Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Drug Repurposing for Thioredoxin Interacting Protein Through Molecular Networking, Pharmacophore Modelling, and Molecular Docking Approaches

Author(s): Ayushi Kar, Balamurugan Paramasivam, Darshini Jayakumar, Akey Krishna Swaroop and Jubie Selvaraj*

Volume 21, Issue 11, 2024

Published on: 04 August, 2023

Page: [2111 - 2134] Pages: 24

DOI: 10.2174/1570180820666230612150634

Price: $65

Abstract

Background: Diabetes Mellitus (DM) has emerged as one of the major causes behind global all-cause mortality between the age group of 20-79 years. Thioredoxin Interacting Protein (TXNIP) is a naturally occurring protein that primarily acts by binding to TRX protein, thereby inhibiting its ability to maintain the cellular reduced environment and subsequent oxidative stress, which leads to dysfunctional insulin production and pancreatic islet beta cell apoptosis.

Objective: By inhibiting the levels of TXNIP, a search for new molecules was carried out by employing an in-silico approach.

Methods: Molecular networking study was carried out using Cytoscape, wherein previously FDAapproved drugs were screened to check their ability to interact with TXNIP. This provided 14 drug molecules, which along with 11 previously obtained drug molecules that inhibit TXNIP, were subjected to pharmacophore generation. A pharmacophore was generated using the PharmaGist web server, which when visualised showed two hydrogen bond acceptors and one aromatic ring. Based on the generated pharmacophore model, we carried out virtual screening using ZINCPharmer. A total of 116 HITs were generated based on this pharmacophore model. We then subjected the 116 molecules to Molecular Docking against TXNIP (PDB: 4GEI) by using PyRx and the standard molecules, metformin and rosiglitazone.

Results: Compared to the standard, we found 10 molecules that had a better binding affinity towards TXNIP. These 10 molecules were further taken for ADMET studies. From this, all 10 compounds showed good significant ADMET properties.

Conclusion: From the preliminary studies, these 10 molecules showed good activity in the reversal of diabetes mellitus by reducing the levels of TXNIP.

[1]
Diabetes Atlas, 8th Ed.; International Diabetes Federation: Brussels, Belgium, 2017.
[2]
Kumar, A.; Goel, M.K.; Jain, R.B.; Khanna, P.; Chaudhary, V. India towards diabetes control: Key issues. Australas. Med. J., 2013, 6(10), 524-531.
[http://dx.doi.org/10.4066/AMJ.2013.1791] [PMID: 24223071]
[3]
Verma, K.; Singh, B.K.; Agrawal, N. Non-invasive technique of diabetes detection using iris images. Int. J. Comput. Vis. Robot., 2019, 9(4), 351-367.
[http://dx.doi.org/10.1504/IJCVR.2019.101537]
[4]
Kaveeshwar, S.; Cornwall, J. The current state of diabetes mellitus in India. Australas. Med. J., 2014, 7(1), 45-48.
[http://dx.doi.org/10.4066/AMJ.2014.1979] [PMID: 24567766]
[5]
Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care, 2004, 27(5), 1047-1053.
[http://dx.doi.org/10.2337/diacare.27.5.1047] [PMID: 15111519]
[6]
Wondafrash, D.Z.; Nire’a, A.T.; Tafere, G.G.; Desta, D.M.; Berhe, D.A.; Zewdie, K.A. Thioredoxin-interacting protein as a novel potential therapeutic target in diabetes mellitus and its underlying complications. Diabetes Metab. Syndr. Obes., 2020, 13, 43-51.
[http://dx.doi.org/10.2147/DMSO.S232221] [PMID: 32021350]
[7]
Yoshihara, E.; Masaki, S.; Matsuo, Y.; Chen, Z.; Tian, H.; Yodoi, J. Thioredoxin/Txnip: Redoxisome, as a redox switch for the pathogenesis of diseases. Front. Immunol., 2014, 4, 514.
[http://dx.doi.org/10.3389/fimmu.2013.00514] [PMID: 24409188]
[8]
Rao, Y.; Chen, J.; Guo, Y.; Ji, T.; Xie, P. Rivaroxaban ameliorates angiotensin II-induced cardiac remodeling by attenuating TXNIP/Trx2 interaction in KKAy mice. Thromb. Res., 2020, 193, 45-52.
[http://dx.doi.org/10.1016/j.thromres.2020.05.030] [PMID: 32521334]
[9]
Qayyum, N.; Haseeb, M.; Kim, M.S.; Choi, S. Role of thioredoxin-interacting protein in diseases and its therapeutic outlook. Int. J. Mol. Sci., 2021, 22(5), 2754.
[http://dx.doi.org/10.3390/ijms22052754] [PMID: 33803178]
[10]
Chen, K.S.; DeLuca, H.F. Isolation and characterization of a novel cDNA from HL-60 cells treated with 1,25-dihydroxyvitamin D-3. Biochim. Biophys. Acta Gene Struct. Expr., 1994, 1219(1), 26-32.
[http://dx.doi.org/10.1016/0167-4781(94)90242-9] [PMID: 8086474]
[11]
Zhou, J.; Chng, W.J. Roles of thioredoxin binding protein (TXNIP) in oxidative stress, apoptosis and cancer. Mitochondrion, 2013, 13(3), 163-169.
[http://dx.doi.org/10.1016/j.mito.2012.06.004] [PMID: 22750447]
[12]
Alhawiti, N.M.; Al Mahri, S.; Aziz, M.A.; Malik, S.S.; Mohammad, S. TXNIP in metabolic regulation: Physiological role and therapeutic outlook. Curr. Drug Targets, 2017, 18(9), 1095-1103.
[PMID: 28137209]
[13]
Shalev, A. Minireview: Thioredoxin-interacting protein: Regulation and function in the pancreatic β-cell. Mol. Endocrinol., 2014, 28(8), 1211-1220.
[http://dx.doi.org/10.1210/me.2014-1095] [PMID: 24911120]
[14]
Xu, G.; Chen, J.; Jing, G.; Shalev, A. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat. Med., 2013, 19(9), 1141-1146.
[http://dx.doi.org/10.1038/nm.3287] [PMID: 23975026]
[15]
Thielen, L.; Shalev, A. Diabetes pathogenic mechanisms and potential new therapies based upon a novel target called TXNIP. Curr. Opin. Endocrinol. Diabetes Obes., 2018, 25(2), 75-80.
[http://dx.doi.org/10.1097/MED.0000000000000391] [PMID: 29356688]
[16]
Zhong, L.; Liu, Q.; Liu, Q.; Zhang, S.; Cao, Y.; Yang, D.; Wang, M.W. W2476 represses TXNIP transcription via dephosphorylation of FOXO1 at Ser319. Chem. Biol. Drug Des., 2021, 97(5), 1089-1099.
[http://dx.doi.org/10.1111/cbdd.13828] [PMID: 33560565]
[17]
Kibbe, C.; Chen, J.; Xu, G.; Jing, G.; Shalev, A. FOXO1 competes with carbohydrate response element-binding protein (ChREBP) and inhibits thioredoxin-interacting protein (TXNIP) transcription in pancreatic beta cells. J. Biol. Chem., 2013, 288(32), 23194-23202.
[http://dx.doi.org/10.1074/jbc.M113.473082] [PMID: 23803610]
[18]
Ke, R.; Wang, Y.; Hong, S.; Xiao, L. Endoplasmic reticulum stress related factor IRE1α regulates TXNIP/NLRP3-mediated pyroptosis in diabetic nephropathy. Exp. Cell Res., 2020, 396(2), 112293.
[http://dx.doi.org/10.1016/j.yexcr.2020.112293] [PMID: 32950473]
[19]
Chai, T.F.; Hong, S.Y.; He, H.; Zheng, L.; Hagen, T.; Luo, Y.; Yu, F.X. A potential mechanism of metformin-mediated regulation of glucose homeostasis: Inhibition of Thioredoxin-interacting protein (Txnip) gene expression. Cell. Signal., 2012, 24(8), 1700-1705.
[http://dx.doi.org/10.1016/j.cellsig.2012.04.017] [PMID: 22561086]
[20]
Xu, G.; Chen, J.; Jing, G.; Shalev, A. Preventing β-cell loss and diabetes with calcium channel blockers. Diabetes, 2012, 61(4), 848-856.
[http://dx.doi.org/10.2337/db11-0955] [PMID: 22442301]
[21]
Wang, W.; Wang, C.; Ding, X.Q.; Pan, Y.; Gu, T.T.; Wang, M.X.; Liu, Y.L.; Wang, F.M.; Wang, S.J.; Kong, L.D. Quercetin and allopurinol reduce liver thioredoxin-interacting protein to alleviate inflammation and lipid accumulation in diabetic rats. Br. J. Pharmacol., 2013, 169(6), 1352-1371.
[http://dx.doi.org/10.1111/bph.12226] [PMID: 23647015]
[22]
Ding, X.Q.; Wu, W.Y.; Jiao, R.Q.; Gu, T.T.; Xu, Q.; Pan, Y.; Kong, L.D. Curcumin and allopurinol ameliorate fructose-induced hepatic inflammation in rats via miR-200a-mediated TXNIP/NLRP3 inflammasome inhibition. Pharmacol. Res., 2018, 137, 64-75.
[http://dx.doi.org/10.1016/j.phrs.2018.09.021] [PMID: 30248460]
[23]
Morita, S.; Villalta, S.A.; Feldman, H.C.; Register, A.C.; Rosenthal, W.; Hoffmann-Petersen, I.T.; Mehdizadeh, M.; Ghosh, R.; Wang, L.; Colon-Negron, K.; Meza-Acevedo, R.; Backes, B.J.; Maly, D.J.; Bluestone, J.A.; Papa, F.R. Targeting ABL-IRE1α signaling spares ER-stressed pancreatic β cells to reverse autoimmune diabetes. Cell Metab., 2017, 25(4), 883-897.e8.
[http://dx.doi.org/10.1016/j.cmet.2017.03.018] [PMID: 28380378]
[24]
Thielen, L.A.; Chen, J.; Jing, G.; Moukha-Chafiq, O.; Xu, G.; Jo, S.; Grayson, T.B.; Lu, B.; Li, P.; Augelli-Szafran, C.E.; Suto, M.J.; Kanke, M.; Sethupathy, P.; Kim, J.K.; Shalev, A. Identification of an anti-diabetic, orally available small molecule that regulates TXNIP expression and glucagon action. Cell Metab., 2020, 32(3), 353-365.e8.
[http://dx.doi.org/10.1016/j.cmet.2020.07.002] [PMID: 32726606]
[25]
Wu, J.; Xu, X.; Li, Y.; Kou, J.; Huang, F.; Liu, B.; Liu, K. Quercetin, luteolin and epigallocatechin gallate alleviate TXNIP and NLRP3-mediated inflammation and apoptosis with regulation of AMPK in endothelial cells. Eur. J. Pharmacol., 2014, 745, 59-68.
[http://dx.doi.org/10.1016/j.ejphar.2014.09.046] [PMID: 25446924]
[26]
Li, P.; Chen, D.; Huang, Y. Fisetin administration improves LPS-induced acute otitis media in mouse in vivo. Int. J. Mol. Med., 2018, 42(1), 237-247.
[http://dx.doi.org/10.3892/ijmm.2018.3585] [PMID: 29568876]
[27]
Wang, S.; Zhao, X.; Yang, S.; Chen, B.; Shi, J. Salidroside alleviates high glucose-induced oxidative stress and extracellular matrix accumulation in rat glomerular mesangial cells by the TXNIP-NLRP3 inflammasome pathway. Chem. Biol. Interact., 2017, 278, 48-53.
[http://dx.doi.org/10.1016/j.cbi.2017.10.012] [PMID: 29031534]
[28]
Kudo, K.; Hagiwara, S.; Hasegawa, A.; Kusaka, J.; Koga, H.; Noguchi, T. Cepharanthine exerts anti-inflammatory effects via NF-κB inhibition in a LPS-induced rat model of systemic inflammation. J. Surg. Res., 2011, 171(1), 199-204.
[http://dx.doi.org/10.1016/j.jss.2010.01.007] [PMID: 20334881]
[29]
Samra, Y.A.; Said, H.S.; Elsherbiny, N.M.; Liou, G.I.; El-Shishtawy, M.M.; Eissa, L.A. Cepharanthine and Piperine ameliorate diabetic nephropathy in rats: Role of NF-κB and NLRP3 inflammasome. Life Sci., 2016, 157, 187-199.
[http://dx.doi.org/10.1016/j.lfs.2016.06.002] [PMID: 27266851]
[30]
Lian, D.; Yuan, H.; Yin, X.; Wu, Y.; He, R.; Huang, Y.; Chen, Y. Puerarin inhibits hyperglycemia-induced inter-endothelial junction through suppressing endothelial Nlrp3 inflammasome activation via ROS-dependent oxidative pathway. Phytomedicine, 2019, 55, 310-319.
[http://dx.doi.org/10.1016/j.phymed.2018.10.013] [PMID: 30385134]
[31]
Wongeakin, N.; Bhattarakosol, P.; Patumraj, S. Molecular mechanisms of curcumin on diabetes-induced endothelial dysfunctions: Txnip, ICAM-1, and NOX2 expressions. BioMed Research International, 2014, 2014, 161346.
[32]
Chen, W.; Wang, J.; Luo, Y.; Wang, T.; Li, X.; Li, A.; Li, J.; Liu, K.; Liu, B. Ginsenoside Rb1 and compound K improve insulin signaling and inhibit ER stress-associated NLRP3 inflammasome activation in adipose tissue. J. Ginseng Res., 2016, 40(4), 351-358.
[http://dx.doi.org/10.1016/j.jgr.2015.11.002] [PMID: 27746687]
[33]
Killcoyne, S.; Carter, G.W.; Smith, J.; Boyle, J. Cytoscape: A community-based framework for network modeling. In: Protein Networks and Pathway Analysis; Springer, 2009; pp. 219-239.
[http://dx.doi.org/10.1007/978-1-60761-175-2_12]
[34]
Merico, D.; Gfeller, D.; Bader, G.D. How to visually interpret biological data using networks. Nat. Biotechnol., 2009, 27(10), 921-924.
[http://dx.doi.org/10.1038/nbt.1567] [PMID: 19816451]
[35]
Lotia, S.; Montojo, J.; Dong, Y.; Bader, G.D.; Pico, A.R. Cytoscape app store. Bioinformatics, 2013, 29(10), 1350-1351.
[http://dx.doi.org/10.1093/bioinformatics/btt138] [PMID: 23595664]
[36]
Su, G.; Morris, J.H.; Demchak, B.; Bader, G.D. Biological network exploration with Cytoscape 3. Curr. Protoc. Bioinformatics, 2014, 47(1), 13.1-24.
[http://dx.doi.org/10.1002/0471250953.bi0813s47] [PMID: 25199793]
[37]
Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol., 2014, 8(S4), S11.
[http://dx.doi.org/10.1186/1752-0509-8-S4-S11] [PMID: 25521941]
[38]
Zhang, J.; Luo, Y. Degree centrality, betweenness centrality, and closeness centrality in social network. Proceedings of the 2017 2nd International Conference on Modelling, Simulation and Applied Mathematics (MSAM2017); , 2017, pp. 300-303.
[http://dx.doi.org/10.2991/msam-17.2017.68]
[39]
Ni, C.; Sugimoto, C.; Jiang, J. Degree, closeness, and betweenness: Application of group centrality measurements to explore macro-disciplinary evolution diachronically. Proceedings of ISSI, 2011, pp. 1-13.
[40]
Chen, S.J. Network analysis of Urocortins. Neuroendocrinol. Lett., 2016, 37(6)
[41]
Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network analysis and visualization of proteomics data. J. Proteome Res., 2019, 18(2), 623-632.
[http://dx.doi.org/10.1021/acs.jproteome.8b00702] [PMID: 30450911]
[42]
Kuhn, M.; Szklarczyk, D.; Pletscher-Frankild, S.; Blicher, T.H.; von Mering, C.; Jensen, L.J.; Bork, P. STITCH 4: Integration of protein–chemical interactions with user data. Nucleic Acids Res., 2014, 42(D1), D401-D407.
[http://dx.doi.org/10.1093/nar/gkt1207] [PMID: 24293645]
[43]
Szklarczyk, D.; Santos, A.; von Mering, C.; Jensen, L.J.; Bork, P.; Kuhn, M. STITCH 5: Augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Res., 2016, 44(D1), D380-D384.
[http://dx.doi.org/10.1093/nar/gkv1277] [PMID: 26590256]
[44]
Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[45]
Nosengo, N. Can you teach old drugs new tricks? Nature, 2016, 534(7607), 314-316.
[http://dx.doi.org/10.1038/534314a] [PMID: 27306171]
[46]
Breckenridge, A.; Jacob, R. Overcoming the legal and regulatory barriers to drug repurposing. Nat. Rev. Drug Discov., 2019, 18(1), 1-2.
[http://dx.doi.org/10.1038/nrd.2018.92] [PMID: 29880920]
[47]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[48]
Khedkar, S.; Malde, A.; Coutinho, E.; Srivastava, S. Pharmacophore modeling in drug discovery and development: An overview. Med. Chem., 2007, 3(2), 187-197.
[http://dx.doi.org/10.2174/157340607780059521] [PMID: 17348856]
[49]
Schneidman-Duhovny, D.; Dror, O.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PharmaGist: A webserver for ligand-based pharmacophore detection. Nucleic Acids Res., 2008, 36(S2), W223-W228.
[http://dx.doi.org/10.1093/nar/gkn187] [PMID: 18424800]
[50]
Koes, D.R.; Pabon, N.A.; Deng, X.; Phillips, M.A.; Camacho, C.J. A Teach-Discover-Treat application of ZincPharmer: an online interactive pharmacophore modeling and virtual screening tool. PLoS One, 2015, 10(8), e0134697.
[http://dx.doi.org/10.1371/journal.pone.0134697] [PMID: 26258606]
[51]
Hendlich, M. Databases for protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 1998, 54(6), 1178-1182.
[http://dx.doi.org/10.1107/S0907444998007124] [PMID: 10089494]
[52]
Hu, L.; Benson, M.L.; Smith, R.D.; Lerner, M.G.; Carlson, H.A. Binding MOAD (mother of all databases). Proteins, 2005, 60(3), 333-340.
[http://dx.doi.org/10.1002/prot.20512] [PMID: 15971202]
[53]
Morris, G.M.; Lim-Wilby, M. Molecular docking. In: Molecular modeling of proteins; Springer, 2008; pp. 365-382.
[http://dx.doi.org/10.1007/978-1-59745-177-2_19]
[54]
Kaur, S.; Bansal, Y.; Kumar, R.; Bansal, G. A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors. Bioorg. Med. Chem., 2020, 28(5), 115327.
[http://dx.doi.org/10.1016/j.bmc.2020.115327] [PMID: 31992476]
[55]
Mahanthesh, M.; Ranjith, D.; Yaligar, R.; Jyothi, R.; Narappa, G.; Ravi, M. Swiss ADME prediction of phytochemicals present in Butea monosperma (Lam.). Taub. J. Pharmacogn. Phytochem., 2020, 9(3), 1799-1809.
[56]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[57]
Rashid, M. Design, synthesis and ADMET prediction of bis-benzimidazole as anticancer agent. Bioorg. Chem., 2020, 96, 103576.
[http://dx.doi.org/10.1016/j.bioorg.2020.103576] [PMID: 31986463]
[58]
Megantara, S.; Levita, J.; Iwo, M.I.; Ibrahim, S. Absorption, distribution and toxicity prediction of andrographolide and its derivatives as anti-HIV drugs. Res. J. Chem. Environ., 2018, 22, 82-85.
[59]
Viana, N.A.M.; das Chagas, P.A.D.F.; Filgueiras, L.A.; de Carvalho, M.O.A.; Cunha, R.L.O.R.; Rodezno, S.V.A.; Maia Filho, A.L.M.; de Amorim, C.F.A.; Braz, D.C.; Mendes, A.N. preADMET analysis and clinical aspects of dogs treated with the Organotellurium compound RF07: A possible control for canine visceral leishmaniasis? Environ. Toxicol. Pharmacol., 2020, 80, 103470.
[http://dx.doi.org/10.1016/j.etap.2020.103470] [PMID: 32814174]

© 2024 Bentham Science Publishers | Privacy Policy