, S.H. Ethnobotany and research trends in Trachyspermum ammi L.(Ajowan); A popular folklore remedy. Am. J. Agric. Environ. Sci., 2015, 15(1), 68-73.
[15]
Qasim, M.; Khalid, M.; Sayyed, A.; Din, I.; Hayat, K.; Jan, S.A. Phytochemical potentials and medicinal uses of twenty-four selected medicinal plants from Swabi, Pakistan. J. Pure Appl. Agric., 2016, 1(1), 49-58.
[16]
Sher, H.; Midrarullah, G.; Coll, P.G.J. Medicinal plants of Udigram; Pakistan J. For: District Swat, Pakistan, 2003.
[17]
Arumugam, G.; Manjula, P.; Paari, N. A review: Anti diabetic medicinal plants used for diabetes mellitus. J. Acute Dis., 2013, 2(3), 196-200.
[http://dx.doi.org/10.1016/S2221-6189(13)60126-2]
[18]
Ghasemian, M.; Owlia, S.; Owlia, M.B. Review of anti-inflammatory herbal medicines. Adv. Pharmacol. Sci., 2016, 2016, 9130979.
[http://dx.doi.org/10.1155/2016/9130979]
[19]
Middha, S.K.; Usha, T.; Tripathi, P.; Marathe, K.Y.; Jain, T.; Bhatt, B.; Masurkar, Y.P.; Pande, V. An In vitro studies on indigenous ayurvedic plants, having hypoglycemic activity. Asian Pac. J. Trop. Dis., 2012, 2(1), S46-S49.
[http://dx.doi.org/10.1016/S2222-1808(12)60122-4]
[20]
Baldé, A.M.; Traoré, M.S.; Diallo, M.S.T.; Balde, E.S.; Huang, Y.; Liu, Z.; Oulare, K.; Barry, M.S.; Balde, M.A.; Camara, A. Ethnobotanical survey, antimicrobial and anticomplement activities of Guinean medicinal plants traditionally used in the treatment of inflammatory diseases in Conakry and Dubreka. J. Plant Sci., 2015, 3(1-2), 11-19.
[21]
Gnagne, A.S.; Camara, D.; Fofie, N.B.Y.; Béné, K.; Zirihi, G.N. Ethnobotanical study of medicinal plants used in the treatment of diabetes in the Department of Zouenoula (Côte d’Ivoire). J. Appl. Biosci., 2017, 113, 11257-11266.
[http://dx.doi.org/10.4314/jab.v113i1.14]
[22]
Ramachandran, N.A.G.; Kotiyal, J.P.; Sankara, S.S. Chemical constituents of the leaves of Agyratum conyzoides. Indian J. Pharm., 1977.
[23]
Nyunaï, N.; Manguelle-Dicoum, A.; Njifutié, N.; Abdennebi, E.H.; Gerard, C. Antihyperglycaemic effect of Ageratum conyzoides L. fractions in normoglycemic and diabetic male wistar rats. Int. J. Biomed. Pharm. Sci., 2010, 4(1), 38-42.
[24]
Galati, E.M.; Miceli, N.; Taviano, M.F.; Sanogo, R.; Raneri, E. Anti-inflammatory and antioxidant activity of Ageratum conyzoides. Pharm. Biol., 2001, 39(5), 336-339.
[http://dx.doi.org/10.1076/phbi.39.5.336.5891]
[25]
Heber, D. Physicians’ Desk Reference for Herbal Medicines, Thomson Heal; Care: Montvale, 2007, pp. 515-518.
[26]
Khare, C.P. Carica papaya Linn, Indian Med. Plants (An Illus. Dictionary); Springer: New York, NY, USA., 2007, pp. 122-123.
[27]
Kumar, S.; Yadav, J.P. Ethnobotanical and pharmacological properties of Aloe vera: a review. J. Med. Plants Res., 2014, 8(48), 1387-1398.
[28]
Ghazanfar, S.A. Handbook of Arabian medicinal plants; CRC press, 1994.
[http://dx.doi.org/10.1201/b14834]
[29]
Avijgan, M.; Avijgan, M.; Hakamifard, A.; Razavi, N. An innovation for retarded healing process of a chronic ulcer by Aloe vera gel treatment. J. Nat. Remedies., 2016, 16, 45-51.
[30]
Paul, S.; Dutta, S.; Chaudhuri, T.K.; Bhattacharjee, S. Anti-inflammatory and protective properties of Aloe vera leaf crude gel in carrageenan induced acute inflammatory rat models. Int. J. Pharm. Pharm. Sci., 2014, 6(9), 368-371.
[31]
Mohamed, E.A.K. Antidiabetic, antihypercholestermic and antioxidative effect of Aloe vera gel extract in alloxan induced diabetic rats. Aust. J. Basic Appl. Sci., 2011, 5(11), 1321-1327.
[32]
Mohammedi, H.; Idjeri-Mecherara, S.; Menaceur, F.; Azine, K.; Hassani, A. Chemical compositions of extracted volatile oils of ammodaucus leucotrichus L. fruit from different geographical regions of Algeria with evaluation of its toxicity, anti-inflammatory and antimicrobial activities. J. Essent. Oil-Bear. Plants, 2018, 21(6), 1568-1584.
[http://dx.doi.org/10.1080/0972060X.2018.1559102]
[33]
Bouayyadi, L.; El Hafian, M.; Zidane, L. Étude floristique et ethnobotanique de la flore médicinale dans la région du Gharb, Maroc. J. Appl. Biosci., 2015, 93(1), 8770-8788.
[http://dx.doi.org/10.4314/jab.v93i1.10]
[34]
El Hafian, M.; Benlandini, N.; Elyacoubi, H.; Zidane, L.; Rochdi, A. Floristic and ethnobotanical study of medicinal plants used in the prefecture of Agadir-Ida-Outanane (Morocco). J. Appl. Biosci., 2014, 81, 7198.
[35]
Abouri, M.; El Mousadik, A.; Msanda, F.; Boubaker, H.; Saadi, B.; Cherifi, K. An ethnobotanical survey of medicinal plants used in the Tata Province, Morocco. Int J Med Plants Res., 2012, 1(7), 99-123.
[36]
Ziani, B.E.C.; Rached, W.; Bachari, K.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Ferreira, I.C.F.R. Detailed chemical composition and functional properties of Ammodaucus leucotrichus Cross. & Dur. and Moringa oleifera Lamarck. J. Funct. Foods, 2019, 53, 237-247.
[http://dx.doi.org/10.1016/j.jff.2018.12.023]
[37]
Bouknana, S.; Daoudi, N.E.; Bouhrim, M.; Ziyyat, A.; Legssyer, A.; Mekhfi, H.; Bnouham, M. Ammodaucus leucotrichus Coss. & Durieu: Antihyperglycemic activity via the inhibition of α-amylase, α-glucosidase, and intestinal glucose absorption activities and its chemical composition. J. Pharm. Pharmacogn. Res., 2022, 10(1), 94-103.
[http://dx.doi.org/10.56499/jppres21.1141_10.1.94]
[38]
Es-Safi, I.; Mechchate, H.; Amaghnouje, A.; Calarco, A.; Boukhira, S.; Noman, O.M.; Mothana, R.A.; Nasr, F.A.; Bekkari, H.; Bousta, D. Defatted hydroethanolic extract of ammodaucus leucotrichus Cosson and Durieu Seeds: Antidiabetic and anti-inflammatory activities. Appl. Sci. (Basel), 2020, 10(24), 9147.
[http://dx.doi.org/10.3390/app10249147]
[39]
Akinpelu, D.A.; Ojewole, J.A. Antimicrobial activity of Anacardium occidentale bark. Fitoterapia, 2001, 72(3), 286-287.
[http://dx.doi.org/10.1016/S0367-326X(00)00310-5] [PMID: 11295307]
[40]
Andarwulan, N.; Kurniasih, D.; Apriady, R.A.; Rahmat, H.; Roto, A.V.; Bolling, B.W. Polyphenols, carotenoids, and ascorbic acid in underutilized medicinal vegetables. J. Funct. Foods, 2012, 4(1), 339-347.
[http://dx.doi.org/10.1016/j.jff.2012.01.003]
[41]
Nugroho, A.E.; Malik, A.; Pramono, S. Total phenolic and flavonoid contents, and in vitro antihypertension activity of purified extract of Indonesian cashew leaves (Anacardium occidentale L.). Int. Food Res. J., 2013, 20(1), 299-305.
[42]
Vilar, M.; de Souza, G.; Vilar, D.; Leite, J.; Raffin, F.; Barbosa-Filho, J.; Nogueira, F.; Rodrigues-Mascarenhas, S.; Moura, T. Assessment of phenolic compounds and anti-inflammatory activity of ethyl acetate phase of Anacardium occidentale L. bark. Molecules, 2016, 21(8), 1087.
[http://dx.doi.org/10.3390/molecules21081087] [PMID: 27548136]
[43]
Jaiswal, Y.S.; Tatke, P.A.; Gabhe, S.Y.; Vaidya, A.B. Antidiabetic activity of extracts of Anacardium occidentale Linn. leaves on n -streptozotocin diabetic rats. J. Tradit. Complement. Med., 2017, 7(4), 421-427.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.007] [PMID: 29034189]
[44]
Ojewole, J.A.O. Evaluation of the analgesic, anti-in?ammatory and anti-diabetic properties ofSclerocarya birrea (A. Rich.) Hochst. stem-bark aqueous extract in mice and rats. Phytother. Res., 2004, 18(8), 601-608.
[http://dx.doi.org/10.1002/ptr.1503] [PMID: 15476310]
[45]
Kabir, M.H.; Hasan, N.; Rahman, M.M.; Rahman, M.A.; Khan, J.A.; Hoque, N.T.; Bhuiyan, M.R.Q.; Mou, S.M.; Jahan, R.; Rahmatullah, M. A survey of medicinal plants used by the Deb barma clan of the Tripura tribe of Moulvibazar district, Bangladesh. J. Ethnobiol. Ethnomed., 2014, 10(1), 19.
[http://dx.doi.org/10.1186/1746-4269-10-19] [PMID: 24502444]
[46]
Jarukamjorn, K.; Nemoto, N. Pharmacological aspects of Andrographis paniculata on health and its major diterpenoid constituent andrographolide. J. Health Sci., 2008, 54(4), 370-381.
[http://dx.doi.org/10.1248/jhs.54.370]
[47]
Akbar, S. Andrographis paniculata: A review of pharmacological activities and clinical effects. Altern. Med. Rev., 2011, 16(1), 66-77.
[PMID: 21438648]
[48]
Hossain, M.A.; Roy, B.K.; Ahmed, K.; Chowdhury, A.M.S.; Rashid, M.A. Antidiabetic activity of Andrographis paniculata. Dhaka Univ. J. Pharm. Sci., 1970, 6(1), 15-20.
[http://dx.doi.org/10.3329/dujps.v6i1.338]
[49]
Gan, L.; Zheng, Y.; Deng, L.; Sun, P.; Ye, J.; Wei, X.; Liu, F.; Yu, L.; Ye, W.; Fan, C.; Liu, J.; Zhang, W. Diterpenoid lactones with anti-inflammatory effects from the aerial parts of Andrographis paniculata. Molecules, 2019, 24(15), 2726.
[http://dx.doi.org/10.3390/molecules24152726] [PMID: 31357563]
[50]
Rashid, K.I.; Aljibouri, A.M.; Zayer, A.J.; Khalid, L.B.; Abdul-Munaem, A. Study the effect of Arabidopsis thaliana extract on reducing blood glucose level in diabetic white albino mice. Iraqi J. Pharm Sci., 2013, 22(1), 115-119.
[http://dx.doi.org/10.31351/vol22iss1pp115-119]
[51]
Mattioli, R.; Francioso, A.; d’Erme, M.; Trovato, M.; Mancini, P.; Piacentini, L.; Casale, A.; Wessjohann, L.; Gazzino, R.; Costantino, P.; Mosca, L. Anti-inflammatory activity of a Polyphenolic extract from Arabidopsis thaliana in in vitro and in vivo models of Alzheimer’s disease. Int. J. Mol. Sci., 2019, 20(3), 708.
[http://dx.doi.org/10.3390/ijms20030708] [PMID: 30736391]
[52]
Skalli, S.; Hassikou, R.; Arahou, M. An ethnobotanical survey of medicinal plants used for diabetes treatment in Rabat, Morocco. Heliyon, 2019, 5(3), e01421.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01421] [PMID: 30976694]
[53]
Mechqoq, H.; El Yaagoubi, M.; El Hamdaoui, A.; Momchilova, S.; da Silva Almeida, G.J.R.; Msanda, F.; El Aouad, N. Ethnobotany, phytochemistry and biological properties of Argan tree (Argania spinosa (L.) Skeels) (Sapotaceae) - A review. J. Ethnopharmacol., 2021, 281, 114528.
[http://dx.doi.org/10.1016/j.jep.2021.114528] [PMID: 34418509]
[54]
Daoudi, N.E.; Bouhrim, M.; Ouassou, H.; Legssyer, A.; Mekhfi, H.; Ziyyat, A.; Aziz, M.; Bnouham, M. Inhibitory effect of roasted/unroasted Argania spinosa seeds oil on α- glucosidase, α-amylase and intestinal glucose absorption activities. S. Afr. J. Bot., 2020, 135(1), 413-420.
[http://dx.doi.org/10.1016/j.sajb.2020.09.020]
[55]
Kamal, R.; Kharbach, M.; Vander Heyden, Y.; Doukkali, Z.; Ghchime, R.; Bouklouze, A.; Cherrah, Y.; Alaoui, K. In vivo anti‐inflammatory response and bioactive compounds’ profile of polyphenolic extracts from edible Argan oil (Argania spinosa L.), obtained by two extraction methods. J. Food Biochem., 2019, 43(12), e13066.
[http://dx.doi.org/10.1111/jfbc.13066] [PMID: 31573102]
[56]
Oliver, B.E.P. Medicinal plants in Nigeria. Nigerian College of arts. Sci. Technol., 1960, 138
[57]
Iwu, M.M. African medicinal plants; CRC Press: Maryland, 1993.
[58]
Adjanohoun, J.E.; Aboubakar, N.; Dramane, K.; Ebot, M.E.; Ekpere, J.A.; Enow-Orock, E.G.; Focho, D.; Gbile, Z.O.; Kamanyi, A.; Kamsukom, J. raditional medicine and pharmacopoeia, Contrib. to Ethnobot. Florist. Stud. Cameroon. Lagos. Niger. Organ. African Unity. Sci. Tech. Res. Comm., 1996, 648-667.
[59]
Sofowora, A. Medicinal plants and traditional medicine in Africa; Spectr. Books Ltd.: Ibadan, Niger, 1993, pp. 191-289.
[60]
Okokon, J.E.; Obot, J.; Ikpatt, I. antidiabeticand hypolipidemic effects of Aspilia Africana. Niger. J. Nat. Prod. Med., 2006, 10, 41-44.
[61]
Okoli, C.O.; Akah, P.A.; Nwafor, S.V.; Anisiobi, A.I.; Ibegbunam, I.N.; Erojikwe, O. Anti-inflammatory activity of hexane leaf extract of Aspilia africana C.D. Adams. J. Ethnopharmacol., 2007, 109(2), 219-225.
[http://dx.doi.org/10.1016/j.jep.2006.07.037] [PMID: 16950582]
[62]
Kirtikar, K.R.; Das Basu, B. Indian medicinal plants; Inian Press, Allahabad, 1918.
[63]
Kirtikar, K.R.; Basu, B.D. Medicinal Plants; VivekVihar: New Delhi, 1975, p. 536.
[64]
Chopra, R.N.; Nayar, S.L.; Chopra, I.C. Glossary of Indian Medicinal Plants Council of Scientific and Industrial Research; New Delhi, 1956, p. 89.
[65]
Mitra, C.R. Neem; Indian Central Oil seeds Committee, 1963.
[66]
Ali Hussain, H.E.M. Reversal of diabetic retinopathy in streptozotocin induced diabetic rats using traditional Indian anti-diabetic plant,Azadirachta indica (L.). Indian J. Clin. Biochem., 2002, 17(2), 115-123.
[http://dx.doi.org/10.1007/BF02867983] [PMID: 23105362]
[67]
Okpanyi, S.; Ezeukwu, G. Anti-inflammatory and antipyretic activities of Azadirachta indica. Planta Med., 1981, 41(1), 34-39.
[http://dx.doi.org/10.1055/s-2007-971670] [PMID: 6972048]
[68]
Dash, S.K.; Padhy, S. Review on ethnomedicines for diarrhoea diseases from Orissa: Prevalence versus culture. J. Hum. Ecol., 2006, 20(1), 59-64.
[http://dx.doi.org/10.1080/09709274.2006.11905903]
[69]
Verschaeve, L.; Van Staden, J. Mutagenic and antimutagenic properties of extracts from South African traditional medicinal plants. J. Ethnopharmacol., 2008, 119(3), 575-587.
[http://dx.doi.org/10.1016/j.jep.2008.06.007] [PMID: 18602977]
[70]
Das, S.N.; Jagannath, P.V.; Dinda, S.C. Evaluation of Anti–Inflammatory, Anti–diabetic activity of Indian Bauhinia vahlii (stembark). Asian Pac. J. Trop. Biomed., 2012, 2(3), S1382-S1387.
[http://dx.doi.org/10.1016/S2221-1691(12)60421-3]
[71]
Gaur, R.D. Flora of the District Garhwal, North West Himalaya; Transmedia, 1999.
[72]
Shukla, A.; Choudhary, A. Evaluation of In vitro antidiabetic and anti-inflammatory activities of leaves extract of Boehmeria rugulosa. Evaluation, 2018, 11(9)
[73]
Zaki, A.A.; Hashish, N.E.; Amer, M.A.; Lahloub, M.F. Cardioprotective and antioxidant effects of oleogum resin “Olibanum” from Bos Boswellia carteri Birdw. (Bursearceae). Chin. J. Nat. Med., 2014, 12(5), 345-350.
[http://dx.doi.org/10.1016/S1875-5364(14)60042-X] [PMID: 24856757]
[74]
Banno, N.; Akihisa, T.; Yasukawa, K.; Tokuda, H.; Tabata, K.; Nakamura, Y.; Nishimura, R.; Kimura, Y.; Suzuki, T. Anti-inflammatory activities of the triterpene acids from the resin of Boswellia carteri. J. Ethnopharmacol., 2006, 107(2), 249-253.
[http://dx.doi.org/10.1016/j.jep.2006.03.006] [PMID: 16621377]
[75]
Al-Mehdar, A.A.; Al-Battah, A.M. Evaluation of hypoglycemic activity of boswellia carterii and cissus rotundifolia in streptozotocin/nicotinamide-induced diabetic rats. Yemeni Journal for Medical Sciences, 2016, 10(1), 30-38.
[http://dx.doi.org/10.20428/yjms.v10i1.959]
[76]
Oliver-Bever, B. Medicinal plants in tropical west africa III. Anti-infection therapy with higher plants. J. Ethnopharmacol., 1983, 9(1), 1-83.
[http://dx.doi.org/10.1016/0378-8741(83)90028-4] [PMID: 6668951]
[77]
Mehta, S.; Bhat, V.J. Studies on Indian medicinal plants II: bryophyllin, a new antibacterial substance from the leaves of Bryophyllum calyciunum salsib. J. Univ. Bombay., 1952, 21, 21-25.
[78]
Akinpelu, D.A. Antimicrobial activity of Bryophyllum pinnatum leaves. Fitoterapia, 2000, 71(2), 193-194.
[http://dx.doi.org/10.1016/S0367-326X(99)00135-5] [PMID: 10727819]
[79]
Misra, S.B.; Dixit, S.N. Antifungal activity of leaf extracts of some higher plants. Acta Bot. Indica., 1979, 7(2), 147-150.
[80]
Pal, S.; Chaudhuri, A.K.N. Studies on the anti-ulcer activity of a Bryophyllum pinnatum leaf extract in experimental animals. J. Ethnopharmacol., 1991, 33(1-2), 97-102.
[http://dx.doi.org/10.1016/0378-8741(91)90168-D] [PMID: 1943181]
[81]
Pal, S.; Nag Chaudhuri, A.K. Preliminary studies on the anti-inflammatory and analgesic activities of bryophyllum pinnatum (Lam.). Med. Sci. Res., 1989, 17, 561-562.
[82]
Pal, S.; Nag Chaudhuri, A.K. Further studies on the anti-inflammatory profile of the methanolic fraction of the fresh leaf extract of Bryophyllum pinnatum. Fitoterapia-Milano., 1992, 63, 451.
[83]
Ojewole, J. Antihypertensive properties of Bryophyllum pinnatum $lcurlb;(Lam) Oken$rcurlb; leaf extracts. Am. J. Hypertens., 2002, 15(4), A34.
[http://dx.doi.org/10.1016/S0895-7061(02)02353-1]
[84]
Pal, S.; Sen, T.; Chaudhuri, A.K.N. Neuropsychopharmacological profile of the methanolic fraction of Bryophyllum pinnatum leaf extract. J. Pharm. Pharmacol., 2010, 51(3), 313-318.
[http://dx.doi.org/10.1211/0022357991772312] [PMID: 10344633]
[85]
Ojewole, J.A.O. Antinociceptive, anti-inflammatory and antidiabetic effects of Leonotis leonurus (L.) R. Br. [Lamiaceae] leaf aqueous extract in mice and rats. Methods Find. Exp. Clin. Pharmacol., 2005, 27(4), 257-264.
[http://dx.doi.org/10.1358/mf.2005.27.4.893583] [PMID: 16082426]
[86]
Abima Shazhni, J.R.; Renu, A.; Vijayaraghavan, P. Insights of antidiabetic, anti-inflammatory and hepatoprotective properties of antimicrobial secondary metabolites of corm extract from Caladium x hortulanum. Saudi J. Biol. Sci., 2018, 25(8), 1755-1761.
[http://dx.doi.org/10.1016/j.sjbs.2018.03.013] [PMID: 30591796]
[87]
Rahnavard, R.; Razavi, N. A review on the medical effects of Capparis spinosa L. Adv. Herb. Med., 2017, 3(1), 44-53.
[88]
Al-Snafi, A.E. Encyclopedia of the constituents and pharmacological effects of Iraqi medicinal plants; Rigi Publication, 2015.
[89]
Jalali, M.T.; Mohammadtaghvaei, N.; Larky, D.A. Investigating the effects of Capparis Spinosa on hepatic gluconeogenesis and lipid content in streptozotocin-induced diabetic rats. Biomed. Pharmacother., 2016, 84, 1243-1248.
[http://dx.doi.org/10.1016/j.biopha.2016.10.061] [PMID: 27810780]
[90]
Zhou, H.; Jian, R.; Kang, J.; Huang, X.; Li, Y.; Zhuang, C.; Yang, F.; Zhang, L.; Fan, X.; Wu, T.; Wu, X. Anti-inflammatory effects of caper (Capparis spinosa L.) fruit aqueous extract and the isolation of main phytochemicals. J. Agric. Food Chem., 2010, 58(24), 12717-12721.
[http://dx.doi.org/10.1021/jf1034114] [PMID: 21105652]
[91]
Benkhnigue, O.; Ben Akka, F.; Salhi, S.; Fadli, M.; Douira, A.; Zidane, L. Catalogue des plantes médicinales utilisées dans le traitement du diabète dans la région d’Al Haouz-Rhamna (Maroc). J. Anim. Plant Sci., 2014, 23(1), 3539-3568.
[92]
Hachi, M.; Hachi, T.; Belahbib, N.; Dahmani, J.; Zidane, L. contribution a l’etude floristique et ethnobotanique de la flore medicinale utilisee au niveau de la ville de Khenifra (MOROCCO)]. Int. J. Innov. Appl. Stud., 2015, 11(3), 754.
[93]
Barkaoui, M.; Katiri, A.; Boubaker, H.; Msanda, F. Ethnobotanical survey of medicinal plants used in the traditional treatment of diabetes in Chtouka Ait Baha and Tiznit (Western Anti-Atlas), Morocco. J. Ethnopharmacol., 2017, 198, 338-350.
[http://dx.doi.org/10.1016/j.jep.2017.01.023] [PMID: 28109915]
[94]
Katiri, A.; Barkaoui, M.; Msanda, F.; Boubaker, H. Ethnobotanical survey of medicinal plants used for the treatment of diabetes in the Tizi n’Test region (Taroudant Province, Morocco). J. Pharmacogn. Nat. Prod., 2017, 3(1), 992-2472.
[http://dx.doi.org/10.4172/2472-0992.1000130]
[95]
Chaachouay, N.; Benkhnigue, O.; Fadli, M.; El Ibaoui, H.; Zidane, L. Ethnobotanical and ethnopharmacological studies of medicinal and aromatic plants used in the treatment of metabolic diseases in the Moroccan Rif. Heliyon, 2019, 5(10), e02191.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02191] [PMID: 31720440]
[96]
Chebat, A.; Skalli, S.; Benkirane, R.; Soulaymani, R.; Khettab, M.; Kahouadji, A. Évaluation de risques des événements indésirables liés à l’usage des plantes médicinales chez les enfants atteints de maladies hématologiques et cancéreuses. Phytotherapie, 2015, 13(3), 176-184.
[http://dx.doi.org/10.1007/s10298-014-0912-4]
[97]
Daoudi, A.; Bammou, M.; Zarkani, S.; Slimani, I.; Ibijbijen, J.; Nassiri, L. Ethnobotanical study of medicinal flora in rural municipality of Aguelmouss - Khenifra province – (Morocco). Phytotherapie, 2016, 14(4), 220-228.
[http://dx.doi.org/10.1007/s10298-015-0953-z]
[98]
Mahmoud, M.F.; El Ashry, F.E.Z.Z.; El Maraghy, N.N.; Fahmy, A. Studies on the antidiabetic activities of Momordica charantia fruit juice in streptozotocin-induced diabetic rats. Pharm. Biol., 2017, 55(1), 758-765.
[http://dx.doi.org/10.1080/13880209.2016.1275026] [PMID: 28064559]
[99]
Khouchlaa, A.; Tijane, M.; Chebat, A.; Hseini, S.; Kahouadji, A. Ethnopharmacological survey of plants used in the treatment of urolithiasis in Morocco. Phytotherapie, 2017, 15(5), 274-287.
[http://dx.doi.org/10.1007/s10298-016-1073-4]
[100]
Lahsissene, H.; Kahouadji, A.; Hseini, S. Catalog of medicinal plants used in the region of Zaër (Western Morocco). Lejeunia. Rev. Bot., 2009.
[101]
Mechchate, H.; Es-safi, I.; Bari, A.; Grafov, A.; Bousta, D. Ethnobotanical survey about the management of diabetes with medicinal plants used by diabetic patients in region of FezMeknes, Morocco. J. Ethnobot. Res. Appl., 2020, 19, 1-28.
[102]
Nassiri, L.; Zarkani, S.; Daoudi, A.; Bammou, M.; Bouiamrine, E.H.; Ibijbijen, J. Contribution to the development of an ethnobotanical catalog of the rural town of Aguelmous (Province of Khenifra, (Morocco). Int. J. Innov. Appl. Stud., 2016, 17(2), 373-387.
[103]
Youssef, D.; Ahmed, E.L.A.; Abderrahmane, A.; Bakhyi, B. Inventory of medicinal plants in the Site of Biological and Ecological Interest of Kharouba (Central Plateau, Morocco). J. Mater. Environ. Sci., 2016, 7(11), 3993-3999.
[104]
Ouassou, H.; Zahidi, T.; Bouknana, S.; Bouhrim, M.; Mekhfi, H.; Ziyyat, A.; Aziz, M.; Bnouham, M. Inhibition of α-glucosidase, intestinal glucose absorption, and antidiabetic properties by Caralluma europaea. Evidence-Based Complement. Altern. Med., 2018, 2018, 9589472.
[105]
Amrati, F.E.Z.; Bourhia, M.; Saghrouchni, H.; Slighoua, M.; Grafov, A.; Ullah, R.; Ezzeldin, E.; Mostafa, G.A.; Bari, A.; Ibenmoussa, S.; Bousta, D. Caralluma europaea (Guss.) NE Br.: Anti-inflammatory, antifungal, and antibacterial activities against nosocomial antibiotic-resistant microbes of chemically characterized fractions. Molecules, 2021, 26(3), 636.
[http://dx.doi.org/10.3390/molecules26030636] [PMID: 33530597]
[106]
Committee, A.P. The ayurvedic pharmacopoeia of India, Gov. India, Minist. Heal. Fam. Welfare; India Dep. AYUSH: New Delhi, 2001.
[107]
Sharma, A.P.; Nighantu, D. Chaukhambha Orientalia; Varanasi, 2008.
[108]
Mishra, B.S. Bhava Prakasha; Nighantu Part, 2004.
[109]
Arias, B.Á.; Ramón-Laca, L. Pharmacological properties of citrus and their ancient and medieval uses in the Mediterranean region. J. Ethnopharmacol., 2005, 97(1), 89-95.
[http://dx.doi.org/10.1016/j.jep.2004.10.019] [PMID: 15652281]
[110]
Ajaiyeoba, E.O.; Oladepo, O.; Fawole, O.I.; Bolaji, O.M.; Akinboye, D.O.; Ogundahunsi, O.A.T.; Falade, C.O.; Gbotosho, G.O.; Itiola, O.A.; Happi, T.C.; Ebong, O.O.; Ononiwu, I.M.; Osowole, O.S.; Oduola, O.O.; Ashidi, J.S.; Oduola, A.M.J. Cultural categorization of febrile illnesses in correlation with herbal remedies used for treatment in Southwestern Nigeria. J. Ethnopharmacol., 2003, 85(2-3), 179-185.
[http://dx.doi.org/10.1016/S0378-8741(02)00357-4] [PMID: 12639738]
[111]
Menichini, F.; Loizzo, M.R.; Bonesi, M.; Conforti, F.; De Luca, D.; Statti, G.A.; de Cindio, B.; Menichini, F.; Tundis, R. Phytochemical profile, antioxidant, anti-inflammatory and hypoglycemic potential of hydroalcoholic extracts from Citrus medica L. cv Diamante flowers, leaves and fruits at two maturity stages. Food Chem. Toxicol., 2011, 49(7), 1549-1555.
[http://dx.doi.org/10.1016/j.fct.2011.03.048] [PMID: 21457747]
[112]
Zezong, X. Institute for the history ofscience, Chinese AcademyOf Sciences: 1957—1997. Stud. Hist. Nat. Sci., 1997, 1997, 2.
[113]
Adebajo, A.C.; Iwalewa, E.O.; Obuotor, E.M.; Ibikunle, G.F.; Omisore, N.O.; Adewunmi, C.O.; Obaparusi, O.O.; Klaes, M.; Adetogun, G.E.; Schmidt, T.J.; Verspohl, E.J. Pharmacological properties of the extract and some isolated compounds of Clausena lansium stem bark: Anti-trichomonal, antidiabetic, anti-inflammatory, hepatoprotective and antioxidant effects. J. Ethnopharmacol., 2009, 122(1), 10-19.
[http://dx.doi.org/10.1016/j.jep.2008.11.015] [PMID: 19095054]
[114]
Bruneton, J. Pharmacognosy, phytochemistry, medicinal plants; Lavoisier publishing, 1995.
[115]
Varier, P.S. Coriandrum sativum in Indian medicinal plants: A compendium of 500 species (2). In: Orient Longman LtD Chennai; , 1994; pp. 416-417.
[116]
Duke, J.A. Handbook of medicinal herbs; CRC press, 2002.
[http://dx.doi.org/10.1201/9781420040463]
[117]
Mechchate, H.; Es-Safi, I.; Amaghnouje, A.; Boukhira, S.; A Alotaibi, A.; Al-Zharani, M.; A Nasr, F.; M Noman, O.; Conte, R.; Amal, E.H.E.Y.; Bekkari, H.; Bousta, D. Antioxidant, anti-inflammatory and antidiabetic proprieties of LC-MS/MS identified polyphenols from coriander seeds. Molecules, 2021, 26(2), 487.
[http://dx.doi.org/10.3390/molecules26020487] [PMID: 33477662]
[118]
Zargari, A. Medicinal plants; Tehran University of Medical Sciences, 1997.
[119]
Mir Heidar, H. Herbal knowledge: Usage of herbs in prevention and treatment of diseases, with latest research around the world; Daftare Nashre Farhange Eslami: Tehran, 2004.
[120]
Ouahhoud, S.; Lahmass, I.; Bouhrim, M.; Khoulati, A.; Sabouni, A.; Benabbes, R.; Asehraou, A.; Choukri, M.; Bnouham, M.; Saalaoui, E. Antidiabetic effect of hydroethanolic extract of Crocus sativus stigmas, tepals and leaves in streptozotocin-induced diabetic rats. Physiol. Pharmacol., 2019, 23, 9-20.
[121]
Hosseinzadeh, H.; Younesi, H.M. Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol., 2002, 2(1), 7.
[http://dx.doi.org/10.1186/1471-2210-2-7] [PMID: 11914135]
[122]
Williamson, E.M. China: Churchill Livingstone; Major Herbs of Ayurveda, 2002.
[123]
Joshi, S.K.; Sharma, B.D.; Bhatia, C.R.; Singh, V.R.; Thakur, R.S. The wealth of India raw materials, Counc. Sci. Ind. Res. Publ. New Delhi., 1992, 3, 270-271.
[124]
Kumar, S.; Kumar, D. Evaluation of antidiabetic activity of Euphorbia hirta Linn. in streptozotocin induced diabetic mice. Indian J. Nat. Prod. Resour., 2010, 1(2), 200-203.
[125]
Sharma, N.; Samarakoon, K.; Gyawali, R.; Park, Y.H.; Lee, S.J.; Oh, S.; Lee, T.H.; Jeong, D. Evaluation of the antioxidant, anti-inflammatory, and anticancer activities of Euphorbia hirta ethanolic extract. Molecules, 2014, 19(9), 14567-14581.
[http://dx.doi.org/10.3390/molecules190914567] [PMID: 25225720]
[126]
Ali, S.; Zameer, S.; Yaqoob, M. Ethnobotanical, phytochemical and pharmacological properties of Galinsoga parviflora (Asteraceae): A review. Trop. J. Pharm. Res., 2017, 16(12), 3023-3033.
[127]
Sen, S.; Chakraborty, R.; De, B.; Devanna, N. An ethnobotanical survey of medicinal plants used by ethnic people in West and South district of Tripura, India. J. For. Res., 2011, 22(3), 417-426.
[http://dx.doi.org/10.1007/s11676-011-0184-6]
[128]
Ferheen, S.; Afza, N.; Malik, A.; Iqbal, L.; Azam Rasool, M.; Irfan Ali, M.; Bakhsh Tareen, R. Galinsosides A and B, bioactive flavanone glucosides from Galinsoga parviflora. J. Enzyme Inhib. Med. Chem., 2009, 24(5), 1128-1132.
[http://dx.doi.org/10.1080/14756360802667688] [PMID: 19772485]
[129]
Studzińska-Sroka, E.; Dudek-Makuch, M.; Chanaj-Kaczmarek, J.; Czepulis, N.; Korybalska, K.; Rutkowski, R.; Łuczak, J.; Grabowska, K.; Bylka, W.; Witowski, J. Anti-inflammatory activity and phytochemical profile of galinsoga parviflora Cav. Molecules, 2018, 23(9), 2133.
[http://dx.doi.org/10.3390/molecules23092133] [PMID: 30149540]
[130]
Feriha, B.; Brahim, A.; Reguia, M.; Amar, D.; Mohamed, Y. High antioxidant capacities and anti-inflammatory effects of hammada elegans Botsch. Extracts: An in vitro assessment. Curr. Enzym. Inhib., 2019, 15(1), 55-68.
[http://dx.doi.org/10.2174/1573408015666190225151916]
[131]
Labioth, S.; Mahfoudi, R.; Djeridane, A.; Benlhorma, S.; Yousfi, M. Phytochemical characterization and high in vitro antioxidant properties of Hammada elegans algerian extracts: A potent medicinal plant. Phytotherapie, 2021, 19(1), 3-15.
[http://dx.doi.org/10.3166/phyto-2019-0177]
[132]
Asseli, B.; Djeridane, A.; Mahfoudi, R.; Yousfi, M. High anti-inflammatory and antidiabetic activities of Hammada elegans (Bge.)Botsch (Chenopodiaceae) extracts: An in vivo assessment. J. Diabetes Metab. Disord., 2021, 20(1), 427-438.
[http://dx.doi.org/10.1007/s40200-021-00762-x] [PMID: 34178849]
[133]
Circosta, C.; Occhiuto, F.; Ragusa, S.; Trovato, A.; Tumino, G.; Briguglio, F.; De Pasquale, A. A drug used in traditional medicine: Harpagophytum procumbens DC II. Cardiovascular activity. J. Ethnopharmacol., 1984, 11(3), 259-274.
[http://dx.doi.org/10.1016/0378-8741(84)90072-2] [PMID: 6482477]
[134]
Mahomed, I.M.; Ojewole, J.A.O. Analgesic, antiinflammatory and antidiabetic properties ofHarpagophytum procumbens DC (Pedaliaceae) secondary root aqueous extract. Phytother. Res., 2004, 18(12), 982-989.
[http://dx.doi.org/10.1002/ptr.1593] [PMID: 15742343]
[135]
Berhaut, J. Illustrated flora of Senegal Pref. M. Leopold Sendar Senghor; , 1975, IV, pp. 93-94.
[136]
Tona, L.; Kambu, K.; Ngimbi, N.; Mesia, K.; Penge, O.; Lusakibanza, M.; Cimanga, K.; De Bruyne, T.; Apers, S.; Totte, J.; Pieters, L.; Vlietinck, A.J. Antiamoebic and spasmolytic activities of extracts from some antidiarrhoeal traditional preparations used in Kinshasa, Congo. Phytomedicine, 2000, 7(1), 31-38.
[http://dx.doi.org/10.1016/S0944-7113(00)80019-7] [PMID: 10782488]
[137]
Kengni, F.; Fodouop, S.P.C.; Tala, D.S.; Djimeli, M.N.; Fokunang, C.; Gatsing, D. Antityphoid properties and toxicity evaluation of Harungana madagascariensis Lam (Hypericaceae) aqueous leaf extract. J. Ethnopharmacol., 2016, 179, 137-145. 37.
[138]
Irvine, F.R. Woody plants of Ghana; Woody Plants of Ghana, 1961.
[139]
Olagunju, J.A.; Oladunni, S.O.; Oladimeji, M.S. Status of phosphatase activities in the liver and kidney of rats treated with isosaline leaf and stem-bark extracts of Harungana madagascariensis (L). Cytobios, 2000, 103(402), 17-24.
[PMID: 11030222]
[140]
Das Prajapati, N.; Purohit, S.S.; Sharma, A.K.; Kumar, T. A handbook of medicinal plants: A complete source book. In: Med. Plants a Complet; Handb, A., Ed.; Source B., 2003; p. 554.
[141]
Iwalewa, E.O.; Adewale, I.O.; Taiwo, B.J.; Arogundade, T.; Osinowo, A.; Daniyan, O.M.; Adetogun, G.E. Effects of Harungana madagascariensis stem bark extract on the antioxidant markers in alloxan induced diabetic and carrageenan induced inflammatory disorders in rats. J. Complement. Integr. Med., 2008, 5(1), 5.
[http://dx.doi.org/10.2202/1553-3840.1088]
[142]
Grierson, D.S.; Afolayan, A.J. An ethnobotanical study of plants used for the treatment of wounds in the Eastern Cape, South Africa. J. Ethnopharmacol., 1999, 67(3), 327-332.
[http://dx.doi.org/10.1016/S0378-8741(99)00082-3] [PMID: 10617068]
[143]
Ojewole, J.A.O. Antinociceptive, anti-inflammatory and antidiabetic properties of Hypoxis hemerocallidea Fisch. & C.A. Mey. (Hypoxidaceae) corm [‘African Potato’] aqueous extract in mice and rats. J. Ethnopharmacol., 2006, 103(1), 126-134.
[http://dx.doi.org/10.1016/j.jep.2005.07.012] [PMID: 16191469]
[144]
Ojewole, J.A.O.; Kamadyaapa, D.R.; Musabayane, C.T. Some in vitro and in vivo cardiovascular effects of Hypoxis hemerocallidea Fisch & CA Mey (Hypoxidaceae) corm (African potato) aqueous extract in experimental animal models. Cardiovasc. J. S. Afr., 2006, 17(4), 166-171.
[PMID: 17001418]
[145]
Zhao, Y.M.; Zhang, M.L.; Shi, Q.W.; Kiyota, H. Chemical constituents of plants from the genus Inula. Chem. Biodivers., 2006, 3(4), 371-384.
[http://dx.doi.org/10.1002/cbdv.200690041] [PMID: 17193274]
[146]
Honda, G.; Yeşilada, E.; Tabata, M.; Sezik, E.; Fujita, T.; Takeda, Y.; Takaishi, Y.; Tanaka, T. Traditional medicine in Turkey. VI. Folk medicine in west Anatolia: Afyon, Kütahya, Denizli, Muğla, Aydin provinces. J. Ethnopharmacol., 1996, 53(2), 75-87.
[PMID: 8844462]
[147]
Baytop, T. Herbal therapy in Turkey: past and present; Nobel Medical Bookstores, 1999.
[148]
Sen, A.; Kurkcuoglu, M.; Senkardes, I.; Bitis, L.; Baser, K.H.C. Chemical composition, antidiabetic, anti-inflammatory and antioxidant activity of Inula ensifolia L. essential oil. J. Essent. Oil-Bear. Plants, 2019, 22(4), 1048-1057.
[http://dx.doi.org/10.1080/0972060X.2019.1662333]
[149]
Benabdelkader, T.; Zitouni, A.; Guitton, Y.; Jullien, F.; Maitre, D.; Casabianca, H.; Legendre, L.; Kameli, A. Essential oils from wild populations of Algerian Lavandula stoechas L.: composition, chemical variability, and in vitro biological properties. Chem. Biodivers., 2011, 8(5), 937-953.
[http://dx.doi.org/10.1002/cbdv.201000301] [PMID: 21560242]
[150]
El-Hilaly, J.; Hmammouchi, M.; Lyoussi, B. Ethnobotanical studies and economic evaluation of medicinal plants in Taounate province (Northern Morocco). J. Ethnopharmacol., 2003, 86(2-3), 149-158.
[http://dx.doi.org/10.1016/S0378-8741(03)00012-6] [PMID: 12738079]
[151]
Sebai, H.; Selmi, S.; Rtibi, K.; Souli, A.; Gharbi, N.; Sakly, M. Lavender (Lavandula stoechas L.) essential oils attenuate hyperglycemia and protect against oxidative stress in alloxan-induced diabetic rats. Lipids Health Dis., 2013, 12(1), 189.
[http://dx.doi.org/10.1186/1476-511X-12-189] [PMID: 24373672]
[152]
Mustafa, S.B.; Akram, M.; Muhammad Asif, H.; Qayyum, I.; Hashmi, A.M.; Munir, N.; Khan, F.S.; Riaz, M.; Ahmad, S. Antihyperglycemic activity of hydroalcoholic extracts of selective medicinal plants Curcuma longa, Lavandula stoechas, Aegle marmelos, and Glycyrrhiza glabra and their polyherbal preparation in alloxan-induced diabetic mice. Dose Response, 2019, 17(2)
[http://dx.doi.org/10.1177/1559325819852503] [PMID: 31191187]
[153]
Ezzoubi, Y.; Bousta, D.; Lachkar, M.; Farah, A. Antioxidant and anti-inflammatory properties of ethanolic extract of Lavandula stoechas L. from Taounate region in Morocco. Int. J. Phytopharm., 2014, 5(1), 21-26.
[154]
Duke, J.A. Crc handbook of medicinal herbs. Int. Clin. Psychopharmacol., 1990, 5(1), 74.
[http://dx.doi.org/10.1097/00004850-199001000-00014]
[155]
Evans, W.C. Trease and Evans pharmacognosy, 15th ed.; Baillière Tindall: London, 1989.
[156]
Leung, A.Y.; Foster, S. Encyclopedia of common natural ingredients used in food, drugs, and cosmetics. J. Am. Chem. Soc., 1996, 118, 8988.
[157]
Najibullah, S.N.M.; Ahamad, J.; Aldahish, A.A.; Sultana, S.; Sultana, S. Chemical characterization and α-glucosidase inhibitory activity of essential oil of Lavandula angustifolia flowers. J. Essent. Oil-Bear. Plants, 2021, 24(3), 431-438.
[http://dx.doi.org/10.1080/0972060X.2021.1942233]
[158]
Cardia, G.F.E.; Silva-Filho, S.E.; Silva, E.L.; Uchida, N.S.; Cavalcante, H.A.O.; Cassarotti, L.L.; Salvadego, V.E.C.; Spironello, R.A.; Bersani-Amado, C.A.; Cuman, R.K.N. Effect of lavender (Lavandula angustifolia) essential oil on acute inflammatory response. Evidence-Based Complement. Altern. Med., 2018, 2018, 1413940.
[159]
Wang, Y.; Deng, M.; Zhang, S.Y.; Zhou, Z.K.; Tian, W.X. Parasitic loranthus from Loranthaceae rather than Viscaceae potently inhibits fatty acid synthase and reduces body weight in mice. J. Ethnopharmacol., 2008, 118(3), 473-478.
[http://dx.doi.org/10.1016/j.jep.2008.05.016] [PMID: 18583073]
[160]
Noman, O.M.; Mothana, R.A.; Al-Rehaily, A.J.; Al qahtani, A.S.; Nasr, F.A.; Khaled, J.M.; Alajmi, M.F.; Al-Said, M.S. Phytochemical analysis and anti-diabetic, anti-inflammatory and antioxidant activities of Loranthus acaciae Zucc. Grown in Saudi Arabia. Saudi Pharm. J., 2019, 27(5), 724-730.
[http://dx.doi.org/10.1016/j.jsps.2019.04.008] [PMID: 31297028]
[161]
Andrade-Cetto, A. Ethnobotanical study of the medicinal plants from Tlanchinol, Hidalgo, México. J. Ethnopharmacol., 2009, 122(1), 163-171.
[http://dx.doi.org/10.1016/j.jep.2008.12.008] [PMID: 19146936]
[162]
Dolatkhahi, M.; Dolatkhahi, A.; Nejad, J.B. Ethnobotanical study of medicinal plants used in Arjan–Parishan protected area in Fars Province of Iran. Avicenna J. Phytomed., 2014, 4(6), 402-412.
[163]
Miguel, F.G.; Cavalheiro, A.H.; Spinola, N.F.; Ribeiro, D.L.; Barcelos, G.R.M.; Antunes, L.M.G.; Hori, J.I.; Marquele-Oliveira, F.; Rocha, B.A.; Berretta, A.A. Validation of a RP-HPLC-DAD method for chamomile (Matricaria recutita) preparations and assessment of the marker, apigenin-7-glucoside, safety and anti-inflammatory effect. Evidence-Based Complement. Altern. Med, 2015, 2015
[164]
Emam, M. Comparative evaluation of antidiabetic activity of Rosmarinus officinalis L. and Chamomile recutita in streptozotocin induced diabetic rats. Agric. Biol. J. N. Am., 2012, 3(6), 247-252.
[http://dx.doi.org/10.5251/abjna.2012.3.6.247.252]
[165]
Ahmad, N.; Hasan, N.; Ahmad, Z.; Zishan, M.; Zohrameena, S. Momordica charantia: for traditional uses and pharmacological actions. J. Drug Deliv. Ther., 2016, 6(2), 40-44.
[http://dx.doi.org/10.22270/jddt.v6i2.1202]
[166]
Gupta, M.; Sharma, S.; Gautam, A.K.; Bhadauria, R. Momordica charantia Linn.(Karela): Nature’s silent healer. Int. J. Pharm. Sci. Rev. Res., 2011, 11(1), 32-37.
[167]
Shivanagoudra, S.R.; Perera, W.H.; Perez, J.L.; Athrey, G.; Sun, Y.; Wu, C.S.; Jayaprakasha, G.K.; Patil, B.S. In vitro and in silico elucidation of antidiabetic and anti-inflammatory activities of bioactive compounds from Momordica charantia L. Bioorg. Med. Chem., 2019, 27(14), 3097-3109.
[http://dx.doi.org/10.1016/j.bmc.2019.05.035] [PMID: 31196754]
[168]
Liaw, C-C.; Huang, H-C.; Hsiao, P-C.; Zhang, L-J.; Lin, Z-H.; Hwang, S-Y.; Hsu, F-L.; Kuo, Y-H. 5β,19-epoxycucurbitane triterpenoids from Momordica charantia and their anti-inflammatory and cytotoxic activity. Planta Med., 2015, 81(1), 62-70.
[PMID: 25469855]
[169]
Serce, S.; Ercisli, S.; Sengul, M.; Gunduz, K.; Orhan, E. Antioxidant activities and fatty acid composition of wild grown myrtle (Myrtus communis L.) fruits. Pharmacogn. Mag., 2010, 6(21), 9-12.
[http://dx.doi.org/10.4103/0973-1296.59960] [PMID: 20548930]
[170]
Ambasta, S.P. The useful plants of India, Publication and Information Directorate; CSIR: New Delhi, India, 1986.
[171]
Nadkarni, K.M. Indian materia medica; , 1989, p. 838.
[172]
Kabiruddin, M. Makhzan-ul-Mufradat; Daftaral Maseeh: Delhi, 1951.
[173]
Diaz, A.M.; Abeger, A. Myrtus communis, chemical composition and biological activity of its extracts. a review. 1987.
[174]
Yadegarinia, D.; Gachkar, L.; Rezaei, M.B.; Taghizadeh, M.; Astaneh, S.A.; Rasooli, I. Biochemical activities of Iranian Mentha piperita L. and Myrtus communis L. essential oils. Phytochemistry, 2006, 67(12), 1249-1255.
[http://dx.doi.org/10.1016/j.phytochem.2006.04.025] [PMID: 16777154]
[175]
Baitar, Z.I. Aljameul Mufradat Al-advia-wa-al-Aghzia; Transl. by CCRUM: New Delhi, 1999, 1, pp. 42-47.
[176]
Eds Satyavati, V. Medicinal Plants of India Indian council of Medical Research; New Delhi, 1976.
[177]
Evans, W.C. Trease and evans’ pharmacognosy E-book; Elsevier Health Sciences, 2009.
[178]
Mitra, R. Ethno-economic significance of the economic Myrtle-a plant sacred to Greeks and Romans. Ethnobotany., 1998, 10, 1-5.
[179]
Sen, A.; Kurkçuoglu, M.; Yıldırım, A.; Dogan, A.; Bitis, L.; Baser, K.H.C. Chemical and biological profiles of essential oil from different parts of Myrtus communis L. subsp. communis from Turkey. ACS Agric. Conspec. Sci., 2020, 85(1), 71-78.
[180]
Srinivasan, K. Cumin (Cuminum cyminum) and black cumin (Nigella sativa) seeds: Traditional uses, chemical constituents, and nutraceutical effects. Food Quality and Safety, 2018, 2(1), 1-16.
[http://dx.doi.org/10.1093/fqsafe/fyx031]
[181]
Nadkarni, Km.; Nadkarni, A.K. Indian Materia Medica; Popular Prakashan Pvt, Ltd.: Bombay, 1976.
[182]
Zaidi, S.F.H.; Yoshida, I.; Butt, F.; Yusuf, M.A.; Usmanghani, K.; Kadowaki, M.; Sugiyama, T. Indusynic medicine, research institute of indusyunic medicine indusynic medicine, research institute of indusyunic medicine. Biol. Pharm. Bull., 2009, 32, 631-636.
[http://dx.doi.org/10.1248/bpb.32.631] [PMID: 19336896]
[183]
Kapoor, L.D. Handbook of Ayurvedic Medicinal Plants; CRC, Press. LLC, 1990, p. 239.
[184]
Kohandel, Z.; Farkhondeh, T.; Aschner, M.; Samarghandian, S. Anti-inflammatory effects of thymoquinone and its protective effects against several diseases. Biomed. Pharmacother., 2021, 138, 111492.
[http://dx.doi.org/10.1016/j.biopha.2021.111492] [PMID: 33743334]
[185]
Harsha, V.H.; Hebbar, S.S.; Shripathi, V.; Hegde, G.R. Ethnomedicobotany of Uttara Kannada District in Karnataka, India—plants in treatment of skin diseases. J. Ethnopharmacol., 2003, 84(1), 37-40.
[http://dx.doi.org/10.1016/S0378-8741(02)00261-1] [PMID: 12499074]
[186]
Ghosh, G.R. Tulasi (NO Labiatae, Genus-Ocimum), New Approaches to Med. Heal., 1995, 3, 23-29.
[187]
Mehta, V.; Sharma, A.; Kailkhura, P.; Malairaman, U. Antioxidant, anti-inflammatory, and antidiabetic activity of hydroalcoholic extract of Ocimum sanctum: an in-vitro and in-silico study. Asian J. Pharm. Clin. Res., 2016, 9(5), 1-6.
[188]
Al-Khalil, S. A survey of plants used in Jordanian traditional medicine. Int. J. Pharmacogn., 1995, 33(4), 317-323.
[http://dx.doi.org/10.3109/13880209509065385]
[189]
Bellakhdar, J.; Claisse, R.; Fleurentin, J.; Younos, C. Repertory of standard herbal drugs in the Moroccan pharmacopoea. J. Ethnopharmacol., 1991, 35(2), 123-143.
[http://dx.doi.org/10.1016/0378-8741(91)90064-K] [PMID: 1809818]
[190]
Boufous, H.; Marhoume, F.; Chait, A.; Bagri, A. Ethnopharmacological survey of medicinal plants with hallucinogenic effect and plants used against pain, inflammatory diseases, diabetes and urinary lithiasis in Zagora “Morocco”. J. Intercult. Ethnopharmacol., 2017, 6(4), 342-350.
[http://dx.doi.org/10.5455/jice.20170721062527]
[191]
Darias, V.; Abdala, S.; Martin, D.; Ramos, F. Hypoglycaemic plants from the Canary Islands; Phyther. Res: United Kingdom, 1996.
[192]
Darias, V.; Bravo, L.; Barquin, E.; Herrera, D.M.; Fraile, C. Contribution to the ethnopharmacological study of the Canary Islands. J. Ethnopharmacol., 1986, 15(2), 169-193.
[http://dx.doi.org/10.1016/0378-8741(86)90154-6] [PMID: 3520156]
[193]
Belakhdar, J. The traditional Moroccan pharmacopoeia. In: Ancient Arab medicine and popular knowledge; , 1997.
[194]
Guex, C.G.; Reginato, F.Z.; de Jesus, P.R.; Brondani, J.C.; Lopes, G.H.H.; Bauermann, L.F. Antidiabetic effects of Olea europaea L. leaves in diabetic rats induced by high-fat diet and low-dose streptozotocin. J. Ethnopharmacol., 2019, 235, 1-7.
[http://dx.doi.org/10.1016/j.jep.2019.02.001] [PMID: 30721736]
[195]
Venditti, A.; Serrilli, A.M.; Rizza, L.; Frasca, G.; Cardile, V.; Bonina, F.P.; Bianco, A. Aromadendrine, a new component of the flavonoid pattern of Olea europaea L. and its anti-inflammatory activity. Nat. Prod. Res., 2013, 27(4-5), 340-349.
[http://dx.doi.org/10.1080/14786419.2012.693924] [PMID: 22691108]
[196]
Kaur, M.; Kaur, A.; Sharma, R. Pharmacological actions of Opuntia ficus indica: A Review. J. Appl. Pharm. Sci., 2012, 2(7), 15-18.
[http://dx.doi.org/10.7324/JAPS.2012.2703]
[197]
Berraaouan, A.; Ziyyat, A.; Mekhfi, H.; Legssyer, A.; Sindic, M.; Aziz, M.; Bnouham, M. Evaluation of antidiabetic properties of cactus pear seed oil in rats. Pharm. Biol., 2014, 52(10), 1286-1290.
[http://dx.doi.org/10.3109/13880209.2014.890230] [PMID: 25026333]
[198]
Koshak, A.E.; Abdallah, H.M.; Esmat, A.; Rateb, M.E. Anti-inflammatory activity and chemical characterisation of Opuntia ficus-indica seed oil cultivated in Saudi Arabia. Arab. J. Sci. Eng., 2020, 45(6), 4571-4578.
[http://dx.doi.org/10.1007/s13369-020-04555-x]
[199]
Saleh, M.S.M.; Jalil, J.; Mustafa, N.H.; Ramli, F.F.; Asmadi, A.Y.; Kamisah, Y. UPLC-MS-Based Metabolomics Profiling for α-Glucosidase Inhibiting Property of Parkia speciosa Pods. Life (Basel), 2021, 11(2), 78.
[http://dx.doi.org/10.3390/life11020078] [PMID: 33499128]
[200]
Sonia, N.; Dsouza, R.; Alisha, M. Pharmacological evaluation of Parkia speciosa Hassk. for antioxidant, anti-inflammatory, anti-diabetic and anti-microbial activities in vitro. Int. J. Life Sci., 2018, 11, 49-59.
[201]
Lorenzi, H. Brazilian Trees: Manual of Identification Manual and Cultivation of Arboreal Plants in Brazil; Nova Odessa: Plantarum, 1998, p. 149.
[202]
Paiva, K.O.; Oliveira, G.L.; Farias, D.F.A.; Müller, T.S. Medicinal plants used in genitourinary system disorders by riverine women, Caravelas; Rev. Fitos: Bahia, 2017, pp. 92-98.
[203]
Agra, M.F.; Silva, K.N.; Basílio, I.J.L.D.; Freitas, P.F.; Barbosa-Filho, J.M. Survey of medicinal plants used in the region Northeast of Brazil. Rev. Bras. Farmacogn., 2008, 18(3), 472-508.
[http://dx.doi.org/10.1590/S0102-695X2008000300023]
[204]
Cruz, A.V.M.; Kaplan, M.A.C. Medicinal uses of species from Myrtaceae and Melastomataceae families in Brazil. Flor e Amb., 2014, 2004(11), 47-52.
[205]
Brito, T.G.S.; Silva, A.P.S.A.; Cunha, R.X.; Fonseca, C.S.M.; Araújo, T.F.S.; Campos, J.K.L.; Nascimento, W.M.; Araújo, H.D.A.; Silva, J.P.R.; Tavares, J.F.; Santos, B.S.; Lima, V.L.M. Anti-inflammatory, hypoglycemic, hypolipidemic, and analgesic activities of Plinia cauliflora (Mart.) Kausel (Brazilian grape) epicarp. J. Ethnopharmacol., 2021, 268, 113611.
[http://dx.doi.org/10.1016/j.jep.2020.113611] [PMID: 33242623]
[206]
Chhetri, B.; Ali, N.; Setzer, W. A survey of chemical compositions and biological activities of Yemeni aromatic medicinal plants. Medicines, 2015, 2(2), 67-92.
[http://dx.doi.org/10.3390/medicines2020067] [PMID: 28930202]
[207]
Al-Fatimi, M. Ethnobotanical survey of medicinal plants in central Abyan governorate, Yemen. J. Ethnopharmacol., 2019, 241(17), 111973.
[http://dx.doi.org/10.1016/j.jep.2019.111973] [PMID: 31146001]
[208]
Algabr, M.N.; Ameddah, S.; Menad, A.; Mekkiou, R.; Chalchat, J.C.; Benayache, S.; Benayache, F. Essential oil composition of Pulicaria jaubertii from Yemen. Int. J. Med. Aromat. Plants, 2012, 2(4), 688-690.
[209]
Fawzy, G.; Al Ati, H.; El Gamal, A. Chemical composition and biological evaluation of essential oils of Pulicaria jaubertii. Pharmacogn. Mag., 2013, 9(33), 28-32.
[http://dx.doi.org/10.4103/0973-1296.108133] [PMID: 23661990]
[210]
Mohammed, H.A.; Abdelwahab, M.F.; El-Ghaly, E.S.M.; Ragab, E.A. Phytochemical characterization, in vitro anti-inflammatory, anti-diabetic, and cytotoxic activities of the edible aromatic plant; Pulicaria jaubertii. Molecules, 2021, 26(1), 203.
[http://dx.doi.org/10.3390/molecules26010203] [PMID: 33401558]
[211]
Wetherilt, H.; Pala, M. Herbs and spices indigenous to Turkey. Dev. Food Sci., 1994.
[212]
Nasar-Abbas, S.M.; Halkman, A.K. Antimicrobial effect of water extract of sumac (Rhus coriaria L.) on the growth of some food borne bacteria including pathogens. Int. J. Food Microbiol., 2004, 97(1), 63-69.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.04.009] [PMID: 15527919]
[213]
Mossa, J.S.; Rafatullah, S.; Galal, A.M.; Al-Yahya, M.A. Pharmacological studies of Rhus retinorrhaea. International Journal of Pharmacognosy, 1995, 33(3), 242-246.
[http://dx.doi.org/10.3109/13880209509065371]
[214]
Rayne, S.; Mazza, G. Biological activities of extracts from sumac (Rhus spp.): A review. Plant Foods Hum. Nutr., 2007, 62(4), 165-175.
[http://dx.doi.org/10.1007/s11130-007-0058-4] [PMID: 17909971]
[215]
Altinkurt, O.; Heper, S. [Pharmacological effects of sumac (Rhus coriaria)]. Turk Hij. Tecr. Biyol. Derg., 1970, 30(1), 41-46.
[PMID: 4248480]
[216]
Özcan, M.; Haciseferogullari, H. A condiment [sumac (Rhus coriaria L.) fruits]: some physicochemical properties. Bulg. J. Plant Physiol., 2004, 30(3-4), 74-84.
[217]
Giancarlo, S.; Rosa, L.M.; Nadjafi, F.; Francesco, M. Hypoglycaemic activity of two spices extracts: Rhus coriaria L. and Bunium persicum Boiss. Nat. Prod. Res., 2006, 20(9), 882-886.
[http://dx.doi.org/10.1080/14786410500520186] [PMID: 16753927]
[218]
Tohma, H.; Altay, A.; Köksal, E.; Gören, A.C.; Gülçin, İ. Measurement of anticancer, antidiabetic and anticholinergic properties of sumac (Rhus coriaria): analysis of its phenolic compounds by LC–MS/MS. J. Food Meas. Charact., 2019, 13(2), 1607-1619.
[http://dx.doi.org/10.1007/s11694-019-00077-9]
[219]
Khalilpour, S.; Behnammanesh, G.; Suede, F.; Ezzat, M.; Muniandy, J.; Tabana, Y.; Ahamed, M.; Tamayol, A.; Majid, A.; Sangiovanni, E.; Dell’Agli, M.; Majid, A. Neuroprotective and anti-inflammatory effects of Rhus coriaria extract in a mouse model of ischemic optic neuropathy. Biomedicines, 2018, 6(2), 48.
[http://dx.doi.org/10.3390/biomedicines6020048] [PMID: 29690612]
[220]
Pardo-de-Santayana, M.; Rey, M.; Heinrich, M. The historical evolution of the medicinal use of rosemary (Rosmarinus officinalis L.), a Spanish panacea. J. Pharm. Pharmacol., 2006, 58, A81-A81.
[221]
Chevallier, A. Encyclopedia of Herbal Medicine: 550 Herbs and Remedies for Common Ailments; Penguin, 2016.
[222]
Irshad, S.; Mahmood, M.; Perveen, F. In vitro antibacterial activities of three medicinal plants using agar well diffusion method. Res J Biol., 2012, 2, 1-8.
[223]
Xiao, Q.; Kuo, Y.H.; Zhang, Y.; Barker, D.M.; Won, D.J. A tropical cyclone bogus data assimilation scheme in the MM5 3D-Var system and numerical experiments with Typhoon Rusa (2002) near landfall. J. Meteorol. Soc. Jpn., 2006, 84(4), 671-689.
[http://dx.doi.org/10.2151/jmsj.84.671]
[224]
Ko, S.G.; Kim, H.P.; Jin, D.H.; Bae, H.S.; Kim, S.H.; Park, C.H.; Lee, J.W. Saussurea lappa induces G2-growth arrest and apoptosis in AGS gastric cancer cells. Cancer Lett., 2005, 220(1), 11-19.
[http://dx.doi.org/10.1016/j.canlet.2004.06.026] [PMID: 15737683]
[225]
Sarin, Y.K. A survey of vegetable raw material resources of Lahaul. Indian For., 1967, 93, 489-499.
[226]
Chopra, R.N. Glossary of Indian medicinal plants; National Agricultural Library, 1956.
[227]
Dar, G.H.; Virjee, J.; Kachroo, P.; Buth, G.M. Ethnobotany of Kashmir-I, Sind Valley. J. Econ. Taxon. Bot., 1984, 5, 668-675.
[228]
Lammari, N.; Demautis, T.; Louaer, O.; Meniai, A.H.; Casabianca, H.; Bensouici, C.; Devouassoux, G.; Fessi, H.; Bentaher, A.; Elaissari, A. Nanocapsules containing Saussurea lappa essential oil: Formulation, characterization, antidiabetic, anti-cholinesterase and anti-inflammatory potentials. Int. J. Pharm., 2021, 593, 120138.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120138] [PMID: 33278497]
[229]
Belemtougri, R.G.; Constantin, B.; Cognard, C.; Raymond, G.; Sawadogo, L. Effects of Sclerocarya birrea (A. rich) hochst (anacardiaceae) leaf extracts on calcium signalling in cultured rat skeletal muscle cells. J. Ethnopharmacol., 2001, 76(3), 247-252.
[http://dx.doi.org/10.1016/S0378-8741(01)00248-3] [PMID: 11448546]
[230]
Dimo, T.; Rakotonirina, S.V.; Tan, P.V.; Azay, J.; Dongo, E.; Kamtchouing, P.; Cros, G. Effect of Sclerocarya birrea (Anacardiaceae) stem bark methylene chloride/methanol extract on streptozotocin-diabetic rats. J. Ethnopharmacol., 2007, 110(3), 434-438.
[http://dx.doi.org/10.1016/j.jep.2006.10.020] [PMID: 17141993]
[231]
Ojewole, J.A.O. Evaluation of the anti-inflammatory properties of Sclerocarya birrea (A. Rich.) Hochst. (family: Anacardiaceae) stem-bark extracts in rats. J. Ethnopharmacol., 2003, 85(2-3), 217-220.
[http://dx.doi.org/10.1016/S0378-8741(03)00019-9] [PMID: 12639743]
[232]
Namsa, N.D.; Tag, H.; Mandal, M.; Kalita, P.; Das, A.K. An ethnobotanical study of traditional anti-inflammatory plants used by the Lohit community of Arunachal Pradesh, India. J. Ethnopharmacol., 2009, 125(2), 234-245.
[http://dx.doi.org/10.1016/j.jep.2009.07.004] [PMID: 19607898]
[233]
Hossain, M.K.; Prodhan, M.A. Anti-inflammatory and antidiabetic activity of ethanolic extracts of Sterculia villosa barks on Albino Wistar rats. J. Appl. Pharm. Sci., 2012, 2(8), 96.
[234]
Leeuwenberg, A.J.M. A revision of Tabernaemontana two: The new world species and Stemmadenia; Royal Botanic Gardens Kew, 1994.
[235]
de Almeida, L.; Cintra, A.C.O.; Veronese, E.L.G.; Nomizo, A.; Franco, J.J.; Arantes, E.C.; Giglio, J.R.; Sampaio, S.V. Anticrotalic and antitumoral activities of gel filtration fractions of aqueous extract from Tabernaemontana catharinensis (Apocynaceae). Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2004, 137(1), 19-27.
[http://dx.doi.org/10.1016/j.cca.2003.10.012] [PMID: 14984700]
[236]
Pereira, C.G.; Marques, M.O.M.; Barreto, A.S.; Siani, A.C.; Fernandes, E.C.; Meireles, M.A.A. Extraction of indole alkaloids from Tabernaemontana catharinensis using supercritical CO2+ethanol: an evaluation of the process variables and the raw material origin. J. Supercrit. Fluids, 2004, 30(1), 51-61.
[http://dx.doi.org/10.1016/S0896-8446(03)00112-8]
[237]
Sari, R.; Conterno, P.; da Silva, L.D.; de Lima, V.A.; Oldoni, T.L.C.; Thomé, G.R.; Carpes, S.T. Extraction of phenolic compounds from Tabernaemontana catharinensis leaves and their effect on oxidative stress markers in diabetic rats. Molecules, 2020, 25(10), 2391.
[http://dx.doi.org/10.3390/molecules25102391] [PMID: 32455579]
[238]
Marques, J.; Alves, J.; Torres-Rêgo, M.; Furtado, A.; Siqueira, E.; Galinari, E.; Araújo, D.; Guerra, G.; Azevedo, E.; Fernandes-Pedrosa, M.; Zucolotto, S. Phytochemical Analysis by HPLC–HRESI-MS and Anti-Inflammatory Activity of Tabernaemontana catharinensis. Int. J. Mol. Sci., 2018, 19(2), 636.
[http://dx.doi.org/10.3390/ijms19020636] [PMID: 29495249]
[239]
v, M.; M, J. Total phenolic, tannin, triterpenoid, flavonoid and sterol contents, anti-diabetic, anti-inflammatory and cytotoxic activities of Tectaria paradoxa (Fee.) Sledge. Toxicol. Rep., 2020, 7, 1465-1468.
[http://dx.doi.org/10.1016/j.toxrep.2020.10.013] [PMID: 33194558]
[240]
Gupta, D.; Kumar, M. Evaluation of in vitro antimicrobial potential and GC–MS analysis of Camellia sinensis and Terminalia arjuna. Biotechnol. Rep., 2017, 13, 19-25.
[http://dx.doi.org/10.1016/j.btre.2016.11.002] [PMID: 28352558]
[241]
Chatterjee, A.; Pakrashi, S.C. Treatise on Indian medicinal plants; Inf. Dir. CSIR: New Delhi, 1995, III, pp. 60-61.
[242]
Kameswara Rao, B.; Renuka Sudarshan, P.; Rajasekhar, M.D.; Nagaraju, N.; Appa Rao, C. Antidiabetic activity of Terminalia pallida fruit in alloxan induced diabetic rats. J. Ethnopharmacol., 2003, 85(1), 169-172.
[http://dx.doi.org/10.1016/S0378-8741(02)00396-3] [PMID: 12576217]
[243]
Biswas, M.; Biswas, K.; Karan, T.K.; Bhattacharya, S.; Ghosh, A.K.; Haldar, P.K. Evaluation of analgesic and anti-inflammatory activities of Terminalia arjuna leaf. J. Phytol., 2011, 3(1), 33-38.
[244]
Adesina, S.K.; Ojowole, J.O.; Marquis, V.O. Isolation and identification of an anticonvulsant agent from the fruit of Tetrapleura tetraptera (Aridan/Aidan), Niger. J. Pharm., 1980, 11, 260-262.
[245]
Burkill, H.M. The useful plants of West Tropical Africa, 1985.
[246]
Ojewole, J.A.O.; Adewunmi, C.O. Anti-inflammatory and hypoglycaemic effects of Tetrapleura tetraptera (Taub) [Fabaceae] fruit aqueous extract in rats. J. Ethnopharmacol., 2004, 95(2-3), 177-182.
[http://dx.doi.org/10.1016/j.jep.2004.06.026] [PMID: 15507333]
[247]
Alafid, F.; Edrah, S.M.; Meelad, F.M.; Belhaj, S.; Altwair, K.; Maizah, N.R. Evaluation of phytochemical constituents and antibacterial activity of thymelaea hirsuta (l.) Endl, and that utilised as a conventional treatment of infertility and diabetic in Libya. World J. Pharm. Res., 2019, 8(11), 72-88.
[248]
Abid, S.; Lekchiri, A.; Mekhfi, H.; Ziyyat, A.; Legssyer, A.; Aziz, M.; Bnouham, M. Inhibition of α-glucosidase and glucose intestinal absorption. J. Diabetes, 2014, 6(4), 351-359.
[http://dx.doi.org/10.1111/1753-0407.12106] [PMID: 24219781]
[249]
Oudghiri, M.; Azza, Z. In vivo anti-inflammatory and antiarthritic activities of aqueous extracts from Thymelaea hirsuta. Pharmacognosy Res., 2015, 7(2), 213-216.
[http://dx.doi.org/10.4103/0974-8490.150510] [PMID: 25829798]
[250]
Alu’datt, M.H.; Rababah, T.; Johargy, A.; Gammoh, S.; Ereifej, K.; Alhamad, M.N.; Brewer, M.S.; Saati, A.A.; Kubow, S.; Rawshdeh, M. Extraction, optimisation and characterisation of phenolics from Thymus vulgaris L.: phenolic content and profiles in relation to antioxidant, antidiabetic and antihypertensive properties. Int. J. Food Sci. Technol., 2016, 51(3), 720-730.
[http://dx.doi.org/10.1111/ijfs.12944]
[251]
Boukhatem, M.N.; Darwish, N.H.E.; Sudha, T.; Bahlouli, S.; Kellou, D.; Benelmouffok, A.B.; Chader, H.; Rajabi, M.; Benali, Y.; Mousa, S.A. In vitro antifungal and topical anti-inflammatory properties of essential oil from wild-growing thymus vulgaris (Lamiaceae) used for medicinal purposes in algeria: A new source of carvacrol. Sci. Pharm., 2020, 88(3), 33.
[http://dx.doi.org/10.3390/scipharm88030033]
[252]
Khan, M.A.; Ahmad, M.; Zafar, M.; Sultana, S.; Marwat, S.K.; Shaheen, S.; Leghari, M.K.; Jan, G.; Ahmad, F.; Nazir, A. Medico-botanical and chemical standardization of pharmaceutically important plant of Tricholepis chaetolepis (Boiss) Rech. f. J. Med. Plants Res., 2011, 5(8), 1471-1477.
[253]
Abbas, A.; Hassan, S.S.; Sharif, A.; Ahmed, S. Evaluation of the antioxidant and anti-inflammatory activities of solvent extracts of (Boiss) Rech. f.Tricholepis chaetolepis whole plant. Nat. Prod. Res., 2020, 34(4), 575-579.
[http://dx.doi.org/10.1080/14786419.2018.1490905] [PMID: 30317870]
[254]
Razafindrakoto, Z.R.; Donno, D.; Tombozara, N.; Andriamaniraka, H.; Andrianjara, C.; Ramanitrahasimbola, D.; Beccaro, G.L. Antioxidant, anti-inflammatory, and antidiabetic activities of leaves and stems of Uapaca bojeri Bail.(Euphorbiaceae), an endemic plant of Madagascar. Pharmaceuticals, 2020, 13(4), 71.
[http://dx.doi.org/10.3390/ph13040071] [PMID: 32316627]
[255]
Singh, N.; Bhalla, M.; De Jager, P.; Gilca, M. An overview on ashwagandha: A Rasayana (rejuvenator) of Ayurveda. Afr. J. Tradit. Complement. Altern. Med., 2011, 8(S5), 208-213.
[http://dx.doi.org/10.4314/ajtcam.v8i5S.9] [PMID: 22754076]
[256]
Bhandari, C.R. Ashwagandha (Withania somnifera)“Vanaushadhi Chandroday”(An Encyclopedia of Indian Herbs); Publ. CS Ser. Varanasi Vidyavilas Press: Varanasi, India, 1970.
[257]
Kritikar, K.R.; Basu, B.D. Withania somnifera, Indian medicinal plants, 3rd ed.; Lalit Mohan Basu: Allahabad, 1935.
[258]
Mishra, B. Ashwagandha–Bhavprakash Nigantu (Indian Materia Medica); Chaukhambha Bharti Acad.: Varanasi, 2004, pp. 393-394.
[259]
Sharma, C.G. Ashwagandharishta–Rastantra Sar Evam Sidhyaprayog Sangrah–Krishna–Gopal Ayurveda Bhawan; Dharmarth Trust, 1938.
[260]
Sarangi, A.; Jena, S.; Sarangi, A.K.; Swain, B. Anti-diabetic effects of Withania somnifera root and leaf extracts on streptozotocin induced diabetic rats. J. Cell Tissue Res., 2013, 13(1), 3597-3601.
[261]
Gupta, A.; Singh, S. Evaluation of anti-inflammatory effect of Withania somnifera root on collagen-induced arthritis in rats. Pharm. Biol., 2014, 52(3), 308-320.
[http://dx.doi.org/10.3109/13880209.2013.835325] [PMID: 24188460]
[262]
Kumar, G.; Karthik, L.; Rao, K.V.B. A review on pharmacological and phytochemical properties of Zingiber officinale Roscoe (Zingiberaceae). J. Pharm. Res., 2011, 4(9), 2963-2966.
[263]
Ojewole, J.A.O. Analgesic, antiinflammatory and hypoglycaemic effects of ethanol extract ofZingiber officinale (roscoe) rhizomes (zingiberaceae) in mice and rats. Phytother. Res., 2006, 20(9), 764-772.
[http://dx.doi.org/10.1002/ptr.1952] [PMID: 16807883]
[264]
Borgi, W.; Ghedira, K.; Chouchane, N. Antiinflammatory and analgesic activities of Zizyphus lotus root barks. Fitoterapia, 2007, 78(1), 16-19.
[http://dx.doi.org/10.1016/j.fitote.2006.09.010] [PMID: 17107758]
[265]
Ghedira, K.; Chemli, R.; Caron, C.; Nuzilard, J.M.; Zeches, M.; Le Men-Olivier, L. Four cyclopeptide alkaloids from Zizyphus lotus. Phytochemistry, 1995, 38(3), 767-772.
[http://dx.doi.org/10.1016/0031-9422(94)00669-K]
[266]
Boukef, M.K. Plants in traditional Tunisian medicine; Cultural and Technical Cooperation Agency, 1986.
[267]
Marmouzi, I.; Kharbach, M.; El Jemli, M.; Bouyahya, A.; Cherrah, Y.; Bouklouze, A.; Vander, H.Y.; Faouzi, M.E.A. Antidiabetic, dermatoprotective, antioxidant and chemical functionalities in Zizyphus lotus leaves and fruits. Ind. Crops Prod., 2019, 132, 134-139.
[http://dx.doi.org/10.1016/j.indcrop.2019.02.007]
[268]
Arnold, H.J.; Gulumian, M. Pharmacopoeia of traditional medicine in Venda. J. Ethnopharmacol., 1984, 12(1), 35-74.
[http://dx.doi.org/10.1016/0378-8741(84)90086-2] [PMID: 6521492]
[269]
Hutchings, A. Zulu medicinal plants: An inventory; University of Natal press, 1996.
[270]
Steenkamp, V. Traditional herbal remedies used by South African women for gynaecological complaints. J. Ethnopharmacol., 2003, 86(1), 97-108.
[http://dx.doi.org/10.1016/S0378-8741(03)00053-9] [PMID: 12686447]
[271]
Van Wyk, B-E.; van Oudtshoorn, B.; Gericke, N. Medicinal Plants of South Africa; Briza, 1997.
[272]
Corrigan, B.M.; Van Wyk, B.E.; Geldenhuys, C.J.; Jardine, J.M. Ethnobotanical plant uses in the KwaNibela Peninsula, St Lucia, South Africa. S. Afr. J. Bot., 2011, 77(2), 346-359.
[http://dx.doi.org/10.1016/j.sajb.2010.09.017]
[273]
Lall, N.; Kishore, N. Are plants used for skin care in South Africa fully explored? J. Ethnopharmacol., 2014, 153(1), 61-84.
[http://dx.doi.org/10.1016/j.jep.2014.02.021] [PMID: 24566124]
[274]
Chauke, M.A.; Shai, L.J.; Mogale, M.A.; Tshisikhawe, M.P.; Mokgotho, M.P. Medicinal plant use of villagers in the Mopani district, Limpopo province, South Africa. Afr. J. Tradit. Complement. Altern. Med., 2015, 12(3), 9-26.
[http://dx.doi.org/10.4314/ajtcam.v12i3.2]
[275]
Modi, A.; Jain, S.; Kumar, V. Zizyphus xylopyrus (Retz.) Willd: a review of its folkloric, phytochemical and pharmacological perspectives. Asian Pac. J. Trop. Dis., 2014, 4(1), S1-S6.
[http://dx.doi.org/10.1016/S2222-1808(14)60408-4]
[276]
De Wet, H.; Nciki, S.; van Vuuren, S.F. Medicinal plants used for the treatment of various skin disorders by a rural community in northern Maputaland, South Africa. J. Ethnobiol. Ethnomed., 2013, 9(1), 51.
[http://dx.doi.org/10.1186/1746-4269-9-51] [PMID: 23870616]
[277]
Tapsoba, H.; Deschamps, J.P. Use of medicinal plants for the treatment of oral diseases in Burkina Faso. J. Ethnopharmacol., 2006, 104(1-2), 68-78.
[http://dx.doi.org/10.1016/j.jep.2005.08.047] [PMID: 16214302]
[278]
Ibrahim, M.A.; Islam, M.S. Effects of butanol fraction of Ziziphus mucronata root ethanol extract on glucose homeostasis, serum insulin and other diabetes-related parameters in a murine model for type 2 diabetes. Pharm. Biol., 2017, 55(1), 416-422.
[http://dx.doi.org/10.1080/13880209.2016.1242632] [PMID: 27937039]
[279]
Chaturvedi, P.; Marumo, S.S. Anti-inflammatory responses of leaves of Ziziphus mucronata. J. Appl. Zool. Res., 2007, 18(2), 156-161.
[280]
Nunes, C.R.; Barreto, A.M.; Menezes de, F.P.S.; Leandro da Cruz, L.; de Souza, P.M.; de Moraes, P.L.; Vieira, I.J.C.; Barros de Oliveira, D. Plants as sources of anti-inflammatory agents. Molecules, 2020, 25(16), 3726.
[http://dx.doi.org/10.3390/molecules25163726] [PMID: 32824133]
[281]
Ribeiro, V.P.; Arruda, C.; Abd El-Salam, M.; Bastos, J.K. Brazilian medicinal plants with corroborated anti-inflammatory activities: a review. Pharm. Biol., 2018, 56(1), 253-268.
[http://dx.doi.org/10.1080/13880209.2018.1454480] [PMID: 29648503]
[282]
Cohen, S.D.; Kennedy, J.A. Plant metabolism and the environment: implications for managing phenolics. Crit. Rev. Food Sci. Nutr., 2010, 50(7), 620-643.
[http://dx.doi.org/10.1080/10408390802603441] [PMID: 20694925]
[283]
Ghosh, D.; Scheepens, A. Vascular action of polyphenols. Mol. Nutr. Food Res., 2009, 53(3), 322-331.
[http://dx.doi.org/10.1002/mnfr.200800182] [PMID: 19051188]
[284]
van Dorsten, F.A.; Grün, C.H.; van Velzen, E.J.J.; Jacobs, D.M.; Draijer, R.; van Duynhoven, J.P.M. The metabolic fate of red wine and grape juice polyphenols in humans assessed by metabolomics. Mol. Nutr. Food Res., 2010, 54(7), 897-908.
[http://dx.doi.org/10.1002/mnfr.200900212] [PMID: 20013882]
[285]
Harborne, J.B.; Simmonds, N.W. The natural distribution of the phenolic aglycones; Biochem. Phenolic Compd, 1964, pp. 77-127.
[286]
García-Mediavilla, V.; Crespo, I.; Collado, P.S.; Esteller, A.; Sánchez-Campos, S.; Tuñón, M.J.; González-Gallego, J. The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur. J. Pharmacol., 2007, 557(2-3), 221-229.
[http://dx.doi.org/10.1016/j.ejphar.2006.11.014] [PMID: 17184768]
[287]
Fan, J.; Johnson, M.H.; Lila, M.A.; Yousef, G.; de Mejia, E.G. Berry and citrus phenolic compounds inhibit dipeptidyl peptidase iv: Implications in diabetes management. Evid. Based Complement. Alternat. Med., 2013, 2013, 479505.
[288]
Li, Y.Q.; Zhou, F.C.; Gao, F.; Bian, J.S.; Shan, F. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α-glucosidase. J. Agric. Food Chem., 2009, 57(24), 11463-11468.
[http://dx.doi.org/10.1021/jf903083h] [PMID: 19938837]
[289]
Morales, A.I.; Vicente-Sánchez, C.; Jerkic, M.; Santiago, J.M.; Sánchez-González, P.D.; Pérez-Barriocanal, F.; López-Novoa, J.M. Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats. Toxicol. Appl. Pharmacol., 2006, 210(1-2), 128-135.
[http://dx.doi.org/10.1016/j.taap.2005.09.006] [PMID: 16226777]
[290]
Peng, X.; Zhang, G.; Liao, Y.; Gong, D. Inhibitory kinetics and mechanism of kaempferol on α-glucosidase. Food Chem., 2016, 190, 207-215.
[http://dx.doi.org/10.1016/j.foodchem.2015.05.088] [PMID: 26212963]
[291]
Sarian, M.N.; Ahmed, Q.U.; Mat So’ad, S.Z.; Alhassan, A.M.; Murugesu, S.; Perumal, V.; Syed Mohamad, S.N.A.; Khatib, A.; Latip, J. Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. Biomed Res. Int., 2017, 2017
[http://dx.doi.org/10.1155/2017/8386065]
[292]
Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of. ALPHA.-glucosidase and. ALPHA.-amylase by flavonoids. J. Nutr. Sci. Vitaminol., 2006, 52(2), 149-153.
[http://dx.doi.org/10.3177/jnsv.52.149] [PMID: 16802696]
[293]
Tuñón, M.; García-Mediavilla, M.; Sánchez-Campos, S.; González-Gallego, J. Potential of flavonoids as anti-inflammatory agents: modulation of pro-inflammatory gene expression and signal transduction pathways. Curr. Drug Metab., 2009, 10(3), 256-271.
[http://dx.doi.org/10.2174/138920009787846369] [PMID: 19442088]
[294]
Hou, W.; Hu, S.; Su, Z.; Wang, Q.; Meng, G.; Guo, T.; Zhang, J.; Gao, P. Myricetin attenuates LPS-induced inflammation in RAW 264.7 macrophages and mouse models. Future Med. Chem., 2018, 10(19), 2253-2264.
[http://dx.doi.org/10.4155/fmc-2018-0172] [PMID: 30095283]
[295]
Tzeng, T.F.; Liou, S.S.; Liu, I.M. Myricetin ameliorates defective post-receptor insulin signaling via β-endorphin signaling in the skeletal muscles of fructose-fed rats. Evidence-Based Complement. Altern. Med., 2011, 2011
[296]
Roslan, J.; Giribabu, N.; Karim, K.; Salleh, N. Quercetin ameliorates oxidative stress, inflammation and apoptosis in the heart of streptozotocin-nicotinamide-induced adult male diabetic rats. Biomed. Pharmacother., 2017, 86, 570-582.
[http://dx.doi.org/10.1016/j.biopha.2016.12.044] [PMID: 28027533]
[297]
Nair, M.P.; Mahajan, S.; Reynolds, J.L.; Aalinkeel, R.; Nair, H.; Schwartz, S.A.; Kandaswami, C. The flavonoid quercetin inhibits proinflammatory cytokine (tumor necrosis factor alpha) gene expression in normal peripheral blood mononuclear cells via modulation of the NF-κ β system. Clin. Vaccine Immunol., 2006, 13(3), 319-328.
[http://dx.doi.org/10.1128/CVI.13.3.319-328.2006] [PMID: 16522772]
[298]
Khan, A.; Ikram, M.; Hahm, J.R.; Kim, M.O. Antioxidant and anti-inflammatory effects of citrus flavonoid hesperetin: special focus on neurological disorders. Antioxidants, 2020, 9(7), 609.
[http://dx.doi.org/10.3390/antiox9070609] [PMID: 32664395]
[299]
Dhanya, R.; Jayamurthy, P. In vitro evaluation of antidiabetic potential of hesperidin and its aglycone hesperetin under oxidative stress in skeletal muscle cell line. Cell Biochem. Funct., 2020, 38(4), 419-427.
[http://dx.doi.org/10.1002/cbf.3478] [PMID: 31926116]
[300]
Choi, J.S.; Islam, M.N.; Ali, M.Y.; Kim, Y.M.; Park, H.J.; Sohn, H.S.; Jung, H.A. The effects of C-+pancreas islet cells of rats. Islets, 2013, 5, 149-155.
[301]
Alkhateeb, H.; Bonen, A. Thujone, a component of medicinal herbs, rescues palmitate-induced insulin resistance in skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2010, 299(3), R804-R812.
[http://dx.doi.org/10.1152/ajpregu.00216.2010] [PMID: 20573988]
[302]
Zhang, Y.; Yin, F.; Liu, J.; Liu, Z.; Guo, L.; Xia, Z.; Zidichouski, J. Geniposide attenuates insulin-deficiency-induced acceleration of β-amyloidosis in an APP/PS1 transgenic model of Alzheimer’s disease. Neurochem. Int., 2015, 89, 7-16.
[http://dx.doi.org/10.1016/j.neuint.2015.04.002] [PMID: 25882165]
[303]
Jin, L.; Xue, H.Y.; Jin, L.J.; Li, S.Y.; Xu, Y.P. Antioxidant and pancreas-protective effect of aucubin on rats with streptozotocin-induced diabetes. Eur. J. Pharmacol., 2008, 582(1-3), 162-167.
[http://dx.doi.org/10.1016/j.ejphar.2007.12.011] [PMID: 18230397]
[304]
Haque, M.R.; Ansari, S.H.; Najmi, A.K.; Ahmad, M.A. Monoterpene phenolic compound thymol prevents high fat diet induced obesity in murine model. Toxicol. Mech. Methods, 2014, 24(2), 116-123.
[http://dx.doi.org/10.3109/15376516.2013.861888] [PMID: 24175857]
[305]
de Cássia da Silveira e Sá, R.; Andrade, L.; de Sousa, D. A review on anti-inflammatory activity of monoterpenes. Molecules, 2013, 18(1), 1227-1254.
[http://dx.doi.org/10.3390/molecules18011227] [PMID: 23334570]
[306]
Rufino, A.T.; Ribeiro, M.; Judas, F.; Salgueiro, L.; Lopes, M.C.; Cavaleiro, C.; Mendes, A.F. Anti-inflammatory and chondroprotective activity of (+)-α-pinene: structural and enantiomeric selectivity. J. Nat. Prod., 2014, 77(2), 264-269.
[http://dx.doi.org/10.1021/np400828x] [PMID: 24455984]
[307]
Hotta, M.; Nakata, R.; Katsukawa, M.; Hori, K.; Takahashi, S.; Inoue, H. Carvacrol, a component of thyme oil, activates PPARα and γ and suppresses COX-2 expression. J. Lipid Res., 2010, 51(1), 132-139.
[http://dx.doi.org/10.1194/jlr.M900255-JLR200] [PMID: 19578162]
[308]
Paul, K.; Bhattacharjee, P. Process optimization of supercritical carbon dioxide extraction of 1, 8-cineole from small cardamom seeds by response surface methodology: in vitro antioxidant, antidiabetic and hypocholesterolemic activities of extracts. J. Essent. Oil-Bear. Plants, 2018, 21(2), 317-329.
[http://dx.doi.org/10.1080/0972060X.2018.1439406]
[309]
Benvidi, A.; Rezaeinasab, M.; Gharaghani, S.; Abbasi, S. Monitoring the protective ability of thymoquinone mixture with p-cymene against bovine serum albumin (BSA) glycation: MCR-ALS analysis based on combined spectroscopic and electrochemical methods. Int. J. Biol. Macromol., 2018, 107(Pt B), 2465-2474.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.135] [PMID: 29074084]
[310]
Yoon, W.J.; Lee, N.H.; Hyun, C.G. Limonene suppresses lipopolysaccharide-induced production of nitric oxide, prostaglandin E2, and pro-inflammatory cytokines in RAW 264.7 macrophages. J. Oleo Sci., 2010, 59(8), 415-421.
[http://dx.doi.org/10.5650/jos.59.415] [PMID: 20625233]
[311]
Joglekar, M.M.; Panaskar, S.N.; Chougale, A.D.; Kulkarni, M.J.; Arvindekar, A.U. A novel mechanism for antiglycative action of limonene through stabilization of protein conformation. Mol. Biosyst., 2013, 9(10), 2463-2472.
[http://dx.doi.org/10.1039/c3mb00020f] [PMID: 23872839]
[312]
Ali, S.S.; Ahmad, W.A.N.W.; Budin, S.B.; Zainalabidin, S. Implication of dietary phenolic acids on inflammation in cardiovascular disease. Rev. Cardiovasc. Med., 2020, 21(2), 225-240.
[http://dx.doi.org/10.31083/j.rcm.2020.02.49] [PMID: 32706211]
[313]
Hanhineva, K.; Törrönen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Impact of dietary polyphenols on carbohydrate metabolism. Int. J. Mol. Sci., 2010, 11(4), 1365-1402.
[http://dx.doi.org/10.3390/ijms11041365] [PMID: 20480025]
[314]
Manzanaro, S.; Salvá, J.; de la Fuente, J.Á. Phenolic marine natural products as aldose reductase inhibitors. J. Nat. Prod., 2006, 69(10), 1485-1487.
[http://dx.doi.org/10.1021/np0503698] [PMID: 17067167]
[315]
Gugliucci, A.; Bastos, D.H.M.; Schulze, J.; Souza, M.F.F. Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of AGE generation by methylglyoxal in model proteins. Fitoterapia, 2009, 80(6), 339-344.
[http://dx.doi.org/10.1016/j.fitote.2009.04.007] [PMID: 19409454]
[316]
Rahman, I.; Biswas, S.K.; Kirkham, P.A. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem. Pharmacol., 2006, 72(11), 1439-1452.
[http://dx.doi.org/10.1016/j.bcp.2006.07.004] [PMID: 16920072]
[317]
Hwang, S.J.; Kim, Y.W.; Park, Y.; Lee, H.J.; Kim, K.W. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm. Res., 2014, 63(1), 81-90.
[http://dx.doi.org/10.1007/s00011-013-0674-4] [PMID: 24127072]
[318]
Calixto-Campos, C.; Carvalho, T.T.; Hohmann, M.S.N.; Pinho-Ribeiro, F.A.; Fattori, V.; Manchope, M.F.; Zarpelon, A.C.; Baracat, M.M.; Georgetti, S.R.; Casagrande, R.; Verri, W.A., Jr Vanillic acid inhibits inflammatory pain by inhibiting neutrophil recruitment, oxidative stress, cytokine production, and NFκB activation in mice. J. Nat. Prod., 2015, 78(8), 1799-1808.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00246] [PMID: 26192250]
[319]
Sheng, Z.; Dai, H.; Pan, S.; Wang, H.; Hu, Y.; Ma, W. Isolation and characterization of an α-glucosidase inhibitor from Musa spp. (Baxijiao) flowers. Molecules, 2014, 19(7), 10563-10573.
[http://dx.doi.org/10.3390/molecules190710563] [PMID: 25045894]
[320]
Lee, W.; Lee, S.Y.; Son, Y.J.; Yun, J.M. Gallic acid decreases inflammatory cytokine secretion through histone acetyltransferase/histone deacetylase regulation in high glucose-induced human monocytes. J. Med. Food, 2015, 18(7), 793-801.
[http://dx.doi.org/10.1089/jmf.2014.3342] [PMID: 25807193]
[321]
Abdel-Moneim, A.; Yousef, A.I.; Abd El-Twab, S.M.; Abdel Reheim, E.S.; Ashour, M.B. Gallic acid and p-coumaric acid attenuate type 2 diabetes-induced neurodegeneration in rats. Metab. Brain Dis., 2017, 32(4), 1279-1286.
[http://dx.doi.org/10.1007/s11011-017-0039-8] [PMID: 28573601]
[322]
Chen, J.J.; Cho, J.Y.; Hwang, T.L.; Chen, I.S. Benzoic acid derivatives, acetophenones, and anti-inflammatory constituents from Melicope semecarpifolia. J. Nat. Prod., 2008, 71(1), 71-75.
[http://dx.doi.org/10.1021/np0704349] [PMID: 18163582]
[323]
Mahalingam, G.; Krishnan, K. Antidiabetic activity of 2-hydroxy 4-methoxy benzoic acid isolated from the roots of Hemidesmus indicus on streptozotocin-induced diabetic rats. Int. J. Diabetes Metab., 2009, 17, 53-57.
[324]
Pinent, M.; Blay, M.; Bladé, M.C.; Salvadó, M.J.; Arola, L.; Ardévol, A. Grape seed-derived procyanidins have an antihyperglycemic effect in streptozotocin-induced diabetic rats and insulinomimetic activity in insulin-sensitive cell lines. Endocrinology, 2004, 145(11), 4985-4990.
[http://dx.doi.org/10.1210/en.2004-0764] [PMID: 15271880]
[325]
Kumari, M.; Jain, S. Tannins: An antinutrient with positive effect to manage diabetes. Res. J. Recent Sci. ISSN., 2012, 2277, 2502.
[326]
Jeffers, M.D. Tannins as Anti-inflammatory Agents. Master's thesis, Miami University. OhioLINK Electronic Theses and Dissertations Center. 2006. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=miami1154451707

© 2025 Bentham Science Publishers | Privacy Policy