Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Medicinal Plants and Natural Products to Treat Obesity through Inhibiting Pancreatic Lipase: A Review (2020-2022)

Author(s): Khaoula Jamai, Nour Elhouda Daoudi, Amal Elrherabi and Mohamed Bnouham*

Volume 21, Issue 11, 2024

Published on: 22 September, 2023

Page: [1936 - 1955] Pages: 20

DOI: 10.2174/1570180820666230626161928

Price: $65

Abstract

Pancreatic lipase is an enzyme that catalyzes the hydrolysis of triglycerides to monoglycerides and free fatty acids which promote and accelerate their absorption by the intestine, thus leading to obesity. Drugs that have numerous side effects explain the beneficial medicinal effect of plants resulting from their Phyto molecules that exhibit strong anti-lipase activity. The present review reveals the medical treatment and consequently the associated side effects. It also represents an update of various medicinal plants and their metabolites that act as lipase inhibitors published between (2020-2022). We have discussed 93 species belonging to 48 different plant families and numerous bioactive molecules exerting this activity. We have compared 29 species for their anti-lipase potential. Fabaceae and Lamiaceae were the most dominant with 7 species, and the highest percentage (95%) for pancreatic lipase inhibitory activity was recorded by “Filipendula kmtaschatia” from Rosaceae family while “Piper betle” from Piperaceae family showed the lowest percentage (15.9%). The medical treatments with low dose effect were liraglutide saxenda (3mg/day), also flavonoids, in particular catechin derivatives, which were the most potent in terms of pancreatic lipase inhibitory activity with the lowest IC50s. This study summarized medical and natural treatments that are used to treat obesity through inhibiting pancreatic lipase and delaying fat assimilation in the intestines. So far, more studies are needed for the use of these as herbal medicine for obesity.

[1]
Nammi, S.; Koka, S.; Chinnala, K.M.; Boini, K.M. Obesity: An overview on its current perspectives and treatment options. Nutr. J., 2004, 3(1), 3.
[http://dx.doi.org/10.1186/1475-2891-3-3] [PMID: 15084221]
[2]
El Rhazi, K.; Nejjari, C.; Zidouh, A.; Bakkali, R.; Berraho, M.; Barberger Gateau, P. Prevalence of obesity and associated sociodemographic and lifestyle factors in Morocco. Public Health Nutr., 2011, 14(1), 160-167.
[http://dx.doi.org/10.1017/S1368980010001825] [PMID: 20602865]
[3]
Perfetto, F.; Tarquini, R.; Cornélissen, G.; Mello, G.; Tempestini, A.; Gaudiano, P.; Mancuso, F.; Halberg, F. Circadian phase difference of leptin in android versus gynoid obesity. Peptides, 2004, 25(8), 1297-1306.
[http://dx.doi.org/10.1016/j.peptides.2004.06.005] [PMID: 15350697]
[4]
Zhou, J.F.; Wang, W.J.; Yin, Z.P.; Zheng, G.D.; Chen, J.G.; Li, J.E.; Chen, L-L.; Zhang, Q-F. Quercetin is a promising pancreatic lipase inhibitor in reducing fat absorption in vivo. Food Biosci., 2021, 43, 101248.
[http://dx.doi.org/10.1016/j.fbio.2021.101248]
[5]
Lunagariya, N.A.; Patel, N.K.; Jagtap, S.C.; Bhutani, K.K. Inhibitors of pancreatic lipase: state of the art and clinical perspectives. EXCLI J., 2014, 13, 897-921.
[PMID: 26417311]
[6]
Birari, R.B.; Bhutani, K.K. Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov. Today, 2007, 12(19-20), 879-889.
[http://dx.doi.org/10.1016/j.drudis.2007.07.024] [PMID: 17933690]
[7]
Winkler, F.K.; D’Arcy, A.; Hunziker, W. Structure of human pancreatic lipase. Nature, 1990, 343(6260), 771-774.
[http://dx.doi.org/10.1038/343771a0] [PMID: 2106079]
[8]
Carrière, F.; Thirstrup, K.; Hjorth, S.; Ferrato, F.; Nielsen, P.F.; Withers-Martinez, C.; Cambillau, C.; Boel, E.; Thim, L.; Verger, R. Pancreatic lipase structure-function relationships by domain exchange. Biochemistry, 1997, 36(1), 239-248.
[http://dx.doi.org/10.1021/bi961991p] [PMID: 8993339]
[9]
van Tilbeurgh, H.; Bezzine, S.; Cambillau, C.; Verger, R.; Carrière, F. Colipase: structure and interaction with pancreatic lipase. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1999, 1441(2-3), 173-184.
[http://dx.doi.org/10.1016/S1388-1981(99)00149-3]
[10]
Yang, Y.; Lowe, M.E. The open lid mediates pancreatic lipase function. J. Lipid Res., 2000, 41(1), 48-57.
[http://dx.doi.org/10.1016/S0022-2275(20)32073-3] [PMID: 10627501]
[11]
Lowe, M.E. Pancreatic triglyceride lipase and colipase: Insights into dietary fat digestion. Gastroenterology, 1994, 107(5), 1524-1536.
[http://dx.doi.org/10.1016/0016-5085(94)90559-2] [PMID: 7926517]
[12]
Wilcox, M.D.; Brownlee, I.A.; Richardson, J.C.; Dettmar, P.W.; Pearson, J.P. The modulation of pancreatic lipase activity by alginates. Food Chem., 2014, 146(100), 479-484.
[http://dx.doi.org/10.1016/j.foodchem.2013.09.075] [PMID: 24176371]
[13]
Ballinger, A. Orlistat in the treatment of obesity. Expert Opin. Pharmacother., 2000, 1(4), 841-847.
[http://dx.doi.org/10.1517/14656566.1.4.841] [PMID: 11249520]
[14]
Zou, H.; Ye, H.; Kamaraj, R.; Zhang, T.; Zhang, J.; Pavek, P. A review on pharmacological activities and synergistic effect of quercetin with small molecule agents. Phytomedicine, 2021, 92, 153736.
[http://dx.doi.org/10.1016/j.phymed.2021.153736] [PMID: 34560520]
[15]
Benchoula, K.; Arya, A.; Parhar, I.S.; Hwa, W.E. FoxO1 signaling as a therapeutic target for type 2 diabetes and obesity. Eur. J. Pharmacol., 2021, 891, 173758.
[http://dx.doi.org/10.1016/j.ejphar.2020.173758] [PMID: 33249079]
[16]
Benchoula, K.; Arya, A.; Parhar, I.S.; Hwa, W.E. Bioactivity, phytochemical profile and pro-healthy properties of Actinidia arguta: A review. Food Res. Int., 2020, 136, 109449.
[17]
Pinto, D.; Delerue-Matos, C.; Rodrigues, F. Targeting obesity with plant-derived pancreatic lipase inhibitors: A comprehensive review. Pharmacol. Res., 2020, 155, 104681.
[http://dx.doi.org/10.1016/j.phrs.2020.104681] [PMID: 32045666]
[18]
Knudsen, B.F.; Kaack, K.V. A review of traditional herbal medicinal products with disease claims for elder (sambucus nigra) flower. Acta Hortic., 2015, (1061), 109-120.
[http://dx.doi.org/10.17660/ActaHortic.2015.1061.11]
[19]
Zielińska-Wasielica, J.; Olejnik, A.; Kowalska, K.; Olkowicz, M.; Dembczyński, R. Elderberry (Sambucus nigra L.) Fruit Extract Alleviates Oxidative Stress, Insulin Resistance, and Inflammation in Hypertrophied 3T3-L1 Adipocytes and Activated RAW 264.7 Macrophages. Foods, 2019, 8(8), 326.
[http://dx.doi.org/10.3390/foods8080326] [PMID: 31398785]
[20]
Rajput, BS; Gupta, D; Kumar, S; Singh, K; Tiwari, C Buchanania lanzan Spreng (Chironji): A vulnerable multipurpose tree species in Vindhyan region. J. Pharmacog. Phytochem., 7, (5), 833-836.
[21]
How, S.C.; Goh, L.P.W.; Johansah, N.; Matawali, A.; Gansau, G.; How, S.E. Medicinal plants in Sabah (North Borneo) exhibit anti-pancreatic lipase, anti-amylase, and antioxidant properties. Acta Sci. Technol., 2022, 44, e56879-e56879.
[http://dx.doi.org/10.4025/actascitechnol.v44i1.56879]
[22]
Alsamri, H.; Athamneh, K.; Pintus, G.; Eid, A.H.; Iratni, R. Pharmacological and Antioxidant Activities of Rhus coriaria L. (Sumac). Antioxidants, 2021, 10(1), 73.
[http://dx.doi.org/10.3390/antiox10010073] [PMID: 33430013]
[23]
Erdem, S.A.; Nabavi, S.F.; Orhan, I.E.; Daglia, M.; Izadi, M.; Nabavi, S.M. Blessings in disguise: A review of phytochemical composition and antimicrobial activity of plants belonging to the genus Eryngium. Daru, 2015, 23(1), 53.
[http://dx.doi.org/10.1186/s40199-015-0136-3] [PMID: 26667677]
[24]
Afifi, F.U.; Kasabri, V.; Litescu, S.C.; Abaza, I.M. in vitro and in vivo comparison of the biological activities of two traditionally and widely used Arum species from Jordan: Arum dioscoridis Sibth & Sm. and Arum palaestinum Boiss. Nat. Prod. Res., 2016, 30(16), 1777-1786.
[http://dx.doi.org/10.1080/14786419.2015.1072713] [PMID: 26284613]
[25]
Clement, J.A.; Clement, A.E.S.H. The medicinal chemistry of genus Aralia. Curr. Top. Med. Chem., 2015, 14(24), 2783-2801.
[26]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal, 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[27]
Singh, D.; Chaudhuri, P.K. Structural characteristics, bioavailability and cardioprotective potential of saponins. Integr. Med. Res., 2018, 7(1), 33-43.
[http://dx.doi.org/10.1016/j.imr.2018.01.003] [PMID: 29629289]
[28]
Yoshizumi, K.; Hirano, K.; Ando, H.; Hirai, Y.; Ida, Y.; Tsuji, T.; Tanaka, T.; Satouchi, K.; Terao, J. Lupane-type saponins from leaves of Acanthopanax sessiliflorus and their inhibitory activity on pancreatic lipase. J. Agric. Food Chem., 2006, 54(2), 335-341.
[http://dx.doi.org/10.1021/jf052047f] [PMID: 16417288]
[29]
[30]
Karu, N.; Reifen, R.; Kerem, Z. Weight gain reduction in mice fed Panax ginseng saponin, a pancreatic lipase inhibitor. J. Agric. Food Chem., 2007, 55(8), 2824-2828.
[31]
Zhang, J.; Kang, M.J.; Kim, M.J.; Kim, M.E.; Song, J.H.; Lee, Y.M.; Kim, J.I. Pancreatic lipase inhibitory activity of taraxacum officinale in vitro and in vivo. Nutr. Res. Pract., 2008, 2(4), 200-203.
[http://dx.doi.org/10.4162/nrp.2008.2.4.200] [PMID: 20016719]
[32]
Obolskiy, D.; Pischel, I.; Feistel, B.; Glotov, N.; Heinrich, M. Artemisia dracunculus L. (tarragon): a critical review of its traditional use, chemical composition, pharmacology, and safety. J. Agric. Food Chem., 2011, 59(21), 11367-11384.
[http://dx.doi.org/10.1021/jf202277w] [PMID: 21942448]
[33]
Younis, N.; Abu-Mallouh, S.; Almasri, I.; Issa, A.; Bustanji, Y. Pancreatic Lipase Inhibition by Edible Plants Used in Three Middle East Countries: A Mini-Review. Jordan J. Pharm. Sci., 2021, 14, 179-188.
[34]
Siegień, J.; Buchholz, T.; Popowski, D.; Granica, S.; Osińska, E.; Melzig, M.F.; Czerwińska, M.E. Pancreatic lipase and α-amylase inhibitory activity of extracts from selected plant materials after gastrointestinal digestion in vitro. Food Chem., 2021, 355, 129414.
[http://dx.doi.org/10.1016/j.foodchem.2021.129414] [PMID: 33773461]
[35]
Tawaha, K.A.; Alali, F.Q.; Hudaib, M.M. Chemical Composition and General Cytotoxicity Evaluation of Essential Oil from the Flowers of Anthemis palestina Reut. ex Boiss., Growing in Jordan. J. Essent. Oil-Bear. Plants, 2015, 18(5), 1070-1077.
[http://dx.doi.org/10.1080/0972060X.2014.895190]
[36]
Aabideen, Z.U.; Mumtaz, M.W.; Akhtar, M.T.; Raza, M.A.; Mukhtar, H.; Irfan, A.; Raza, S.A.; Touqeer, T.; Nadeem, M.; Saari, N. Cassia fistula Leaves; UHPLC-QTOF-MS/MS Based Metabolite Profiling and Molecular Docking Insights to Explore Bioactives Role towards Inhibition of Pancreatic Lipase. Plants, 2021, 10(7), 1334.
[http://dx.doi.org/10.3390/plants10071334] [PMID: 34210016]
[37]
Zhang, L.; Wang, Y.; Yang, D.; Zhang, C.; Zhang, N.; Li, M.; Liu, Y. Platycodon grandiflorus – An Ethnopharmacological, phytochemical and pharmacological review. J. Ethnopharmacol., 2015, 164, 147-161.
[http://dx.doi.org/10.1016/j.jep.2015.01.052] [PMID: 25666431]
[38]
Nyakudya, E.; Jeong, J.H.; Lee, N.K.; Jeong, Y.S. Platycosides from the Roots of Platycodon grandiflorum and Their Health Benefits. Prev. Nutr. Food Sci., 2014, 19(2), 59-68.
[http://dx.doi.org/10.3746/pnf.2014.19.2.059] [PMID: 25054103]
[39]
Lee, H.; Lim, Y.; Park, S.; Cho, S.M.; Choe, J.S.; Jeong, S.; Kwak, J.S.; Kwon, O. Platycodi radix beverage ameliorates postprandial lipemia response through lipid clearance of triglyceride-rich lipoprotein: A randomized controlled study in healthy subjects with a high-fat load. Nutr. Res. Pract., 2018, 12(5), 371-377.
[http://dx.doi.org/10.4162/nrp.2018.12.5.371] [PMID: 30323904]
[40]
Rossini, F.; Virga, G.; Loreti, P.; Iacuzzi, N.; Ruggeri, R.; Provenzano, M.E. Hops (Humulus lupulus L.) as a Novel Multipurpose Crop for the Mediterranean Region of Europe: Challenges and Opportunities of Their Cultivation. Agriculture, 2021, 11(6), 484.
[http://dx.doi.org/10.3390/agriculture11060484]
[41]
Chandra, S.; Rawat, D.S. Medicinal plants of the family Caryophyllaceae: a review of ethno-medicinal uses and pharmacological properties. Integr. Med. Res., 2015, 4(3), 123-131.
[http://dx.doi.org/10.1016/j.imr.2015.06.004] [PMID: 28664118]
[42]
Mustafa, K. Economic importance of Gypsophila L., AnkyropetalumFenzl and Saponaria L. (Caryophyllaceae) taxa of Turkey. Afr. J. Biotechnol., 2011, 10(47), 9533-9541.
[http://dx.doi.org/10.5897/AJB10.2500]
[43]
Kato, E.; Nakagomi, R. Identification of hydroxychavicol and its dimers, the lipase inhibitors contained in the Indonesian spice, Eugenia polyantha. Food Chem., 2013, 136(3-4), 1239-1242.
[44]
Spivey, A.C.; Weston, M.; Woodhead, S. Celastraceae sesquiterpenoids: Biological activity and synthesis. Chem. Soc. Rev., 2002, 31(1), 43-59.
[http://dx.doi.org/10.1039/b000678p] [PMID: 12108982]
[45]
Svobodova, B.; Barros, L.; Calhelha, R.C.; Heleno, S.; Alves, M.J.; Walcott, S.; Bittova, M.; Kuban, V.; Ferreira, I.C.F.R. Bioactive properties and phenolic profile of Momordica charantia L. medicinal plant growing wild in Trinidad and Tobago. Ind. Crops Prod., 2017, 95, 365-373.
[http://dx.doi.org/10.1016/j.indcrop.2016.10.046]
[46]
Seyedan, A.; Alshawsh, M.A. Medicinal Plants and Their Inhibitory Activities against Pancreatic Lipase: A Review. Evid. Based Complement. Alternat. Med., 2015, 2015, 973143.
[47]
Alias, N.; Leow, T.; Mohamad Ali, M.S.; Tajudin, A.; Salleh, A.; Rahman, R. Anti-obesity Potential of Selected Tropical Plants via Pancreatic Lipase Inhibition. Adv. Obes. Weight Manag. Control., 2017, 6, 1-11.
[48]
Angami, T.; Wangchu, L.; Debnath, P.; Sarma, P.; Singh, B.; Singh, A.K.; Singh, S.; Hazarika, B.N.; Singh, M.C.; Aochen, C. Garcinia L.: A gold mine of future therapeutics. Genet. Resour. Crop Evol., 2021, 68(1), 11-24.
[http://dx.doi.org/10.1007/s10722-020-01057-5]
[49]
Orhan, N. Juniperus Species: Features, Profile and Applications to Diabetes. Bioact Food Diet Intervent Diabets; Elsevier: Amsterdam, 2019.
[50]
Zheng, Q.; Koike, K.; Han, L.K.; Okuda, H.; Nikaido, T. New biologically active triterpenoid saponins from Scabiosa tschiliensis. J. Nat. Prod., 2004, 67(4), 604-613.
[http://dx.doi.org/10.1021/np0304722] [PMID: 15104490]
[51]
Wang, J.; Liu, K. Rapid micropropagation system in vitro and antioxidant activity of Scabiosa tschiliensis Grunning. Plant Growth Reg., 2013, 69(3), 305-310.
[52]
Wurchaih, W. Medicinal wild plants used by the Mongol herdsmen in Bairin Area of Inner Mongolia and its comparative study between TMM and TCM. PJ Ethnobiol Ethnomed., 2019, 15, 32.
[53]
Bolraa, S.; Ma, J.N. Quantification and antioxidant and anti-HCV activities of the constituents from the inflorescences of Scabiosa comosa and S. tschilliensis. Nat. Prod. Res., 2016, 30(5), 590-594.
[54]
Shi, D.; Chen, C.; Zhao, S.; Ge, F.; Liu, D.; Song, H. Walnut Polyphenols Inhibit Pancreatic Lipase Activity in vitro and Have Hypolipidemic Effect on High-Fat Diet-Induced Obese Mice. J. Food Nutr. Res., 2014, 2(10), 757-763.
[http://dx.doi.org/10.12691/jfnr-2-10-16]
[55]
Suryakumar, G.; Gupta, A. Medicinal and therapeutic potential of Sea buckthorn (Hippophae rhamnoides L.). J. Ethnopharmacol., 2011, 138(2), 268-278.
[http://dx.doi.org/10.1016/j.jep.2011.09.024] [PMID: 21963559]
[56]
Bahmani, M.; Shirzad, H.; Mirhosseini, M.; Mesripour, A.; Rafieian-Kopaei, M. A review on ethnobotanical and therapeutic uses of fenugreek (Trigonella foenum-graceum L). J. Evid. Based Complementary Altern. Med., 2016, 21(1), 53-62.
[http://dx.doi.org/10.1177/2156587215583405] [PMID: 25922446]
[57]
Kuru, P. Tamarindus indica and its health related effects. Asian Pac. J. Trop. Biomed., 2014, 4(9), 676-681.
[http://dx.doi.org/10.12980/APJTB.4.2014APJTB-2014-0173]
[58]
Mukherjee, A.; Sengupta, S. Indian medicinal plants known to contain intestinal glucosidase inhibitors also inhibit pancreatic lipase activity—An ideal situation for obesity control by herbal drugs. Indian J. Biotechnol., 2013, 8.
[59]
Buchholz, T.; Melzig, M.F. Medicinal Plants Traditionally Used for Treatment of Obesity and Diabetes Mellitus - Screening for Pancreatic Lipase and α-Amylase Inhibition. Phytother. Res., 2016, 30(2), 260-266.
[http://dx.doi.org/10.1002/ptr.5525] [PMID: 26632284]
[60]
In-Ah, L.; Lee, J.H. Antihyperlipidemic Effect of Crocin Isolated from the Fructus of Gardenia jasminoides and Its Metabolite Crocetin. Bio. Pharmaceut. Bull., 2005, 28(11), 2106-2110.
[61]
Pandey, S. Review on medicinal importance of Vigna genus. Plant Sci. Today, 2019, 6(4), 450-456.
[http://dx.doi.org/10.14719/pst.2019.6.4.614]
[62]
Chopra, B. Psoralea corylifolia L. (Buguchi) - folklore to modern evidence: review. Fitoterapia., 2013, 90(44), 56.
[63]
Karale, P.; Dhawale, S.C. Quantitative Phytochemical Profile, Antioxidant and Lipase Inhibitory Potential of Leaves of Momordica charantia L. and Psoralea corylifolia L. Indian J. Pharm. Sci., 2022, 84(1), 189-196.
[64]
Jahanban-Esfahlan, A.; Ostadrahimi, A.; Tabibiazar, M.; Amarowicz, R. A comprehensive review on the chemical constituents and functional uses of walnut (Juglans spp.) husk. Int. J. Mol. Sci., 2019, 20(16), 3920.
[http://dx.doi.org/10.3390/ijms20163920] [PMID: 31409014]
[65]
Yang, J.; Chen, C.; Zhao, S.; Ge, F.; Liu, D. The Inhibitory Effect of Different Solvents Extracts from Walnut Shell (Juglans regia L.) on Pancreatic Lipase and Adipogenesis of 3T3-L1 Preadipocytes. J. Food Nutr. Res. (Newark), 2014, 2(10), 664-670.
[http://dx.doi.org/10.12691/jfnr-2-10-2]
[66]
Kurihara, H.; Asami, S.; Shibata, H.; Fukami, H.; Tanaka, T. Hypolipemic effect of Cyclocarya paliurus (Batal) Iljinskaja in lipid-loaded mice. Biol. Pharm. Bull., 2003, 26(3), 383-385.
[http://dx.doi.org/10.1248/bpb.26.383] [PMID: 12612454]
[67]
Ayan, A.K.; Cirak, C. Variation of hypericins in Hypericum triquetrifolium Turra growing in different locations of Turkey during plant growth. Nat. Prod. Res., 2008, 22(18), 1597-1604.
[http://dx.doi.org/10.1080/14786410701838213] [PMID: 19085414]
[68]
Hou, X.D.; Guan, X.Q.; Cao, Y.F.; Weng, Z.M.; Hu, Q.; Liu, H.B.; Jia, S.N.; Zang, S.Z.; Zhou, Q.; Yang, L.; Ge, G.B.; Hou, J. Inhibition of pancreatic lipase by the constituents in St. John’s Wort: in vitro and in silico investigations. Int. J. Biol. Macromol., 2020, 145, 620-633.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.231] [PMID: 31883893]
[69]
Avci, G.; Küçükkurt, I.; Küpeli Akkol, E.; Yeşilada, E. Effects of escin mixture from the seeds of Aesculus hippocastanum on obesity in mice fed a high fat diet. Pharm. Biol., 2010, 48(3), 247-252.
[http://dx.doi.org/10.3109/13880200903085466] [PMID: 20645808]
[70]
Mahadevan, S.; Park, Y. Multifaceted therapeutic benefits of Ginkgo biloba L.: chemistry, efficacy, safety, and uses. J. Food Sci., 2008, 73(1), R14-R19.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00597.x] [PMID: 18211362]
[71]
Mahendran, G.; Verma, S.K.; Rahman, L.U. The traditional uses, phytochemistry and pharmacology of spearmint (Mentha spicata L.): A review. J. Ethnopharmacol., 2021, 278, 114266.
[http://dx.doi.org/10.1016/j.jep.2021.114266] [PMID: 34087400]
[72]
Chishti, S.; Kaloo, Z.A.; Sultan, P. Medicinal importance of genus Origanum: A review. JPP, 2013, 5(10), 170-177.
[73]
Belhadj, S.; Hentati, O.; Hammami, M.; Ben Hadj, A.; Boudawara, T.; Dammak, M.; Zouari, S.; El Feki, A. Metabolic impairments and tissue disorders in alloxan-induced diabetic rats are alleviated by Salvia officinalis L. essential oil. Biomed. Pharmacother., 2018, 108, 985-995.
[http://dx.doi.org/10.1016/j.biopha.2018.09.108] [PMID: 30372910]
[74]
Arabiyat, S.; Arabiyat, H. Antilipolytic and hypotriglyceridemic effects of dietary Salvia triloba Lf (Lamiaceae) in experimental rats. Tropical. J. Pharmaceut. Res., 2016, 15(14), 723-728.
[75]
Nkumah, O.C. Phytochemical analysis and medicinal uses of Hibiscus sabdariffa. Int. J. Herb. Med., 2015, 2(6), 16-19.
[76]
Sharifi-Rad, J.; Melgar-Lalanne, G.; Hernández-Álvarez, A.J.; Taheri, Y.; Shaheen, S.; Kregiel, D.; Antolak, H.; Pawlikowska, E.; Brdar-Jokanović, M.; Rajkovic, J.; Hosseinabadi, T.; Ljevnaić-Mašić, B.; Baghalpour, N.; Mohajeri, M.; Fokou, P.V.T.; Martins, N. Malva species: Insights on its chemical composition towards pharmacological applications. Phytother. Res., 2020, 34(3), 546-567.
[http://dx.doi.org/10.1002/ptr.6550] [PMID: 31713320]
[77]
Gupta, S.C.; Prasad, S.; Tyagi, A.K.; Kunnumakkara, A.B.; Aggarwal, B.B. Neem (Azadirachta indica): An indian traditional panacea with modern molecular basis. Phytomedicine, 2017, 34, 14-20.
[http://dx.doi.org/10.1016/j.phymed.2017.07.001] [PMID: 28899496]
[78]
Schmutterer, H. Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annu. Rev. Entomol., 1990, 35(1), 271-297.
[http://dx.doi.org/10.1146/annurev.en.35.010190.001415] [PMID: 2405771]
[79]
Choudhary, N.; Siddiqui, M.B.; Azmat, S.; Khatoon, S. Tinospora cordifolia: Ethnobotany, phytopharmacology and phytochemistry aspects. Intl. J. Pharm. Sci. Res., 2013, 4(3), 891-899.
[80]
Wang, G.W.; Huang, B.K.; Qin, L.P. The genus Broussonetia: a review of its phytochemistry and pharmacology. Phytother. Res., 2012, 26(1), 1-10.
[http://dx.doi.org/10.1002/ptr.3575] [PMID: 22228545]
[81]
Jang, D.S.; Lee, G.Y. A new pancreatic lipase inhibitor isolated from the roots of Actinidia arguta. Arch. Pharm. Res., 2008, 31, 666-670.
[82]
Li-Kun, H.; Yi-Nan, Z. Anti-obesity effects of chikusetsusaponins isolated from Panax japonicus rhizomes BMC Comp Alter Med, 2005, 5(9)
[83]
Chan, E.W.C.; Lye, P.Y.; Wong, S.K. Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin. J. Nat. Med., 2016, 14(1), 17-30.
[PMID: 26850343]
[84]
Xin, L.T.; Yue, S.J.; Fan, Y.C.; Wu, J.S.; Yan, D.; Guan, H.S.; Wang, C-Y. Cudrania tricuspidata: An updated review on ethnomedicine, phytochemistry and pharmacology. RSC Advances, 2017, 7(51), 31807-31832.
[http://dx.doi.org/10.1039/C7RA04322H]
[85]
Chauhan, P.; Kumar, R.R.; Mendiratta, S.K.; Talukder, S.; Gangwar, M.; Sakunde, D.T.; Meshram, S.K. In-vitro functional efficacy of extracts from Phyllanthus emblica, Eucalyptus globulus, Tinospora cordifolia as pancreatic lipase inhibitor and source of anti-oxidant in goat meat nuggets. Food Chem., 2021, 348, 129087.
[http://dx.doi.org/10.1016/j.foodchem.2021.129087] [PMID: 33516997]
[86]
Maitreesophone, P.; Khine, H.E.E.; Nealiga, J.Q.L.; Kongkatitham, V.; Panuthai, P.; Chaotham, C.; Likhitwitayawuid, K.; Sritularak, B. α-Glucosidase and pancreatic lipase inhibitory effects and anti-adipogenic activity of dendrofalconerol B, a bisbibenzyl from Dendrobium harveyanum. S. Afr. J. Bot., 2022, 146, 187-195.
[http://dx.doi.org/10.1016/j.sajb.2021.10.025]
[87]
Kusuma, I.W.; Kuspradini, H.; Arung, E.T. Biological activity and phytochemical analysis of three Indonesian medicinal plants, Murraya koenigii, Syzygium polyanthum and Zingiber purpurea. J. Acupunct. Meridian Stud., 2011, 4(1), 75-79.
[88]
Ismail, A.; Ahmad, W.A.Z.W. Syzygium polyanthum (Wight) Walp: A Potential Phytomedicine. Pharmacogn. J., 2019, 11(2), 75-79.
[89]
Birari, R.B.; Gupta, S.; Mohan, C.G.; Bhutani, K.K. Antiobesity and lipid lowering effects of Glycyrrhiza chalcones: Experimental and computational studies. Phytomedicine, 2011, 18(8-9), 795-801.
[http://dx.doi.org/10.1016/j.phymed.2011.01.002] [PMID: 21315569]
[90]
Wu, X.; He, W.; Zhang, H.; Li, Y.; Liu, Z.; He, Z. Acteoside: A lipase inhibitor from the Chinese tea Ligustrum purpurascens kudingcha. Food Chem., 2014, 142, 306-310.
[http://dx.doi.org/10.1016/j.foodchem.2013.07.071] [PMID: 24001846]
[91]
Liu, S.; Li, D.; Huang, B.; Chen, Y.; Lu, X.; Wang, Y. Inhibition of pancreatic lipase, α-glucosidase, α-amylase, and hypolipidemic effects of the total flavonoids from Nelumbo nucifera leaves. J. Ethnopharmacol., 2013, 149(1), 263-269.
[http://dx.doi.org/10.1016/j.jep.2013.06.034] [PMID: 23811214]
[92]
Mehta, N.R.; Patel, E.P.; Patani, P.V.; Shah, B. Nelumbo nucifera (Lotus): A Review on Ethanobotany, Phytochemistry and Pharmacology. Indian J.Pharmaceut. Biol. Res., 2013, 1(4), 152-167.
[http://dx.doi.org/10.30750/ijpbr.1.4.26]
[93]
Kostova, I.; Iossifova, T. Chemical components of Fraxinus species. Fitoterapia, 2007, 78(2), 85-106.
[http://dx.doi.org/10.1016/j.fitote.2006.08.002] [PMID: 17184933]
[94]
Schuiteman, A. Dendrobium (Orchidaceae): To split or not to split? Gardens’. Bull., 2011, 63, 245-257.
[95]
Ahmed, Q.U.; Alhassan, A.M. Averrhoa bilimbi Linn.: A review of its ethnomedicinal uses, phytochemistry, and pharmacology. J. Pharm. Bioallied Sci., 2016, 8(4), 265-271.
[http://dx.doi.org/10.4103/0975-7406.199342] [PMID: 28216948]
[96]
Pradhan, D.; Suri, K. Golden Heart of the Nature: Piper betle L. J Pharmacog and Phytochem., 2013, 1(6), 147-167.
[97]
Abdul Rahman, H.; Saari, N.; Abas, F.; Ismail, A.; Mumtaz, M.W.; Abdul Hamid, A. Anti-obesity and antioxidant activities of selected medicinal plants and phytochemical profiling of bioactive compounds. Int. J. Food Prop., 2017, 20(11), 2616-2629.
[http://dx.doi.org/10.1080/10942912.2016.1247098]
[98]
Anyasor, G.N.; Ogunwenmo, O. Phytochemical constituents and antioxidant activities of aqueous and methanol stem extracts of Costus afer Ker Gawl. (Costaceae). African. J. Biotech., 2010, 9(31), 147-167.
[99]
Kim, G.J.; Park, S. Antioxidant, Pancreatic Lipase Inhibitory, and Tyrosinase Inhibitory Activities of Extracts of the Invasive Plant Spartina anglica (Cord-Grass). Antioxidants, 2021, 4(2), 242.
[100]
Rauter, AP; Lopes, RG; Martins, A C-Glycosylflavonoids: Identification, Bioactivity and Synthesis. Natural. Prod. Commun., 2007, 2(11), 1934578X070020112.
[101]
Lee, E.M.; Lee, S.S.; Chung, B.Y.; Cho, J.Y.; Lee, I.C.; Ahn, S.R.; Jang, S.J.; Kim, T.H. Pancreatic lipase inhibition by C-glycosidic flavones Isolated from Eremochloa ophiuroides. Molecules, 2010, 15(11), 8251-8259.
[http://dx.doi.org/10.3390/molecules15118251] [PMID: 21081855]
[102]
Library of Congress. The Comprehensive Book on Medicine. 2021. Available From: https://www.loc.gov/item/2021666821
[103]
Petropoulos, S.; Karkanis, A.; Martins, N. Phytochemical composition and bioactive compounds of common purslane (Portulaca oleracea L.) as affected by crop management practices. Trends. Food Sci. Tech., 2016, 55(11), 1-10.
[104]
Yan-Xi, z; Hai-Liang, x; Rahman, k Portulaca oleracea L.: A review of phytochemistry and pharmacological effects. BioMed Res. Int., 2015, 2015, 925631.
[105]
Conforti, F.; Perri, V.; Menichini, F.; Marrelli, M.; Uzunov, D.; Statti, G. A Wild Mediterranean dietary plants as inhibitors of pancreatic lipase. Phytother. Res., 2012, 26(4), 600.
[106]
Jabeen, Q. A Review of Medicinal Uses and Pharmacological Activities of Nigella sativa. Pak. J. Biol. Sci., 2004, 7(4), 441-451.
[http://dx.doi.org/10.3923/pjbs.2004.441.451]
[107]
Rathod, P.; Yadav, R.; Kulkarni, C. Anti-diabesity principle from the seeds of PHYLLANTHUS EMBLICA L. Indian Drugs, 2021, 57(12), 41-50.
[108]
Rathod, P.; Yadav, R.; Kulkarni, C. Investigation of the kinetic properties of Phyllanthus chamaepeuce Ridl. extracts for the inhibition of pancreatic lipase activity. J. Herb. Med., 2021, 32(3), 100508.
[109]
Plants of the World Online. Adonis palaestina Boiss. 1849. Available From: http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:708130-1
[110]
Khabeer, S. Lipase inhibitors from nigella sativa and punica granatum as an effective approach towards controlling obesity. Int. J. Heal. Life Sci., 2016, 2, 1-19.
[111]
Valcheva-Kuzmanova, S.V.; Belcheva, A. Current knowledge of Aronia melanocarpa as a medicinal plant. Folia Med., 2006, 48(2), 11-17.
[PMID: 17408071]
[112]
Kato, E.; Yama, M.; Nakagomi, R.; Shibata, T.; Hosokawa, K.; Kawabata, J. Substrate-like water soluble lipase inhibitors from Filipendula kamtschatica. Bioorg. Med. Chem. Lett., 2012, 22(20), 6410-6412.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.055] [PMID: 22995617]
[113]
Selahvarzian, A.; Alizadeh, A.; Baharvand, P.A.; Eldahshan, O.A. Rasoulian * B. Medicinal Properties of Rosa canina L. Herbal Medicines Journal. Herb Med J, 2018, 77-84.
[114]
Insti, S.; Medica, M.; Mian-ying, W.; West, B.J.; Jensen, C.J.; Nowicki, D. Received 2002-10-02 Accepted 2002-10-22 Ó 200 2, Act a Pharmacologica Si nica. 2002. Available From: https://www.ncbi.nlm.nih.gov/pmc/journals/2405
[115]
Gahlawat, D.K.; Jakhar, S.; Dahiya, P Murraya koenigii (L.) Spreng: An ethnobotanical, phytochemical and pharmacological review. J. Pharmacog. Phytochem., 2014, 3(3), 109-119.
[116]
Chowdhury, J.U.; Bhuiyan, M.N.I.; Yusuf, M. Chemical composition of the leaf essential oils of Murraya koenigii (L.) Spreng and Murraya paniculata (L.). Jack. Bangladesh J. Pharmacol., 2008, 3(2), 59-63.
[http://dx.doi.org/10.3329/bjp.v3i2.841]
[117]
Hasim, H.; Nur Faridah, D.; Afandi, F.A. Evaluation of Indonesian Anti-obesity Traditional Medicinal Plants: A Systematic Review and Meta-analysis on Pancreatic Lipase Inhibition Activity. Res. Sq., 1986.
[118]
Yun-Cheung, K.; Kam-Hung, N.G.; Pui-Hay, B. Sources of the anti-implantation alkaloid yuehchukene in the genus Murraya. J. Ethnopharmacol., 1986, 2(2), 195-200.
[119]
Buchholz, T.; Melzig, M. Polyphenolic Compounds as Pancreatic Lipase Inhibitors. Planta Med., 2015, 81(10), 771-783.
[http://dx.doi.org/10.1055/s-0035-1546173] [PMID: 26132857]
[120]
Morikawa, T.; Xie, Y.; Asao, Y.; Okamoto, M.; Yamashita, C.; Muraoka, O.; Matsuda, H.; Pongpiriyadacha, Y.; Yuan, D.; Yoshikawa, M. Oleanane-type triterpene oligoglycosides with pancreatic lipase inhibitory activity from the pericarps of Sapindus rarak. Phytochemistry, 2009, 70(9), 1166-1172.
[http://dx.doi.org/10.1016/j.phytochem.2009.06.015] [PMID: 19647280]
[121]
Kregiel, D.; Pawlikowska, E.; Antolak, H. Urtica spp.: Ordinary Plants with Extraordinary Properties. Molecules, 2018, 23(7), 1664.
[http://dx.doi.org/10.3390/molecules23071664] [PMID: 29987208]
[122]
Yadav, R.P.; Mhatre, S.V.; Bhagit, A.A. Pancreatic Lipase Inhibitor from Food Plant: Potential Molecule for Development of Safe Anti-obesity Drug. MGM J Med Sci, 2016, 3(1), 34-41.
[http://dx.doi.org/10.5005/jp-journals-10036-1084]
[123]
Parihar, S.; Sharma, D. A Breif Overview on Vitis vinifera. SchAcad J Pharm., 2021, 10(12), 231-239.
[125]
Ahmad, N.; Basri, A.M.; Taha, H. A review on the pharmacological activities and phytochemicals of Alpinia officinarum (Galangal) extracts derived from bioassay-guided fractionation and isolation. Pharmacogn. Rev., 2017, 11(21), 43-56.
[http://dx.doi.org/10.4103/phrev.phrev_55_16] [PMID: 28503054]
[126]
Yadav, K.D.; Chaudhary, A.K. Anti obesity mechanism of Curcuma longa L.: An Over view. Indian J. Nat. Prod. Res., 2016, 7(2), 99-106.
[127]
Han, L.K.; Gong, X.J.; Kawano, S.; Saito, M.; Kimura, Y.; Okuda, H. [Antiobesity actions of Zingiber officinale Roscoe]. Yakugaku Zasshi, 2005, 125(2), 213-217.
[http://dx.doi.org/10.1248/yakushi.125.213] [PMID: 15684576]
[128]
Iswantini, D.; Silitonga, R.F.; Martatilofa, E.; Darusman, L.K. Zingiber cassumunar, Guazuma ulmifolia, and Murraya paniculata Extracts as Antiobesity: in vitro Inhibitory Effect on Pancreatic Lipase Activity. Hayati J. Biosci., 2011, 18(1), 6-10.
[http://dx.doi.org/10.4308/hjb.18.1.6]
[129]
Ahn, J.H.; Liu, Q.; Lee, C.; Ahn, M.J.; Yoo, H.S.; Hwang, B.Y.; Lee, M.K. A new pancreatic lipase inhibitor from Broussonetia kanzinoki. Bioorg. Med. Chem. Lett., 2012, 22(8), 2760-2763.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.088] [PMID: 22450131]
[130]
Patel, D.; Kumar, V. Phytochemical Analysis and in vitro Anti Obesity Activity of Different Fractions of Methanolic Extract of Fagoniacretica L. Int. J. Pharm. Sci. Drug Res., 2020, 12, 282-286.
[http://dx.doi.org/10.25004/IJPSDR.2020.120311]
[131]
Son, J.W.; Kim, S. Comprehensive Review of Current and Upcoming Anti-Obesity Drugs. Diabetes Metab. J., 2020, 44(6), 802-818.
[132]
Albaugh, V.L.; Abumrad, N.N. Surgical treatment of obesity. F1000Res., 2018, 7, F1000 Faculty Rev-617.
[133]
Freije, A.; Hasan, N.A. Effect of Bariatric Surgery on Weight Loss, Nutritional Deficiencies, Postoperative Complications and Adherence to Dietary and Lifestyle Recommendations: A retrospective cohort study from Bahrain. Sultan Qaboos Univ. Med. J., 2020, 20(3), e344-e351.
[134]
Padwal, R.S.; Majumdar, S.R. Drug treatments for obesity: Orlistat, sibutramine, and rimonabant. Lancet, 2007, 369(9555), 71-77.
[http://dx.doi.org/10.1016/S0140-6736(07)60033-6] [PMID: 17208644]
[135]
Bray, G.A. Drug treatment of obesity. Best Pract. Res. Clin. Endocrinol. Metab., 1999, 13(1), 131-148.
[http://dx.doi.org/10.1053/beem.1999.0011] [PMID: 10932681]
[136]
McNeely, W.; Benfield, P. Orlistat. Drugs, 1998, 56(2), 241-249.
[http://dx.doi.org/10.2165/00003495-199856020-00007] [PMID: 9711448]
[137]
Cheung, B.M.Y.; Cheung, T.T.; Samaranayake, N.R. Safety of antiobesity drugs. Ther. Adv. Drug Saf., 2013, 4(4), 171-181.
[http://dx.doi.org/10.1177/2042098613489721] [PMID: 25114779]
[138]
Cosentino, G.; Conrad, A.O.; Uwaifo, G.I. Phentermine and topiramate for the management of obesity: A review. Drug Des. Devel. Ther., 2011, 7, 267-278.
[PMID: 23630412]
[139]
DiNicolantonio, J.J.; Chatterjee, S.; O’Keefe, J.H.; Meier, P. Lorcaserin for the treatment of obesity? A closer look at its side effects. Open Heart, 2014, 1(1), e000173.
[http://dx.doi.org/10.1136/openhrt-2014-000173] [PMID: 25346855]
[140]
Redman, L.M.; Ravussin, E. Lorcaserin for the treatment of obesity. Drugs Today, 2010, 46(12), 901-910.
[http://dx.doi.org/10.1358/dot.2010.46.12.1556433] [PMID: 21589947]
[141]
Nuffer, W.A.; Trujillo, J.M. Liraglutide: A New Option for the Treatment of Obesity. Pharmacotherapy, 2015, 35(10), 926-934.
[http://dx.doi.org/10.1002/phar.1639] [PMID: 26497479]
[142]
Huecker, M.R.; Smiley, A.; Saadabadi, A. Bupropion; National Library of Medicine: Rockville Pike, 2022.
[143]
Gadde, K.M.; Xiong, G.L. Bupropion for weight reduction. Expert Rev. Neurother., 2007, 7(1), 17-24.
[http://dx.doi.org/10.1586/14737175.7.1.17] [PMID: 17187492]
[144]
Greenway, F.L.; Caruso, M.K. Safety of obesity drugs. Expert Opin. Drug Saf., 2005, 4(6), 1083-1095.
[http://dx.doi.org/10.1517/14740338.4.6.1083] [PMID: 16255666]
[145]
Gadde, K.M.; Kopping, M.F.; Wagner, H.R., II; Yonish, G.M.; Allison, D.B.; Bray, G.A. Zonisamide for weight reduction in obese adults: a 1-year randomized controlled trial. Arch. Intern. Med., 2012, 172(20), 1557-1564.
[http://dx.doi.org/10.1001/2013.jamainternmed.99] [PMID: 23147455]
[146]
Janković, S.M. Evaluation of zonisamide for the treatment of focal epilepsy: a review of pharmacokinetics, clinical efficacy and adverse effects. Expert. Opin. Drug Metab. Toxicol., 2020, 16(3), 169-177.
[147]
Won, S.R.; Kim, S.K.; Kim, Y.M.; Lee, P.H.; Ryu, J.H.; Kim, J.W.; Rhee, H-I. Licochalcone A: A lipase inhibitor from the roots of Glycyrrhiza uralensis. Food Res. Int., 2007, 40(8), 1046-1050.
[http://dx.doi.org/10.1016/j.foodres.2007.05.005]
[148]
Kumar, S.; Alagawadi, K.R. Anti-obesity effects of galangin, a pancreatic lipase inhibitor in cafeteria diet fed female rats. Pharmaceut. Bio., 20213, 51(5), 607-613.
[149]
Singh, G.; Suresh, S.; Bayineni, V.K.; Kadeppagari, R.K. Lipase inhibitors from plants and their medical applications. Int. J. Pharm. Pharmac. Sci., 2015, 7(13), 1-5.
[150]
Habtemariam, S Antihyperlipidemic Components of Cassia auriculata Aerial Parts: Identification Through in vitro Studies. 2012. Available From: https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.4711
[151]
Kawaguchi, K.; Mizuno, T.; Aida, K.; Uchino, K Hesperidin as an Inhibitor of Lipases from Porcine Pancreas and Pseudomonas. Biosci. Biotech. Biochem., 1997, 67(1), 102-104.
[152]
Habtemariam, S. The anti-obesity potential of sigmoidin A. Pharm. Biol., 2012, 50(12), 1519-1522.
[http://dx.doi.org/10.3109/13880209.2012.688838] [PMID: 22978690]
[153]
Shin, J.E.; Han, M.J.; Kim, D.H. 3-Methylethergalangin isolated from Alpinia officinarum inhibits pancreatic lipase. Biol. Pharm. Bull., 2003, 26(6), 854-857.
[http://dx.doi.org/10.1248/bpb.26.854] [PMID: 12808299]
[154]
Shin, J.E.; Han, M.J.; Kim, D.H. 5-Hydroxy-7-(4′-hydroxy-3′-methoxyphenyl)-1-phenyl-3-heptanone: A Pancreatic Lipase Inhibitor Isolated from Alpinia officinarum. Bio. Pharmaceut. Bull., 2004, 27(1), 138-140.
[155]
Kim, Y.M.; Lee, E.W.; Eom, S.H. Pancreatic lipase inhibitory stilbenoids from the roots of Vitis vinifera. Bio. Pharmaceut. Bull., 2014, 65(1), 97-100.
[156]
Tao, Y.; Zhang, Y.; Wang, Y. Hollow fiber based affinity selection combined with high performance liquid chromatography–mass spectroscopy for rapid screening lipase inhibitors from lotus leaf. Analytica. Chimica. Acta., 2013, 785, 75-81.
[157]
Kwon, O.J.; Bae, J.S.; Lee, H.Y. Pancreatic Lipase Inhibitory Gallotannins from Galla Rhois with Inhibitory Effects on Adipocyte Differentiation in 3T3-L1 Cells. Molecules, 2013, 18(9), 10629-10638.
[158]
Worsztynowicz, P.; Napierała, M.; Białas, W. Pancreatic α-amylase and lipase inhibitory activity of polyphenolic compounds present in the extract of black chokeberry (Aronia melanocarpa L.). Process Biochem., 2014, 49(9), 1457-1463.
[159]
Kim, T.H.; Kim, J.K.; Ito, H.; Jo, C. Enhancement of pancreatic lipase inhibitory activity of curcumin by radiolytic transformation. Bioorg. Med. Chem. Lett., 2011, 21(5), 1512-1514.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.122] [PMID: 21282056]
[160]
Kulling, S.E.; Rawel, H.M. Chokeberry (Aronia melanocarpa) – A Review on the Characteristic Components and Potential Health Effects. Planta Med., 2008, 74(13), 1625-1634.
[161]
Kim, T.H. Secondary Metabolites from Enzymatic Oxidation of Caffeic Acid with Pancreatic Lipase Inhibitory Activity. J. Korean Soc. Food Sci. Nutr., 2015, 44(12), 1912-1917.
[162]
Ninomiya, K.; Matsuda, H.; Shimoda, H.; Nishida, N.; Kasajima, N.; Yoshino, T.; Morikawa, T.; Yoshikawa, M. Carnosic acid, a new class of lipid absorption inhibitor from sage. Bioorg. Med. Chem. Lett., 2004, 14(8), 1943-1946.
[http://dx.doi.org/10.1016/j.bmcl.2004.01.091] [PMID: 15050633]
[163]
Bustanji, Y.; Al-Masri, I.M.; Mohammad, M.; Hudaib, M.; Tawaha, K.; Tarazi, H.; AlKhatib, H.S. Pancreatic lipase inhibition activity of trilactone terpenes of Ginkgo biloba. J. Enzyme Inhib. Med. Chem., 2011, 26(4), 453-459.
[http://dx.doi.org/10.3109/14756366.2010.525509] [PMID: 21028941]
[164]
Ahn, J.H.; Shin, E. Secoiridoids from the stem barks of Fraxinus rhynchophylla with pancreatic lipase inhibitory activity. Natur. Prod. Res., 2013, 27(12), 1132-1135.
[165]
Zhao, H.L.; Kim, Y.S. Determination of the kinetic properties of platycodin D for the inhibition of pancreatic lipase using a 1,2-diglyceride-based colorimetric assay. Arch. Pharm. Res., 2004, 27(9), 968-972.
[166]
Kimura, H.; Ogawa, S.; Jisaka, M.; Kimura, Y.; Katsube, T.; Yokota, K. Identification of novel saponins from edible seeds of Japanese horse chestnut (Aesculus turbinata Blume) after treatment with wooden ashes and their nutraceutical activity. J. Pharm. Biomed. Anal., 2006, 41(5), 1657-1665.
[http://dx.doi.org/10.1016/j.jpba.2006.02.031] [PMID: 16621416]
[167]
Han, L.; Li, W.; Narimatsu, S.; Liu, L.; Fu, H.; Okuda, H.; Koike, K. Inhibitory effects of compounds isolated from fruit of Juglans mandshurica on pancreatic lipase. J. Nat. Med., 2007, 61(2), 184-186.
[http://dx.doi.org/10.1007/s11418-006-0109-4]
[168]
Wikiera, A.; Mika, M.; Żyła, K. Methylxanthine drugs are human pancreatic lipase inhibitors. Pol. J. Food Nutr. Sci., 2012, 62(2), 109-113.
[http://dx.doi.org/10.2478/v10222-011-0043-3]
[169]
Sumiyoshi, M.; Kimura, Y. Low molecular weight chitosan inhibits obesity induced by feeding a high-fat diet long-term in mice. J. Pharm. Pharmacol., 2010, 58(2), 201-207.
[http://dx.doi.org/10.1211/jpp.58.2.0007] [PMID: 16451748]
[170]
Kumar, A.; Chauhan, G.S. Extraction and characterization of pectin from apple pomace and its evaluation as lipase (steapsin) inhibitor. Carbohydr. Polym., 2010, 82(2), 454-459.
[http://dx.doi.org/10.1016/j.carbpol.2010.05.001]
[171]
Lavie, C.J.; Milani, R.V.; Ventura, H.O. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J. Am. Coll. Cardiol., 2009, 53(21), 1925-1932.
[http://dx.doi.org/10.1016/j.carbpol.2010.05.001]

© 2025 Bentham Science Publishers | Privacy Policy