Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Vitexin Induces Apoptosis and Ferroptosis and Suppresses Malignant Proliferation and Invasion of Bladder Urothelial Carcinoma through PI3K/AKT-Nrf2 Axis

Author(s): Chao Wang and Huamao Jiang*

Volume 21, Issue 11, 2024

Published on: 26 June, 2023

Page: [2135 - 2147] Pages: 13

DOI: 10.2174/1570180820666230516160527

Price: $65

Abstract

Background: Bladder urothelial carcinoma (BUC) is a type of malignant urinary system. Although several strategies have been applied in the treatment of BUC, its survival remains unsatisfactory, especially in the patients with advanced BUC. Vitexin, a natural flavonoid has exhibited the inhibitory effect on various tumors, however, its effect on BUC is still unclear.

Objective: This study aimed to explore the effect of vitexin on the progression of BUC.

Methods: The toxicity of vitexin on T24 and 5637 cells was detected by cell counting kit-8 (CCK-8). The effects of vitexin on proliferation, apoptosis, invasion, epithelial-mesenchymal transition (EMT) and ferroptosis in BUC cells were determined by CCK-8, flow cytometry, western blot, transwell and immunofluorescence assays. Additionally, the related mechanism was explored by examining the expression of the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT)-nuclear factor-erythroid 2 related factor 2 (Nrf2) pathway. Besides, in vivo validation was performed in the xenografted mice.

Results: Vitexin reduced the BUC cell viability and enhanced the apoptosis rate and the relative protein expression of p53 and cleaved-caspase3. Also, vitexin decreased the invasion number, and increased the relative protein expression of E-cadherin with the decreased N-cadherin protein level in T24 and 5637 cells. Besides, vitexin promoted the levels of ROS and MDA, while reduced the GSH level. Vitexin also increased the level of iron, but decreased the relative protein expression of xCT and GPX4. Erastin further increased the vitexin-induced iron levels, whereas inverse outcomes were observed in the application of ferrostatin-1. Additionally, vitexin decreased the relative protein levels of PI3K, p-AKT/AKT, and nuclear Nrf2, while increased the relative protein level of cytoplasmic Nrf2. Overexpression of PI3K notably inverted the effect of vitexin on cell viability, apoptosis, invasion, level of ROS and iron. Furthermore, vitexin reduced the tumor volume and weight of xenografted mice. Vitexin decreased the protein level of N-cadherin, while increased apoptosis rate of xenografted mice. In addition, vitexin reduced the relative protein levels of PI3K, p-AKT/AKT, and nuclear Nrf2 with the enhanced relative protein expression of cytoplasmic Nrf2 in xenografted mice. Moreover, vitexin decreased the relative protein expression of xCT and GPX4 and the GSH level, whereas increased the MDA level in xenografted mice.

Conclusion: Vitexin suppressed malignant proliferation and invasion and induced apoptosis and ferroptosis of BUC involving in PI3K/AKT-Nrf2 pathway.

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[2]
Richters, A.; Aben, K.K.H.; Kiemeney, L.A.L.M. The global burden of urinary bladder cancer: An update. World J. Urol., 2020, 38(8), 1895-1904.
[http://dx.doi.org/10.1007/s00345-019-02984-4] [PMID: 31676912]
[3]
Stenzl, A.; Cowan, N.C.; De Santis, M.; Jakse, G.; Kuczyk, M.A.; Merseburger, A.S.; Ribal, M.J.; Sherif, A.; Witjes, J.A. The updated EAU guidelines on muscle-invasive and metastatic bladder cancer. Eur. Urol., 2009, 55(4), 815-825.
[http://dx.doi.org/10.1016/j.eururo.2009.01.002] [PMID: 19157687]
[4]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[5]
Rouanne, M.; Bajorin, D.F.; Hannan, R.; Galsky, M.D.; Williams, S.B.; Necchi, A.; Sharma, P.; Powles, T. Rationale and outcomes for neoadjuvant immunotherapy in urothelial carcinoma of the bladder. Eur. Urol. Oncol., 2020, 3(6), 728-738.
[http://dx.doi.org/10.1016/j.euo.2020.06.009] [PMID: 33177001]
[6]
Ali, M.; Mohamed, M.I.; Taher, A.T.; Mahmoud, S.H.; Mostafa, A.; Sherbiny, F.F.; Kandile, N.G.; Mohamed, H.M. New potential anti-SARS-CoV-2 and anti-cancer therapies of chitosan derivatives and its nanoparticles: Preparation and characterization. Arab. J. Chem., 2023, 16(5), 104676.
[http://dx.doi.org/10.1016/j.arabjc.2023.104676] [PMID: 36811068]
[7]
Goudarzi, M.; Alshamsi, H.A.; Amiri, M.; Salavati-Niasari, M. ZnCo2O4/ZnO nanocomposite: Facile one-step green solid-state thermal decomposition synthesis using Dactylopius Coccus as capping agent, characterization and its 4T1 cells cytotoxicity investigation and anticancer activity. Arab. J. Chem., 2021, 14(9), 103316.
[http://dx.doi.org/10.1016/j.arabjc.2021.103316]
[8]
Baladi, M.; Amiri, M.; Salavati-Niasari, M. Green sol–gel auto-combustion synthesis, characterization and study of cytotoxicity and anticancer activity of ErFeO3/Fe3O4/rGO nanocomposite. Arab. J. Chem., 2023, 16(4), 104575.
[http://dx.doi.org/10.1016/j.arabjc.2023.104575]
[9]
Peng, Y.; Gan, R.; Li, H.; Yang, M.; McClements, D.J.; Gao, R.; Sun, Q. Absorption, metabolism, and bioactivity of vitexin: recent advances in understanding the efficacy of an important nutraceutical. Crit. Rev. Food Sci. Nutr., 2021, 61(6), 1049-1064.
[http://dx.doi.org/10.1080/10408398.2020.1753165] [PMID: 32292045]
[10]
Wu, J.; Peng, W.; Qin, R.; Zhou, H. Crataegus pinnatifida: Chemical constituents, pharmacology, and potential applications. Molecules, 2014, 19(2), 1685-1712.
[http://dx.doi.org/10.3390/molecules19021685] [PMID: 24487567]
[11]
He, M.; Min, J.W.; Kong, W.L.; He, X.H.; Li, J.X.; Peng, B.W. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia, 2016, 115, 74-85.
[http://dx.doi.org/10.1016/j.fitote.2016.09.011] [PMID: 27693342]
[12]
Gu, C.B.; Cai, M.; Yuan, X.H.; Zu, Y.G. Research progress on plant resources distribution of vitexin and its pharmacological effects. Zhongguo Zhongyao Zazhi, 2015, 40(3), 382-389.
[PMID: 26084156]
[13]
Zhao, S.; Guan, X.; Hou, R.; Zhang, X.; Guo, F.; Zhang, Z.; Hua, C. Vitexin attenuates epithelial ovarian cancer cell viability and motility in vitro and carcinogenesis in vivo via p38 and ERK1/2 pathways related VEGFA. Ann. Transl. Med., 2020, 8(18), 1139.
[http://dx.doi.org/10.21037/atm-20-5586] [PMID: 33240988]
[14]
Liu, X.; Jiang, Q.; Liu, H.; Luo, S. Vitexin induces apoptosis through mitochondrial pathway and PI3K/Akt/mTOR signaling in human non-small cell lung cancer A549 cells. Biol. Res., 2019, 52(1), 7.
[http://dx.doi.org/10.1186/s40659-019-0214-y] [PMID: 30797236]
[15]
Zhou, P.; Zheng, Z.H.; Wan, T.; Wu, J.; Liao, C.W.; Sun, X.J. Vitexin inhibits gastric cancer growth and metastasis through HMGB1-mediated inactivation of the PI3K/AKT/mTOR/HIF-1α signaling pathway. J. Gastric Cancer, 2021, 21(4), 439-456.
[http://dx.doi.org/10.5230/jgc.2021.21.e40] [PMID: 35079445]
[16]
Ghazy, E.; Taghi, H.S. The autophagy-inducing mechanisms of vitexin, cinobufacini, and physalis alkekengi hydroalcoholic extract against breast cancer in vitro and in vivo. J. Gastrointest. Cancer, 2022, 53(3), 592-596.
[PMID: 34287803]
[17]
Huang, J.; Zhou, Y.; Zhong, X.; Su, F.; Xu, L. Effects of vitexin, a natural flavonoid glycoside, on the proliferation, invasion, and apoptosis of human U251 glioblastoma cells. Oxid. Med. Cell. Longev., 2022, 2022, 3129155.
[http://dx.doi.org/10.1155/2022/3129155] [PMID: 35281458]
[18]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[19]
Zhang, M.; Zhang, X.; Yu, M.; Zhang, W.; Zhang, D.; Zeng, S.; Wang, X.; Hu, X. A novel ferroptosis-related gene model for overall survival predictions of bladder urothelial carcinoma patients. Front. Oncol., 2021, 11, 698856.
[http://dx.doi.org/10.3389/fonc.2021.698856] [PMID: 34386423]
[20]
Luan, J.; Zeng, T.; Zhang, Q.; Xia, D.; Cong, R.; Yao, L.; Song, L.; Zhou, X.; Zhou, X.; Chen, X.; Xia, J.; Song, N. A novel signature constructed by ferroptosis-associated genes (FAGs) for the prediction of prognosis in bladder urothelial carcinoma (BLCA) and associated with immune infiltration. Cancer Cell Int., 2021, 21(1), 414.
[http://dx.doi.org/10.1186/s12935-021-02096-3] [PMID: 34362387]
[21]
Li, X.; Huang, J.; Chen, J.; Zhan, Y.; Zhang, R.; Lu, E.; Li, C.; Zhang, Y.; Wang, Y.; Li, Y.; Zheng, J.; Geng, W. A novel prognostic signature based on ferroptosis-related genes predicts the prognosis of patients with advanced bladder urothelial carcinoma. Front. Oncol., 2021, 11, 726486.
[http://dx.doi.org/10.3389/fonc.2021.726486] [PMID: 34966666]
[22]
Li, H.; Liu, W.; Zhang, X.; Wu, F.; Sun, D.; Wang, Z. Ketamine suppresses proliferation and induces ferroptosis and apoptosis of breast cancer cells by targeting KAT5/GPX4 axis. Biochem. Biophys. Res. Commun., 2021, 585, 111-116.
[http://dx.doi.org/10.1016/j.bbrc.2021.11.029] [PMID: 34800882]
[23]
Guan, Z.; Chen, J.; Li, X.; Dong, N. Tanshinone IIA induces ferroptosis in gastric cancer cells through p53-mediated SLC7A11 down-regulation. Biosci. Rep., 2020, 40(8), BSR20201807.
[http://dx.doi.org/10.1042/BSR20201807] [PMID: 32776119]
[24]
Tang, X.; Ding, H.; Liang, M.; Chen, X.; Yan, Y.; Wan, N.; Chen, Q.; Zhang, J.; Cao, J. Curcumin induces ferroptosis in non‐small‐cell lung cancer via activating autophagy. Thorac. Cancer, 2021, 12(8), 1219-1230.
[http://dx.doi.org/10.1111/1759-7714.13904] [PMID: 33656766]
[25]
Hong, H.; Li, J. Oxymatrine-induced apoptosis in fibroblasts like synoviocytes via regulation of miR-146a/TRAF6/JNK1 axis in rheumatoid arthritis. Lett. Drug Des. Discov., 2023, 20(2), 232-237.
[http://dx.doi.org/10.2174/1570180819666220530143250]
[26]
Yang, L.; Li, H.; Yang, D.; Xu, Z.; Yang, L.; Lin, J.; Cai, J. Metformin sensitizes cisplatin-induced apoptosis through regulating nucleotide excision repair pathway in cisplatin-resistant human lung cancer cells. Lett. Drug Des. Discov., 2022, 19(12), 1086-1095.
[http://dx.doi.org/10.2174/1570180819666220330121135]
[27]
Zhang, J.; Deng, X. Effects of miR-599 targeting YAP1 on proliferation, invasion and apoptosis of bladder urothelial carcinoma cells. Exp. Mol. Pathol., 2021, 118, 104599.
[http://dx.doi.org/10.1016/j.yexmp.2020.104599] [PMID: 33359177]
[28]
Wang, P.; Zhang, Y.; Zhang, J.; Jiang, J.; Jin, F.; Sun, Z. IL 23 concentration dependently regulates T24 cell proliferation, migration and invasion and is associated with prognosis in patients with bladder cancer. Oncol. Rep., 2018, 40(6), 3685-3693.
[http://dx.doi.org/10.3892/or.2018.6775] [PMID: 30542702]
[29]
Tian, F.; Tong, M.; Li, Z.; Huang, W.; Jin, Y.; Cao, Q.; Zhou, X.; Tong, G. The effects of orientin on proliferation and apoptosis of T24 human bladder carcinoma cells occurs through the inhibition of nuclear factor-kappab and the hedgehog signaling pathway. Med. Sci. Monit., 2019, 25, 9547-9554.
[http://dx.doi.org/10.12659/MSM.919203] [PMID: 31837261]
[30]
Li, F.; Sun, Y.; Jia, J.; Yang, C.; Tang, X.; Jin, B.; Wang, K.; Guo, P.; Ma, Z.; Chen, Y.; Wang, X.; Chang, L.; He, D.; Zeng, J. Silibinin attenuates TGF β1 induced migration and invasion via EMT suppression and is associated with COX 2 downregulation in bladder transitional cell carcinoma. Oncol. Rep., 2018, 40(6), 3543-3550.
[http://dx.doi.org/10.3892/or.2018.6728] [PMID: 30272315]
[31]
Liang, C.; Zhang, X.; Yang, M.; Dong, X. Recent progress in ferroptosis inducers for cancer therapy. Adv. Mater., 2019, 31(51), 1904197.
[http://dx.doi.org/10.1002/adma.201904197] [PMID: 31595562]
[32]
Hao, J.; Zhang, W.; Huang, Z. Bupivacaine modulates the apoptosis and ferroptosis in bladder cancer via phosphatidylinositol 3-kinase (PI3K)/AKT pathway. Bioengineered, 2022, 13(3), 6794-6806.
[http://dx.doi.org/10.1080/21655979.2022.2036909] [PMID: 35246010]
[33]
Xiang, Y.; Chen, X.; Wang, W.; Zhai, L.; Sun, X.; Feng, J.; Duan, T.; Zhang, M.; Pan, T.; Yan, L.; Jin, T.; Gao, Q.; Wen, C.; Ma, W.; Liu, W.; Wang, D.; Wu, Q.; Xie, T.; Sui, X. Natural product erianin inhibits bladder cancer cell growth by inducing ferroptosis via NRF2 inactivation. Front. Pharmacol., 2021, 12, 775506.
[http://dx.doi.org/10.3389/fphar.2021.775506] [PMID: 34776986]
[34]
Kong, N.; Chen, X.; Feng, J.; Duan, T.; Liu, S.; Sun, X.; Chen, P.; Pan, T.; Yan, L.; Jin, T.; Xiang, Y.; Gao, Q.; Wen, C.; Ma, W.; Liu, W.; Zhang, M.; Yang, Z.; Wang, W.; Zhang, R.; Chen, B.; Xie, T.; Sui, X.; Tao, W. Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1. Acta Pharm. Sin. B, 2021, 11(12), 4045-4054.
[http://dx.doi.org/10.1016/j.apsb.2021.03.036] [PMID: 35024325]
[35]
Guo, L.; Shi, L. Vitexin improves cerebral ischemia-reperfusion injury by attenuating oxidative injury and ferroptosis via Keap1/Nrf2/HO-1signaling. Neurochem. Res., 2022.
[36]
Wang, H.; Cheng, Y.; Mao, C.; Liu, S.; Xiao, D.; Huang, J.; Tao, Y. Emerging mechanisms and targeted therapy of ferroptosis in cancer. Mol. Ther., 2021, 29(7), 2185-2208.
[http://dx.doi.org/10.1016/j.ymthe.2021.03.022] [PMID: 33794363]
[37]
Wang, S.; Luo, J.; Zhang, Z.; Dong, D.; Shen, Y.; Fang, Y.; Hu, L.; Liu, M.; Dai, C.; Peng, S.; Fang, Z.; Shang, P. Iron and magnetic: New research direction of the ferroptosis-based cancer therapy. Am. J. Cancer Res., 2018, 8(10), 1933-1946.
[PMID: 30416846]
[38]
Torti, S.V.; Manz, D.H.; Paul, B.T.; Blanchette-Farra, N.; Torti, F.M. Iron and cancer. Annu. Rev. Nutr., 2018, 38(1), 97-125.
[http://dx.doi.org/10.1146/annurev-nutr-082117-051732] [PMID: 30130469]
[39]
Tang, D.; Kroemer, G. Ferroptosis. Curr. Biol., 2020, 30(21), R1292-R1297.
[http://dx.doi.org/10.1016/j.cub.2020.09.068] [PMID: 33142092]
[40]
Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; Noel, K.; Jiang, X.; Linkermann, A.; Murphy, M.E.; Overholtzer, M.; Oyagi, A.; Pagnussat, G.C.; Park, J.; Ran, Q.; Rosenfeld, C.S.; Salnikow, K.; Tang, D.; Torti, F.M.; Torti, S.V.; Toyokuni, S.; Woerpel, K.A.; Zhang, D.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2), 273-285.
[http://dx.doi.org/10.1016/j.cell.2017.09.021] [PMID: 28985560]
[41]
Daher, B.; Parks, S.K.; Durivault, J.; Cormerais, Y.; Baidarjad, H.; Tambutte, E.; Pouysségur, J.; Vučetić, M. Genetic ablation of the cystine transporter xCT in PDAC cells inhibits mTORC1, growth, survival, and tumor formation via nutrient and oxidative stresses. Cancer Res., 2019, 79(15), 3877-3890.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3855] [PMID: 31175120]
[42]
Savaskan, N.E.; Heckel, A.; Hahnen, E.; Engelhorn, T.; Doerfler, A.; Ganslandt, O.; Nimsky, C.; Buchfelder, M.; Eyüpoglu, I.Y. Small interfering RNA–mediated xCT silencing in gliomas inhibits neurodegeneration and alleviates brain edema. Nat. Med., 2008, 14(6), 629-632.
[http://dx.doi.org/10.1038/nm1772] [PMID: 18469825]
[43]
Sun, Y.; Zheng, Y.; Wang, C.; Liu, Y. Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells. Cell Death Dis., 2018, 9(7), 753.
[http://dx.doi.org/10.1038/s41419-018-0794-4] [PMID: 29988039]
[44]
Mou, Y.; Wang, J.; Wu, J.; He, D.; Zhang, C.; Duan, C.; Li, B. Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. J. Hematol. Oncol., 2019, 12(1), 34.
[http://dx.doi.org/10.1186/s13045-019-0720-y] [PMID: 30925886]
[45]
Li, Y.; Cao, Y.; Xiao, J.; Shang, J.; Tan, Q.; Ping, F.; Huang, W.; Wu, F.; Zhang, H.; Zhang, X. Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury. Cell Death Differ., 2020, 27(9), 2635-2650.
[http://dx.doi.org/10.1038/s41418-020-0528-x] [PMID: 32203170]
[46]
Noorolyai, S.; Shajari, N.; Baghbani, E.; Sadreddini, S.; Baradaran, B. The relation between PI3K/AKT signalling pathway and cancer. Gene, 2019, 698, 120-128.
[http://dx.doi.org/10.1016/j.gene.2019.02.076] [PMID: 30849534]
[47]
Calderaro, J.; Rebouissou, S.; de Koning, L.; Masmoudi, A.; Hérault, A.; Dubois, T.; Maille, P.; Soyeux, P.; Sibony, M.; de la Taille, A.; Vordos, D.; Lebret, T.; Radvanyi, F.; Allory, Y. PI3K/AKT pathway activation in bladder carcinogenesis. Int. J. Cancer, 2014, 134(8), 1776-1784.
[http://dx.doi.org/10.1002/ijc.28518] [PMID: 24122582]
[48]
Sun, C.H.; Chang, Y.H.; Pan, C.C. Activation of the PI3K/Akt/mTOR pathway correlates with tumour progression and reduced survival in patients with urothelial carcinoma of the urinary bladder. Histopathology, 2011, 58(7), 1054-1063.
[http://dx.doi.org/10.1111/j.1365-2559.2011.03856.x] [PMID: 21707707]
[49]
Park, C.; Cha, H.J.; Lee, H.; Hwang-Bo, H.; Ji, S.Y.; Kim, M.Y.; Hong, S.H.; Jeong, J.W.; Han, M.H.; Choi, S.H.; Jin, C.Y.; Kim, G.Y.; Choi, Y.H. Induction of G2/M cell cycle arrest and apoptosis by genistein in human bladder cancer T24 cells through inhibition of the ROS-dependent PI3k/Akt signal transduction pathway. Antioxidants, 2019, 8(9), 327.
[http://dx.doi.org/10.3390/antiox8090327] [PMID: 31438633]
[50]
Hou, T.; Zhou, L.; Wang, L.; Kazobinka, G.; Zhang, X.; Chen, Z. CLCA4 inhibits bladder cancer cell proliferation, migration, and invasion by suppressing the PI3K/AKT pathway. Oncotarget, 2017, 8(54), 93001-93013.
[http://dx.doi.org/10.18632/oncotarget.21724] [PMID: 29190973]
[51]
Li, H.; Song, F.; Duan, L.R.; Sheng, J.J.; Xie, Y.H.; Yang, Q.; Chen, Y.; Dong, Q.Q.; Zhang, B.L.; Wang, S.W. Paeonol and danshensu combination attenuates apoptosis in myocardial infarcted rats by inhibiting oxidative stress: Roles of Nrf2/HO-1 and PI3K/Akt pathway. Sci. Rep., 2016, 6(1), 23693.
[http://dx.doi.org/10.1038/srep23693] [PMID: 27021411]
[52]
Liu, S.X.; Zhang, Y.; Wang, Y.F.; Li, X.C.; Xiang, M.X.; Bian, C.; Chen, P. Upregulation of heme oxygenase-1 expression by hydroxysafflor yellow A conferring protection from anoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes. Int. J. Cardiol., 2012, 160(2), 95-101.
[http://dx.doi.org/10.1016/j.ijcard.2011.03.033] [PMID: 21497407]
[53]
Cho, H.Y.; Reddy, S.P.; Kleeberger, S.R. Nrf2 defends the lung from oxidative stress. Antioxid. Redox Signal., 2006, 8(1-2), 76-87.
[http://dx.doi.org/10.1089/ars.2006.8.76] [PMID: 16487040]

© 2024 Bentham Science Publishers | Privacy Policy