Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Implementation of PLGA-based Nanoparticles for Treatment of Colorectal Cancer

Author(s): Amandeep Kaur Gill, Rajiv Sharma*, Surya Prakash Gautam, Amanda Frank, Neha Bajwa and Preet Amol Singh

Volume 21, Issue 11, 2024

Published on: 18 August, 2023

Page: [1956 - 1964] Pages: 9

DOI: 10.2174/1570180820666230613152134

Price: $65

Abstract

Colorectal cancer is more prevalent in females than males. There are many anticancer drugs accessible for use, but their therapeutic importance is constrained by factors including poor solubility, low absorption, and multi-drug resistance. This review highlights how PLGA may be used to develop polymeric- targeted drug delivery systems that specifically target colorectal cancer. The PLGA polymer, which is disseminated in the colon together with drugs in a regulated and targeted manner, has the distinct characteristics of smart degradation in a biological system. Its degradability is dependent on multiple glycolide units; therefore, a lower glycol concentration improves degradability and vice versa. Also, PLGA facilitates drug delivery in colorectal cancer, enhances the efficacy of the drug, improves the sustained release profile of a drug, improves bioavailability due to prolonged retention time in the colon, enhances solubility, etc. To develop the formulation for improving the cytotoxic impact of various anticancer drugs, the surface modification of PLGA can be carried out by introducing a copolymer. By emphasizing their crucial characterization to demonstrate their therapeutic potential, this literature work has also shed light on recent patents and advancements in PLGA application.

[1]
Aggarwal, S.; Goel, A.; Singla, S. Drug delivery-Special emphasis given on biodegradable polymers. Adv. Polymer Sci. Technol.: Aninternational J., 2012, 2(1), 1-5.
[2]
Raizada, A.; Bandari, A.; Kumar, B. Polymers in drug delivery: A review. Int. J. Pharm. Res. Dev., 2010, 2(8), 9-20.
[3]
Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov., 2003, 2(5), 347-360.
[http://dx.doi.org/10.1038/nrd1088] [PMID: 12750738]
[4]
Ghoncheh, M.; Mohammadian, M.; Mohammadian-Hafshejani, A.; Salehiniya, H. The incidence and mortality of colorectal cancer and its relationship with the human development index in Asia. Ann. Glob. Health, 2017, 82(5), 726-737.
[http://dx.doi.org/10.1016/j.aogh.2016.10.004] [PMID: 28283123]
[5]
Dobre, M.; Dinu, D.E.; Panaitescu, E.; Bîrlă, R.D.; Iosif, C.I.; Boeriu, M.; Constantinoiu, S.; Ivan, R.N.; Ardeleanu, C.M.; Costache, M. KRAS gene mutations - prognostic factor in colorectal cancer? Rom. J. Morphol. Embryol., 2015, 56(2), 671-678.
[PMID: 26429158]
[6]
Siegel, R.L.; Sahar, L.; Robbins, A.; Jemal, A. Where can colorectal cancer screening interventions have the most impact? Cancer Epidemiol. Biomarkers Prev., 2015, 24(8), 1151-1156.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0082] [PMID: 26156973]
[7]
Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut, 2017, 66(4), 683-691.
[http://dx.doi.org/10.1136/gutjnl-2015-310912] [PMID: 26818619]
[8]
Wong, H.; Bendayan, R.; Rauth, A.; Li, Y.; Wu, X. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv. Drug Deliv. Rev., 2007, 59(6), 491-504.
[http://dx.doi.org/10.1016/j.addr.2007.04.008] [PMID: 17532091]
[9]
Toloudi, M.; Apostolou, P.; Papasotiriou, I. Efficacy of 5-FU or oxaliplatin monotherapy over combination therapy in colorectal cancer. J. Cancer Ther., 2015, 6(4), 345-355.
[http://dx.doi.org/10.4236/jct.2015.64037]
[10]
Hu, S.; Yangde Zhang Endostar-loaded PEG-PLGA nanoparticles: In vitro and in vivo evaluation. Int. J. Nanomedicine, 2010, 5, 1039-1048.
[http://dx.doi.org/10.2147/IJN.S14753] [PMID: 21170352]
[11]
Tran, T.T.; Tran, P.H.; Phan, M.L.; Van, T.V. Colon-specific delivery of fucoidan by incorporation of acidifier in enteric coating polymer. Int. J. Pharm. Biosci. Technol., 2013, 9(13), 14.
[12]
Tabatabaei Mirakabad, F.S.; Nejati-Koshki, K.; Akbarzadeh, A.; Yamchi, M.R.; Milani, M.; Zarghami, N.; Zeighamian, V.; Rahimzadeh, A.; Alimohammadi, S.; Hanifehpour, Y.; Joo, S.W. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac. J. Cancer Prev., 2014, 15(2), 517-535.
[http://dx.doi.org/10.7314/APJCP.2014.15.2.517] [PMID: 24568455]
[13]
Prabaharan, M. Chitosan-based nanoparticles for tumor-targeted drug delivery. Int. J. Biol. Macromol., 2015, 72, 1313-1322.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.052] [PMID: 25450550]
[14]
Pahwa, R.; Bhagwan, S.; Kumar, V.; Kohli, K. Role of natural polymers in the development of floating drug delivery systems. J. Pharm. Res., 2010, 3(6), 1312-1318.
[15]
Sanghi, D.K.; Borkar, D.S.; Rakesh, T. The use of novel polymers in a drug delivery & its pharmaceutical application. Asian J. Biochem. Pharmaceut. Res., 2013, 2(3), 169-178.
[16]
Wilson, C.G.; Mukherji, G.; Sha, H.K. Biopolymers and colonic delivery. In: Modified-release drug delivery technology, 2nd ed; Rathbone, MJ.; Had graft, J.; Roberts, MS.; Lane, ME., Eds.; , 2008; 1, pp. 295-309.
[17]
Teleanu, D.; Chircov, C.; Grumezescu, A.; Volceanov, A.; Teleanu, R. Blood-brain delivery methods using nanotechnology. Pharmaceutics, 2018, 10(4), 269.
[http://dx.doi.org/10.3390/pharmaceutics10040269] [PMID: 30544966]
[18]
Cacciatore, I.; Ciulla, M.; Fornasari, E.; Marinelli, L.; Di Stefano, A. Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases. Expert Opin. Drug Deliv., 2016, 13(8), 1121-1131.
[http://dx.doi.org/10.1080/17425247.2016.1178237] [PMID: 27073977]
[19]
Prajapati, S.K.; Jain, A.; Jain, A.; Jain, S. Biodegradable polymers and constructs: A novel approach in drug delivery. Eur. Polym. J., 2019, 120, 109191.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.08.018]
[20]
Attia, A.M.; Enan, E.T.; Hashish, A.A.; MH El-kannishy, S.; Gardouh, A.R.; K Tawfik, M.; Faisal, S.; El-Mistekawy, A.; Salama, A.; Alomar, S.Y.; H Eltrawy, A. Chemopreventive effect of 5-fluorouracil polymeric hybrid PLGA-lecithin nanoparticles against colon dysplasia model in mice and impact on p53 apoptosis. Biomolecules, 2021, 11(1), 109.
[http://dx.doi.org/10.3390/biom11010109] [PMID: 33467560]
[21]
Almnhawy, M.; Jebur, M.; Alhajamee, M.; Marai, K.; Tabrizi, M.H. PLGA-based nano-encapsulation of Trachelospermum Ammi seed essential oil (TSEO-PNP) as a safe, natural, efficient, anticancer compound in human HT-29 colon cancer cell line. Nutr. Cancer, 2021, 73(11-12), 2808-2820.
[http://dx.doi.org/10.1080/01635581.2020.1862256] [PMID: 33319599]
[22]
Stevanović, M.; Maksin, T.; Petković, J.; Filipič, M.; Uskoković, D. An innovative, quick and convenient labeling method for the investigation of pharmacological behavior and the metabolism of poly(DL-lactide-co-glycolide) nanospheres. Nanotechnology, 2009, 20(33), 335102.
[http://dx.doi.org/10.1088/0957-4484/20/33/335102] [PMID: 19636100]
[23]
Kapoor, D.N.; Bhatia, A.; Kaur, R.; Sharma, R.; Kaur, G.; Dhawan, S. PLGA: A unique polymer for drug delivery. Ther. Deliv., 2015, 6(1), 41-58.
[http://dx.doi.org/10.4155/tde.14.91] [PMID: 25565440]
[24]
Makadia, H.K.; Siegel, S.J. Polylactic-co-glycolic acid (PLGA) is a biodegradable controlled drug delivery carrier. Polymers, 2011, 3(3), 1377-1397.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[25]
Hu, X.; Zhang, J.; Tang, X.; Li, M.; Ma, S.; Liu, C.; Gao, Y.; Zhang, Y.; Liu, Y.; Yu, F.; Yang, Y.; Guo, J.; Li, Z.; Mei, X. An accelerated release method of risperidone-loaded PLGA microspheres with good IVIVC. Curr. Drug Deliv., 2018, 15(1), 87-96.
[PMID: 28521697]
[26]
Blasi, P.; Schoubben, A.; Giovagnoli, S.; Perioli, L.; Ricci, M.; Rossi, C. Ketoprofen poly(lactide-co-glycolide) physical interaction. AAPS PharmSciTech, 2007, 8(2), E78-E85.
[http://dx.doi.org/10.1208/pt0802037] [PMID: 17622115]
[27]
Manuela Gaspar, M.; Blanco, D.; Cruz, M.E.M.; José Alonso, M. Formulation of l-asparaginase-loaded poly(lactide-co-glycolide) nanoparticles: Influence of polymer properties on enzyme loading, activity and in vitro release. J. Control. Release, 1998, 52(1-2), 53-62.
[http://dx.doi.org/10.1016/S0168-3659(97)00196-X] [PMID: 9685935]
[28]
Lam, X.M.; Duenas, E.T.; Daugherty, A.L.; Levin, N.; Cleland, J.L. Sustained release of recombinant human insulin-like growth factor-I for treatment of diabetes. J. Control. Release, 2000, 67(2-3), 281-292.
[http://dx.doi.org/10.1016/S0168-3659(00)00224-8] [PMID: 10825561]
[29]
Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release, 2012, 161(2), 505-522.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.043] [PMID: 22353619]
[30]
Silva, A.T.C.R.; Cardoso, B.C.O.; Silva, M.E.S.R.; Freitas, R.F.S.; Sousa, R.G. Synthesis, characterization, and study of PLGA copolymer in vitro degradation. J. Biomater. Nanobiotechnol., 2015, 6(1), 8-19.
[http://dx.doi.org/10.4236/jbnb.2015.61002]
[31]
Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Controlled ring-opening polymerization of lactide and glycolide. Chem. Rev., 2004, 104(12), 6147-6176.
[http://dx.doi.org/10.1021/cr040002s] [PMID: 15584698]
[32]
Engineer, C.; Parikh, J.; Raval, A. Review on the hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery system. Trends Biomater. Artif. Organs, 2011, 25(2)
[33]
Xu, Y.; Kim, C.S.; Saylor, D.M.; Koo, D. Polymer degradation and drug delivery in PLGA-based drug-polymer applications: A review of experiments and theories. J. Biomed. Mater. Res. B Appl. Biomater., 2017, 105(6), 1692-1716.
[http://dx.doi.org/10.1002/jbm.b.33648] [PMID: 27098357]
[34]
Fonseca, C.; Simões, S.; Gaspar, R. Paclitaxel-loaded PLGA nanoparticles: Preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release, 2002, 83(2), 273-286.
[http://dx.doi.org/10.1016/S0168-3659(02)00212-2] [PMID: 12363453]
[35]
Song, X.; Zhao, Y.; Wu, W.; Bi, Y.; Cai, Z.; Chen, Q.; Li, Y.; Hou, S. PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: Systematic study of particle size and drug entrapment efficiency. Int. J. Pharm., 2008, 350(1-2), 320-329.
[http://dx.doi.org/10.1016/j.ijpharm.2007.08.034] [PMID: 17913411]
[36]
Shakeri-Zadeh, A.; Khoee, S.; Shiran, M.B.; Sharifi, A.M.; Khoei, S. Synergistic effects of magnetic drug targeting using a newly developed nanocapsule and tumor irradiation by ultrasound on CT26 tumors in BALB/c mice. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(9), 1879-1887.
[http://dx.doi.org/10.1039/C4TB01708K] [PMID: 32262260]
[37]
Tang, J.; He, J.; Yang, C.; Mao, Y.; Hu, T.; Zhang, L.; Cao, H.; Tong, A.; Song, X.; He, G.; Guo, G.; Luo, Y.; Zhang, X.; Xie, Y.; Zheng, Y. Antitumor effects of MsurvivinT34A–CaPi complex-embedded PLGA nanoparticles in combination with Doxil in mice. J. Nanopart. Res., 2014, 16(11), 2682.
[http://dx.doi.org/10.1007/s11051-014-2682-x]
[38]
Wang, K.; Kievit, F.M.; Zhang, M. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies. Pharmacol. Res., 2016, 114, 56-66.
[http://dx.doi.org/10.1016/j.phrs.2016.10.016] [PMID: 27771464]
[39]
Nair K, L.; Jagadeeshan, S.; Nair, S.A.; Kumar, G.S. Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. Int. J. Nanomedicine, 2011, 6, 1685-1697.
[PMID: 21980233]
[40]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[41]
Alsaab, H.O.; Alharbi, F.D.; Alhibs, A.S.; Alanazi, N.B.; Alshehri, B.Y.; Saleh, M.A.; Alshehri, F.S.; Algarni, M.A.; Almugaiteeb, T.; Uddin, M.N.; Alzhrani, R.M. PLGA-based nanomedicine: History of advancement and development in clinical applications of multiple diseases. Pharmaceutics, 2022, 14(12), 2728.
[http://dx.doi.org/10.3390/pharmaceutics14122728] [PMID: 36559223]
[42]
Mir, M.; Ahmed, N.; Rehman, A. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf. B Biointerfaces, 2017, 159, 217-231.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.038] [PMID: 28797972]
[43]
Ansary, R.H.; Awang, M.B.; Rahman, M.M. Biodegradable poly (D, L-lactic-co-glycolic acid)-based micro/nanoparticles for sustained release of protein drugs-A review. Trop. J. Pharm. Res., 2014, 13(7), 1179-1190.
[http://dx.doi.org/10.4314/tjpr.v13i7.24]
[44]
Maria, A.; Azka, Y.; Kanwal, R.; Syed, M.S.; Muhammad, S.H.A. PLGA-based nanoparticles for the treatment of cancer: Current strategies and perspectives. AAPS Open, 2022, 8, 12.
[45]
Gaspar, L.M.A.C.; Dórea, A.C.S.; Droppa-Almeida, D.; de Mélo Silva, I.S.; Montoro, F.E.; Alves, L.L.; Macedo, M.L.H.; Padilha, F.F. Development and characterization of PLGA nanoparticles containing antibiotics. J. Nanopart. Res., 2018, 20(11), 289.
[http://dx.doi.org/10.1007/s11051-018-4387-z]
[46]
Kim, Y.; Beck-Broichsitter, M.; Banga, A. Design and evaluation of a poly(Lactide-co-Glycolide)-based In Situ film-forming system for topical delivery of trolamine salicylate. Pharmaceutics, 2019, 11(8), 409.
[http://dx.doi.org/10.3390/pharmaceutics11080409] [PMID: 31408990]
[47]
Guarecuco, R.; Lu, J.; McHugh, K.J.; Norman, J.J.; Thapa, L.S.; Lydon, E.; Langer, R.; Jaklenec, A. Immunogenicity of pulsatile-release PLGA microspheres for single-injection vaccination. Vaccine, 2018, 36(22), 3161-3168.
[http://dx.doi.org/10.1016/j.vaccine.2017.05.094] [PMID: 28625520]
[48]
Ospina-Villa, J.D.; Gómez-Hoyos, C.; Zuluaga-Gallego, R.; Triana-Chávez, O. Encapsulation of proteins from Leishmania panamensis into PLGA particles by a single emulsion-solvent evaporation method. J. Microbiol. Methods, 2019, 162, 1-7.
[http://dx.doi.org/10.1016/j.mimet.2019.05.004] [PMID: 31078626]
[49]
Salari, N.; Faraji, F.; Torghabeh, F.M.; Faraji, F.; Mansouri, K.; Abam, F.; Shohaimi, S.; Akbari, H.; Mohammadi, M. Polymer-based drug delivery systems for anticancer drugs: A systematic review. Cancer Treat. Res. Commun., 2022, 32, 100605.
[http://dx.doi.org/10.1016/j.ctarc.2022.100605] [PMID: 35816909]
[50]
Pardeshi, S.R.; Aniket, N.; Priyanka, C.; Vijaya, M.; Jitendra, B.N.; Prabhanjan, S.G. "Recent advances in PLGA based nanocarriers for drug delivery system: A state-of-the-art review. Int. J. Polym. Mater., 2021, 72(1), 1-30.
[51]
Sarkar, S.; Levi, N. Variable molecular weight polymer nanoparticles for detection and hyperthermia-induced chemotherapy of colorectal cancer. cancers, 2021, 13(17), 4472.
[http://dx.doi.org/10.3390/cancers13174472] [PMID: 34503282]
[52]
Pandey, A.N.; Rajpoot, K.; Jain, S.K. 5-Fluorouracil loaded orally administered WGA-decorated poly (lactic-co-glycolic acid) Nanoparticles for treatment of colorectal cancer: In vivo evaluation. Curr. Nanomed., 2021, 11(1), 51-60.
[53]
Jena, G.K.; Patra, C.N.; Dixit, P.K. Cytotoxicity and pharmacokinetic studies of PLGA based capecitabine loaded nanoparticles. Indian J. Pharmaceut. Edu. Res., 2020, 54(2), 349-356.
[http://dx.doi.org/10.5530/ijper.54.2.40]
[54]
Alshetaili, A.S.; Anwer, M.K.; Alshahrani, S.M.; Alalaiwe, A.; Alsulays, B.B.; Ansari, M.J.; Imam, F.; Alshehri, S. Characteristics and anticancer properties of Sunitinib malate-loaded poly-lactic-co-glycolic acid nanoparticles against human colon cancer HT-29 cells lines. Trop. J. Pharm. Res., 2018, 17(7), 1263-1269.
[http://dx.doi.org/10.4314/tjpr.v17i7.6]
[55]
Ghasemi Toudeshkchouei, M.; Zahedi, P.; Shavandi, A. Microfluidic-assisted preparation of 5-fluorouracil-loaded PLGA nanoparticles as a potential system for colorectal cancer therapy. materials, 2020, 13(7), 1483.
[http://dx.doi.org/10.3390/ma13071483] [PMID: 32218241]
[56]
Zhang, Z.; Qian, H.; Yang, M.; Li, R.; Hu, J.; Li, L.; Yu, L.; Liu, B.; Qian, X. Gambogic acid-loaded biomimetic nanoparticles in colorectal cancer treatment. Int. J. Nanomedicine, 2017, 12, 1593-1605.
[http://dx.doi.org/10.2147/IJN.S127256] [PMID: 28280328]
[57]
Wang, Y.; Li, P.; Chen, L.; Gao, W.; Zeng, F.; Kong, L.X. Targeted delivery of 5-fluorouracil to HT-29 cells using high efficient folic acid-conjugated nanoparticles. Drug Deliv., 2015, 22(2), 191-198.
[http://dx.doi.org/10.3109/10717544.2013.875603] [PMID: 24437926]
[58]
Ashwanikumar, N.; Kumar, N.A.; Nair, S.A.; Kumar, G.S.V. Dual drug delivery of 5-fluorouracil (5-FU) and methotrexate (MTX) through random copolymeric nanomicelles of PLGA and polyethylenimine demonstrating enhanced cell uptake and cytotoxicity. Colloids Surf. B Biointerfaces, 2014, 122, 520-528.
[http://dx.doi.org/10.1016/j.colsurfb.2014.07.024] [PMID: 25108479]
[59]
P, S.; Joshi, V.G. Preparation and characterization of 5-fluorouracil-loaded PLGA nanoparticles for colorectal cancer therapy. Unique J. Pharm. Biol. Sci., 2013, 1, 52-58.
[60]
Ho, M.L.; Chang, J.K.; Eswaramoorthy, R.; Wu, S.C.; Wang, Y.H. Inventors Kaohsiung Medical University, assignee. Method for bone formation by administering poly (lactic-co-glycolic acid) cross-linked alendronate. United States patent US, 2018, 9, 889, 225,
[61]
Sun, K.; Liang, R.; Wang, Q.; Wang, W.; Liu, W.; Li, Y. Inventors, nanjing luye pharmaceutical Co Ltd, shandong luye pharmaceutical Co Ltd, assignee. Risperidone sustained release microsphere composition. United States patent US, 2017, 9, 532, 991,
[62]
Karavas, E.; Koutris, E.; Minioti, K.; Chaitidou, S.; Papanikolaou, G.; Mantourlias, T. Preparation of peptide-loaded PLGA microspheres with controlled release characteristics. United States patent US, 2018, 9, 943, 483,
[63]
Huang, D.; Qiu, J.; Kuang, S.; Deng, M. in vitro evaluation of clinical candidates of gamma-secretase inhibitors:Eeffects on notch inhibition and promoting beige adipogenesis and mitochondrial biogenesis. Pharm. Res., 2020, 37(10), 185.
[http://dx.doi.org/10.1007/s11095-020-02916-7] [PMID: 32888109]
[64]
Elbassiouni, F.E.; El-Kholy, W.M.; Elhabibi, E.S.M.; Albogami, S.; Fayad, E. Comparative study between curcumin and nanocurcumin loaded PLGA on colon carcinogenesis induced mice. Nanomaterials, 2022, 12(3), 324.
[http://dx.doi.org/10.3390/nano12030324] [PMID: 35159669]
[65]
Helmy, S.A.; El-Mofty, S.; El Gayar, A.M.; El-Sherbiny, I.M.; El-Far, Y.M. Novel doxorubicin/folate-targeted trans-ferulic acid-loaded PLGA nanoparticles combination: In-vivo superiority over standard chemotherapeutic regimen for breast cancer treatment. Biomed. Pharmacother., 2022, 145, 112376.
[http://dx.doi.org/10.1016/j.biopha.2021.112376] [PMID: 34749055]
[66]
Saraf, A.; Dubey, N.; Dubey, N.; Sharma, M. Enhancement of cytotoxicty of diallyl disulfide toward colon cancer by Eudragit S100/PLGA nanoparticles. J. Drug Deliv. Sci. Technol., 2021, 64, 102580.
[http://dx.doi.org/10.1016/j.jddst.2021.102580]
[67]
Giram, P.S.; Wang, J.T.W.; Walters, A.A.; Rade, P.P.; Akhtar, M.; Han, S.; Faruqu, F.N.; Abdel-Bar, H.M.; Garnaik, B.; Al-Jamal, K.T. Green synthesis of methoxy-poly(ethylene glycol)- block -poly(L -lactide-co-glycolide) copolymer using zinc proline as a biocompatible initiator for irinotecan delivery to colon cancer in vivo. Biomater. Sci., 2021, 9(3), 795-806.
[http://dx.doi.org/10.1039/D0BM01421D] [PMID: 33206082]
[68]
Colpan, R.D.; Erdemir, A. Co-delivery of quercetin and caffeic-acid phenethyl ester by polymeric nanoparticles for improved antitumor efficacy in colon cancer cells. J. Microencapsul., 2021, 38(6), 381-393.
[http://dx.doi.org/10.1080/02652048.2021.1948623] [PMID: 34189998]
[69]
Khaledi, S.; Jafari, S.; Hamidi, S.; Molavi, O.; Davaran, S. Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-fluorouracil and chrysin. J. Biomater. Sci. Polym. Ed., 2020, 31(9), 1107-1126.
[http://dx.doi.org/10.1080/09205063.2020.1743946] [PMID: 32249693]
[70]
Wu, P.; Zhou, Q.; Zhu, H.; Zhuang, Y.; Bao, J. Enhanced antitumor efficacy in colon cancer using EGF functionalized PLGA nanoparticles loaded with 5-Fluorouracil and perfluorocarbon. BMC Cancer, 2020, 20(1), 354.
[http://dx.doi.org/10.1186/s12885-020-06803-7] [PMID: 32345258]
[71]
Sudha, T.; El-Far, A.H.; Mousa, D.S.; Mousa, S.A. Resveratrol and its nanoformulation attenuate growth and the angiogenesis of xenograft and orthotopic colon cancer models. Molecules, 2020, 25(6), 1412.
[http://dx.doi.org/10.3390/molecules25061412] [PMID: 32244860]
[72]
Duarte, M.A.T.; Motta, A.C.; Duek, E.A.R. in vitro degradation of poly (L-co-D,L lactic acid) containing PCL-T. Polímeros, 2014, 24(1), 1-8.
[http://dx.doi.org/10.4322/polimeros.2014.056]
[73]
Li, X.; Jasti, P.D. CHAPTER 22 Design of controlled-release drug delivery systems. In: Standard Handbook Of Biomedical Engineering And Design; Book Digital, 2006; pp. 1-14.
[74]
Stevanović, M.; Radulović, A.; Jordović, B.; Uskoković, D. Poly(DL-lactide-co-glycolide) nanospheres for the sustained release of folic acid. J. Biomed. Nanotechnol., 2008, 4(3), 349-358.
[http://dx.doi.org/10.1166/jbn.2008.321]
[75]
Liang, R.; Li, X.; Shi, Y.; Wang, A.; Sun, K.; Liu, W.; Li, Y. Effect of water on exenatide acylation in poly(lactide-co-glycolide) microspheres. Int. J. Pharm., 2013, 454(1), 344-353.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.012] [PMID: 23872225]
[76]
Meng, Z.X.; Zheng, W.; Li, L.; Zheng, Y.F. Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold. Mater. Chem. Phys., 2011, 125(3), 606-611.
[http://dx.doi.org/10.1016/j.matchemphys.2010.10.010]
[77]
Rios, M. Polymers for control release: Formulation follows function. Pharm. Technol., 2005, 29(6), 42-50.

© 2025 Bentham Science Publishers | Privacy Policy